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Abstract. The theoretical power spectrum of velocity fields and flux fluctuations at the solar photosphere
is calculated using a quasi-nonlinear framework of superposition of unstable convective eigenmodes excited
in the solar convection zone. It is demonstrated that this power spectrum exhibits at least three distinct
peaks corresponding to granulation, mesogranulation and supergranulation. The vertical velocity and the
brightness fluctuation at the solar surface are found to be correlated. The theoretical framework can be
adopted for application to other types of stars in order to predict the dominant length scales in the power
spectrum of convection in these stars.

1. Introduction

One of the most striking properties of solar convective motions is the existence of
distinct cellular scales observed at the surface of the Sun. Granulation, which has a
characteristic scale-size of ~ 2000 km and an average lifetime of 8—10 min, is visible
largely through its brightness contrast; the typical vertical velocities associated with
granulation are ~ 1 km s~ !, while horizontal velocities are ~2 km s~ ! (Beckers and
Canfield, 1976; Roudier et al., 1991). Supergranulation with a cell-size of ~ 30000 km
and lifetime of 1-2 days, is detected mainly through its horizontal flow pattern, and
typically the horizontal velocities are of order 0.3-0.5 km s ~! (Hart, 1956, Simon and
Leighton, 1964 ; Beckers, 1968). There is some uncertainty, however, about the vertical
supergranular motion. Musman and Rust (1970) have reported vertical velocities in the
range of 0.02-0.04 km s~ !'; Worden and Simon (1976) observed a supergranular
outflow of =~ 0.05km s~ !, while Giovanelli (1980) obtained an r.m.s. vertical velocity
of <0.01 km s~ !. Recently, Wang and Zirin (1989) have measured an r.m.s. supergran-
ular vertical velocity of = 0.03 km s~ '. High-resolution observations of the Sun have
revealed another scale of motion intermediate between granulation and supergranulation,
namely, mesogranulation which has a mean size of &~ 7000 km and lifetime of a few
hours (November et al., 1981). The existence of mesogranulation was originally deduced
by November et al. (1981) from Dopplergrams of the vertical velocity field. But with the
availability of techniques to measure proper motion of granules, the horizontal velocity
fields at the solar surface could be observed directly (November and Simon, 1988) and
the mesogranulation was confirmed by detection of = 6000 km size structures in the
horizontal flow field (Title ez al., 1986). Deubner (1989) studied the dynamics of meso-
granulation to detect a distinct coherence of velocity and brightness fluctuations over
the spatial scales ~ 10000 km. The r.m.s. horizontal velocities inferred from Deubner’s

power spectrum are =~ 750 m s~ !, while the r.m.s. vertical motions are ~300ms~".
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Besides these motions, giant cells which are comparable in size to the total thickness
of the solar convection zone have also been inferred (Bumba, 1970; Howard, 1971).

An interesting question raised by these convective motions observed on the surface
of the Sun is why the solar velocity power spectrum displays discrete spatial scales.
Clearly, any reasonable theoretical model must not only explain the distinct peaks
exhibited by the observed power spectrum of solar convection, but should also predict
the preferred scales of convective motions on other stars which would, hopefully,
become accessible to observations in the not too distant future. The cellular pattern
detected in the solar photosphere must, in some way, be a manifestation of convective
motions generated by instabilities in the superadiabatic sub-surface layers. Indeed, it is
generally agreed that the solar granulation has a convective origin and is driven by the
energy of hydrogen ionization in the strongly superadiabatic layers located several tens
of kilometers below the photosphere (Simon and Weiss, 1968; Gough and Weiss, 1976).
On the other hand, the mechanism that drives supergranulation is not altogether clear,
although it has been proposed that supergranulation is a convective phenomenon
attributed to energy from helium ionization at a depth of a few tens of thousand
kilometers (Simon and Leighton, 1964; Simon and Weiss, 1968; Gough and Weiss,
1976). It is an interesting observational feature that the ratio of horizontal to vertical
velocity of convective motions appears to be linearly dependent on the spatial scale; thus
the ratio is of order 1 for granules, ~ 2.6 for mesogranules and = 20 for supergranules
(Hill, Deubner, and Isaak, 1991).

In an attempt to understand the granular scale, Bohm (1963) calculated the growth
rates of linear convective modes in an equilibrium solar convection zone model
constructed with the mixing-length formalism. The resulting growth rates showed a
monotonic increase with decreasing wavelength well past the observed cut-off; this
could be attributed to neglect of the turbulent thermal conductivity in Bohm’s analysis.
Evidently, most of the flux in the convection zone is carried by convective processes and
furthermore, the radiative conductivity is negligible compared to the turbulent heat
conductivity in this zone. It is therefore, expected that the turbulent processes will have
significant influence on the manner in which the thermal flux in the solar convection zone
is transported. This prompted Antia, Chitre, and Pandey (1981) to extend B6hm’s work
and to investigate the stability of linear convective modes in the solar convection zone
by incorporating the mechanical and thermal effects of turbulence through the eddy
transport coefficients. The underlying assumption is that both the coefficients of
turbulent thermal conductivity and turbulent viscosity can be satisfactorily constructed
with the help of the mean convective velocity and the local mixing length.

It was demonstrated by Antia, Chitre, and Pandey (1981) that the character of
convective eigenmodes is very significantly influenced by the inclusion of turbulent
transport coefficients. When the background solar convection zone model was per-
turbed, the resulting most rapidly growing fundamental eigenmode and the first sub-
harmonic were found to be in reasonable accord with the observed features of granu-
lation and supergranulation, respectively.

The main thrust of the present work is to study linear stability characteristics of
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convective eigenmodes with a view to derive the power spectrum of the solar velocity
field using the linear superposition technique for reproducing the model convective flux.
It is then demonstrated that the power spectrum at the surface of the Sun, indeed,
exhibits the distinct peaks corresponding to granulation, mesogranulation and super-
granulation. This may be compared with the observed power in these features of solar
convection. The theoretical framework is extended for application to other types of stars
(e.g., «Cen A (G2 V) and Arcturus (K1 III)) in order to predict the dominant length
scales in the power spectrum of convection on these stars.

2. Theoretical Model and Governing Equations

A realistic solar convection zone model is constructed using a non-local mixing length
prescription adopted by Shaviv and Chitre (1968). Here the mean convective velocity
is calculated by including the aerodynamic drag experienced by moving elements. Thus,
a descending element that is distorted because of the eddies generated around it during
its motion in the midst of ascending elements, suffers resistance, and this manifests as
a drag which is determined mainly by the energy dissipated in the wake. When this
aerodynamic drag is incorporated in the motion, the non-locality in the velocity profile
is simulated by the equation (Antia, Chitre, and Narasimha, 1984):

dw?  BgQL DW?
= — v —_ v - .
dr H ( ad) L (1)

p

Here f is a parameter of order unity and D = 4C,,, where C, is the aerodynamic
drag coefficient, L is the mixing length, ¥ the mean velocity of convective elements,
H, the local pressure scale height, Q= —(0lnp/dInT)p, V= (dInT/dInP),
V.a = (@InT/0InP),, and r is the radial distance. The standard stellar structure
equations with the mixing-length approximation are integrated using Equation (1) for the
velocity (cf. Antia, Chitre, and Narasimha, 1984). Since the convective modes are
trapped in the convection zone it is sufficient to consider only the outer layers of the Sun.
We have used a solar envelope model which extends up to a depth of 250000 km. In the
atmosphere above the optical depth 7 = 1 we use a model based on an empirical (T — 1)
relation given by Vernazza, Avrett, and Loeser (1976). The outer boundary of the model
is chosen to be around the temperature minimum. The solar composition is assumed to
be (X = 0.732, Y = 0.250, Z = 0.018). The opacity tables of Cox and Tabor (1976) have
been used, along with the molecular opacities by Alexander (1975) at low temperatures.
This equilibrium solar model is perturbed to calculate the linear convective eigen-
modes by incorporating the eddy transport coefficients. For studying the linear stability,
we adopt the usual hydrodynamical equations governing the conservation of mass,
momentum and energy as applicable to a viscous, thermally-conducting fluid layer:
mass conservation:

P Ly-(w =0, ©)

ot
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momentum conservation:

ov
p =+ PV =pg - VP~ Vv =3V )V, +

+ V- [, (Vv + V)], 3)
energy conservation:
0Os R c
pT a—+V'Vs = -V-(FR+F°)+ &, 4)
1

where the rate of viscous dissipation
@ = 3p,(Vv + W) - (Vv + vV) — 2u(V -v)2. (5)

Here we have adopted the usual notation with s as the specific entropy, P the thermo-
dynamic pressure, FX the radiative flux, and F€ the convective flux. The turbulent
viscosity u, = g,0pWL, where o, is the turbulent Prandtl number and « is another
parameter of order unity. The mixing-length L is chosen to be the distance from the
nearest boundary of the convection zone. Apart from the gas pressure, we have also
included a contribution due to the turbulent pressure P, = C,W?, where C is a constant.
Using the Eddington approximation, the radiative flux F®is given by (Unno and Spiegel,
1966)
4 V-FX

FR= - — VJ, J=oT*- , (6)
3kp 4kp

where x is the mean Rosseland opacity, J is the intensity of radiation, and o the
Stefan—Boltzmann constant.
The convective flux in the mixing length formalism is given by

T
FC€= —apC,WL (VT— Vg > VP). (7)

For the purpose of the present calculations, we choose the values o = 0.25, f = 0.25,
L = min(z + 459 km, 215000 — z km), where z is the depth measured from 7 = 1 level,
D = 0.1 to 1, while the turbulent Prandtl number o, is chosen to take values between
2 and 3.

The governing equations are linearized to obtain a set of nine first-order differential
equations for the perturbed quantities in the convection zone, while the bounding
overlying atmosphere as well as the underlying radiative interior are assumed to be
inviscid. The set of equations along with the required connection and boundary condi-
tions, as given by Antia, Chitre, and Narasimha (1984), constitute a generalized eigen-
value problem. The real eigenvalues and the associated eigenfunctions are determined
numerically, adopting a finite-difference method (Antia, 1979) for a specified value of
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the horizontal harmonic number /. For each value of / there is a sequence of modes which
is characterized by the number of nodes in the eigenfunction. The fundamental mode
with the largest eigenvalue is referred to as the C'1 mode, while the first subharmonic
is referred to as the C2 mode. Here the suffixes 1 and 2 refer to the radial order » (cf.
Equation (8)). In most cases considered here only the C 1 mode turns out to be unstable,
while in some cases the C2 mode is also unstable. Thus, we only consider the C'1 and
(in some cases) C2 modes. The higher subharmonics which are stable are not included
in this study.

3. Modal Analysis and Theoretical Power Spectrum

An interesting question addressed by Hart (1973) was whether stellar convection zone
models constructed using the framework of the mixing-length theory are consistent with
models incorporating convection dynamics. It was convincingly shown by Hart (1973)
and Bogart, Gierasch, and Macauslan (1980) that no linear superposition of adiabatic,
inviscid eigenmodes could even remotely reproduce the model convective flux profile of
the solar convective envelope. This was a direct consequence of all the convective modes
having a sharp peak in the strongly superadiabatic region just below the photosphere.
It was demonstrated by Narasimha and Antia (1982) that the convection zone models
constructed by adopting the mixing length prescription can indeed be made consistent
with models incorporating convection dynamics, provided the mechanical and thermal
effects of turbulent convection are included in the stability analysis through the turbulent
transport coefficients. In fact, Narasimha and Antia (1982) found that with the inclusion
of turbulent thermal conductivity, the eigenfunctions no longer peaked only in the
subsurface superadiabatic region, but rather they were spread over the entire convection
zone. The linear eigenfunctions with large values of harmonic number, /, peak near the
surface, while those corresponding to small / peak near the base of the convection zone.

The energy flux, F,,(r) carried by a given eigenmode with angular harmonic number
! and radial order » may be calculated using the expression

Fp(r) = pov,(Tos, + Pi/po) (8)

where p, and T, are, respectively, the density and temperature in the equilibrium solar
model, while v,, P, and s, are the perturbations in vertical velocity, pressure, and
specific entropy, respectively. The perturbed quantities are computed from the eigen-
function corresponding to the relevant eigenmode. In order to fix the normalization, the
multiplicative constant in the eigenfunctions is so chosen that the maximum of the
convective flux, F,,(r), over the entire convection zone equals the total solar flux at that
depth. The superposition of these eigenmodes to match the convective flux profile
computed in the mixing length framework at various depths may be used to determine
the amplitudes of the eigenmodes by writing

Z alanln(r) = FOC(r) ’ (9)

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System



. 145. . 227A

1993SoPh.

232 H. M. ANTIA AND S. M. CHITRE

where F£(r) is the equilibrium convective flux profile calculated adopting the mixing-
length prescription, and a,, is the amplitude of the corresponding convective eigenmode.
Itis then demonstrably possible to find a linear superposition of statistically independent,
unstable convective modes which can reproduce the model convective flux reasonably
well throughout the solar convection zone. Using a few representative values of / we
can obtain a least-squares solution of this equation to determine the amplitudes a,,, of
individual eigenmodes. The technique of superposing these linear eigenmodes to match
the convective flux profile obtained with the mixing-length prescription can thus be
effectively used to determine the amplitudes of various eigenmodes. The linear stability
analysis would evidently not have yielded the amplitude of a given mode, but the present
approach, which in some sense simulates the nonlinear effects through the eddy transport
coefficients, is able to yield the amplitudes when the convective flux constructed for
individual eigenmodes peaking at different depths is matched with the model convective
flux. This, in our view, is a quasi-nonlinear approach to the problem of convection
dynamics, which helps us to fix the amplitudes of convective modes within the frame-
work of the linearized theory. Its effectiveness can only be tested by comparing the
results with elaborate, three-dimensional, numerical simulation of hydrodynamical
flows (cf. Stein and Nordlund, 1989; Chan and Sofia, 1986). The main inquiry we must
now address is whether such a quasi-nonlinear approach can reasonably reproduce the
scales detected on the solar surface and, more importantly, predict the corresponding
features on other stars.
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Fig. 1. Power spectrum of vertical velocity (), horizontal velocity (¥,,), and flux perturbation (F/F ) for
a solar model with C = 0.5, D = 0.5, and with turbulent Prandtl number o, = 0.85.

We have displayed in Figure 1 the horizontal and radial velocity components at
optical depth 7 = 0.4, as a function of the logarithm of the horizontal harmonic number
1, for the solar case. For the purpose of obtaining the power per unit mode as a function
of [ we select a set {l,,1,,...,1y} (I, <, <---<ly) of representative values of /
spanning the entire range of unstable convective modes. The amplitudes of the modes
in a linear superposition are then obtained as described above and these amplitudes are
then converted to power per mode by assuming that each /; represents a typical mode
in the interval ((/,_, + 1,)/2, (I + ., ,)/2). This would essentially amount to the calculat-
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ed amplitude a, being divided by (/,, ; — /;_,)/2 in order to obtain the corresponding
value of power per mode. The points actually used to obtain the curve are indicated
explicitly in the figures. The total power due to modes in a given interval of / can be
determined by summing the power in all modes in the required interval. It should be
noted that the final result will naturally depend on the choice of {/;} used to obtain the
least-squares solution. We have repeated the calculations with different choices for {/,}
to find that the power spectrum does, in fact, depend to some extent on this choice, but
the total power in a given range of / values turns out to be not very sensitive. The general
shape of the power spectrum is independent of the choice, but the height and exact
position of the peaks do depend on the choice of {/;}. Hence, it is more meaningful to
compare the total power in different peaks with observations. Further, since the ampli-
tudes are determined by a least-squares solution, it is not possible to accurately deter-
mine the amplitudes of those modes which have low power. Consequently, we have
shown the power spectrum in Figures 1, 2, and 3 plotted on a logarithmic scale for /
only.

We notice from Figure 1 that the most striking feature of the velocity power spectrum
is the presence of three distinct peaks at / ~ 1500, / ~ 350, and / ~ 180, with possible
peaks around / =~ 20 and 60. The existence of preferred scale-sizes on the solar surface
1s thus clearly indicated by the theoretical power spectrum of solar convection. The
theoretically computed maximal length scales, 4 = 27R /\/ /(I + 1) corresponding to
the three peaks are around 2800, 12000, and 24 000 km, in reasonable accord with the
observed length scales associated respectively with granulation, mesogranulation and
supergranulation. It is tempting to identify the smaller peaks at / &~ 19 and 60, which are
noticeable only in the power spectrum for the horizontal component of velocity, with
global convection (Howard and LaBonte, 1980; Schréter, 1985). This power spectrum
may be compared with observations of Chou ez al. (1991) and Beckers (1981). Ginet
and Simon (1992) have further analyzed and interpreted the observations of Chou et al.
(1991) to report an r.m.s. horizontal velocity of ~0.23 km s~ ' for mesogranulation.
Note that in the present work the power per mode is calculated with respect to the
harmonic number /, while in the observational results of Chou et al. (1991) the power
is expressed in terms of the horizontal wave number (rad Mm ~ ). We remark that there
are no unstable convective modes beyond / = 2000 for our solar envelope model. From
this we infer that cellular structures of sizes exceeding = 2000 km are of convective
origin, and they carry most of the convective flux, while the smaller scale eddies are
produced via the turbulent energy cascade process (cf. Roudier ez al., 1991).

It is interesting to compute the associated fluctuation in the flux 0F/F, and these
results are also shown in Figure 1. Again, the power spectrum of flux variation exhibits
peaks at the discrete scales corresponding to granulation, mesogranulation and super-
granulation. The flux variation is evidently dominated by a granular component whose
contribution is nearly a factor of three larger than that of the mesogranulation. We
should like to emphasize that in our analysis the flux perturbation appears to be directly
correlated with the vertical component of velocity at the photospheric level.

It is straightforward to estimate the total power in different scales by calculating the
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TABLE 1

Power spectrum of stellar convection

Model Mode Lmax Length Time Total power
scale scale
(km) (hr) V., V, OF|F
(kms~1) (kms~1)
Sun (A) Cl 1570 2.8 x 103 0.6 1.8 x 10° 3.68 22x 107!
C=05D=05 Cl 356 1.2 x 104 5.1 55x 1071 4,53 7.0 x 10~2
g, =0.85 Cl 182 2.4 x 10* 137 1.3 x10°"' 205 20x 1072
Cl 60 7.2 x 104 232 22x 1072 0.5 1.8 x 10~3
Cl 19 2.2 x 10° 806 28 x 1073 048 25x 10773
Sun (B) Cl1 1960 2.2 x 103 0.5 1.9 x 10° 3.47 1.8 x 10!
C=001,D=0.1 Cl1 356 1.2 x 10% 1.7 37x10°Y 427 1.6 x 10~2
g, = 1.00 Cl 164 2.7 x 10* 11.5 95x 1072 2.09 34x10°3
Cl1 30 1.4 x 103 83 42 x 1073 048 1.2x1073
Cl1 10 42 x 10° 183 71x107% 030 48 x 1074
Sun (C) Cl1 1110 39 x 10° 0.7 1.2 x 10° 4.10 87x 1072
C=001,D=01 Cl1 320 1.4 x 104 28  29x10°! 335 1.6 x 1073
o, =150 Cl1 146 3.0 x 104 48 62x10"2 125 41x1073
Cl 38 1.1 x 10° 204 58x 1073 043 14 x 1073
Cl 12 3.5 % 10° 202 87x107% 0.29 6.1 x 10~4
o Cen A Ci 1110 4.8 x 103 1 1.6 x 10° 4.05 1.6 x 10!
C=001,D=0.1 Cl1 285 1.9 x 104 5 49x 10!  4.01 35x1072
g,=1.50 Cl1 132 4.1 x 10* 93 L6 x 10~ 1.76 7.8 x 1073
Cl1 38 14 x 10° 1070 24x107%  0.65 32x10°4
Arcturus Cl1 50 1.5 x 10 76 1.7 x 10° 4.41 1.3 x 107!
C=1,D=1 Cl 8 9.0 x 10° 5500 26 x10°1 511 4.5 %1072
o,=0.75 C2 4 1.7 x 107 7500 3.6 x 10° 447 1.5x 1071

area under the corresponding peaks. The results are displayed in Table I. It may be
noted that in some cases different quantities (e.g., ¥, and V,) have peaks at slightly
different / values. In such cases, one of these values which appears to be more dominant
is listed in the third column of Table I. In the linear approximation, the time-scale
corresponding to each of these modes may be expected to be of the order of the e-folding
time of the eigenmode. This estimate is also listed in the table. We recall that the
observed r.m.s. values of the vertical (V,) and horizontal (V,,) velocities are reported to
be <lkms~!and <2kms™!for granulation; ~0.3km s~ !and ~0.75km s~ ! for
mesogranulation; ~0.05km s~ ' and ~ 0.5 km s ! for supergranulation. These num-
bers may be compared with the theoretical values in Table 1. Observationally, it is found
that the ratio of vertical to horizontal velocities decreases linearly with cell size. It is
interesting that a similar trend can be seen in the theoretical values listed in the table.

With a view to study the sensitivity of the power spectrum to various mixing length
parameters, several different combinations were attempted. In all cases, the three peaks
corresponding to granulation, mesogranulation and supergranulation dominate the
spectrum, although their position and strength may vary a little. Table I summarizes the
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relevant properties of the power spectrum for a few selected models. In particular, it is
found that even if the turbulent pressure is effectively suppressed, by reducing the
parameter C = P,/(pW?) to 0.01, the three peaks are still found to survive. It may be
noted (cf. Antia, Chitre, and Pandey, 1981) that for this model the plot of growth rate
of the fundamental mode as a function of / has only one peak corresponding to
granulation. The power spectrum for the solar model with C = 0.01 and D = 0.1 is
shown in Figure 2. It can be seen that the power spectrum exhibits three peaks at length
scales roughly corresponding to those of granulation, mesogranulation and super-
granulation, together with the peaks at the larger scales corresponding to global con-
vection. Werecall that Antia, Chitre, and Narasimha (1983) had stressed the importance
of turbulent pressure in producing the double peak in the plot of growth rate for the
Cl-mode. From the present work it appears that, irrespective of the number of peaks
in the growth rate vs / plot, the power spectrum always displays three dominant peaks,
and this turns out to be the robust feature of the theoretically computed power spectrum
of solar convection. Apart from these three peaks there are two smaller peaks at large
length scales in the power spectrum for horizontal velocity. From Table I it is clear that
the position of these peaks depends rather sensitively on the mixing length parameters
used to construct an equilibrium solar model.

0.005 5
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01s [
2 0.003 | 2
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Fig. 2. Power spectrum of vertical velocity (V,), horizontal velocity (¥,,), and flux perturbation (0F/F) for
a solar model with C = 0.01, D = 0.1, and with turbulent Prandtl number g, = 1.5.

From Table I it is clear that the values for horizontal velocity components for different
scales turn out to be higher by a factor of two to five as compared to the corresponding
observed values. This discrepancy could be due to inadequate treatment of radiative and
viscous dissipation in the atmosphere. It may be stressed that the amplitudes of these
modes are determined by eigenfunctions within the convection zone, while the power
spectrum is computed at the solar photosphere around t= 0.4. Thus, even if the
eigenfunctions are modified in the atmosphere, the amplitudes a,, as determined from
the least-square fit, may not be appreciably affected, since these values are essentially
determined by the flux profile inside the convection zone. In particular, a departure from
radiative equilibrium may affect the eigenfunction in the atmosphere significantly
(Christensen-Dalsgaard and Frandsen, 1983). Apart from this, increasing the viscosity
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can also affect the velocity. For example, the models (B) and (C) in Table I differ only
in the turbulent Prandtl number ¢,, and it is clear that increasing the viscosity reduces
the velocity in the mesogranular and supergranular peaks significantly. It is not desirable
to increase o, beyond this value, since in that case some of the eigenmodes in intermediate
range of / values become stable, and it becomes difficult to construct a linear super-
position of modes to reproduce the convective flux. Nevertheless, it is possible to
increase the viscosity selectively in the atmosphere to reduce the velocity amplitudes at
the photosphere without significantly affecting the stability characteristic of the convec-
tive modes. Thus, if the viscosity is increased by a factor of three in the atmosphere,
then the horizontal velocity contribution from the three peaks are 3.74, 2.42, and
0.76 km s~ !, while the vertical velocity is 0.69, 0.11, and 0.014 km s~ 1

Table I gives only the power at the photospheric level. The total kinetic energy
associated with the mode can be calculated by integrating the eigenfunctions across the
entire thickness of the convection zone. Since the convective modes with small /
penetrate rather deep into the convection zone, the effective mass associated with them
is much larger and this gives much higher kinetic energy in eddies with larger scales. On
the other hand, the modes associated with granulation (/ & 1500) do not penetrate far
below the photosphere and even though the velocity may be large, the associated mass
is considerably smaller and the total kinetic energy is several orders of magnitude lower
than that for low / modes. This is perhaps suggestive of the direct energy cascade with
the kinetic energy of granulation being derived from the larger scales of convective
motion (Zahn, 1987).

This study can be extended even to other stars and we have considered two stars for
the sake of illustration: the Sun-like star « Cen A and the red giant Arcturus. The results
for « Cen A (G2 V) and Arcturus (K III) are summarized in Table I. For this purpose,
we use the stellar envelope models constructed by Antia and Pandey (1989). Following
the solar case weuse C = 0.01, D = 0.1, and ¢, = 1.5 for o Cen A. The power spectrum
for « Cen A (Figure 3) is similar to that of the Sun, except for the fact that the
corresponding length scales tend to be slightly larger. Once again, the fourth peak at
small values of / is noticeable only in the horizontal velocity component ¥,. For
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Fig. 3. Power spectrum of vertical velocity (¥,), horizontal velocity (V},), and flux perturbation (0F/F) for
a model of « Cen A with C = 0.01, D = 0.1, and with turbulent Prandtl number o, = 1.5.
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Fig. 4. Power spectrum of vertical velocity (V,), horizontal velocity (¥,), and flux perturbation (0F/F) for
a model of Arcturus with C = 1, D = 1, and with turbulent Prandtl number g, = 0.75.

Arcturus (Figure 4) the length scales as well as time scales are much larger and the
C2-mode appears to dominate the power spectrum.

4. Conclusions

The most important conclusion from our study is that for a wide range of mixing length
parameters covering most reasonable solar convection zone models, we find that the
theoretical power spectrum of the solar convective velocity field has at least three
distinct peaks at length scales corresponding to granulation, mesogranulation and
supergranulation. The power spectrum for the horizontal component of velocity shows
two more peaks possibly corresponding to scales of global convection. In particular, a
scale around 100000 km seems to be indicated. Furthermore, the power spectrum of
flux-variation also exhibits peaks at these discrete scales. It is, of course, possible to shift
the peaks somewhat with different sets of parameters or by changing the outer boundary
conditions.

In the present calculation the contribution of small scales of turbulence is included
by constructing eddy diffusivity coefficients, with the magnitude of transport coefficients
taken to be proportional to WL, where both W and L vary with depth — thus the
mixing-length L has values of the order of a few hundred kilometers near the surface
but is of order of a hundred thousand kilometers in the middle of the convection zone.
In this manner, while evaluating the turbulent heat conductivity and the turbulent
viscosity, we have included contributions due to smaller scale eddies, but the larger
scales are, of course, neglected.

An interesting feature is the size of the dominant convective elements on o Cen A and
Arcturus: the dominant C'1 modes are similar to solar granulation, mesogranulation and
supergranulation on o Cen A, but in the case of Arcturus, the unstable convective modes
with small values of / (~4-50) dominate the brightness fluctuations. We, therefore,
expect only a limited number of such large granules to cover the surface of Arcturus at
any given time. The granules can cause significant variations in the stellar intensity over
time scales of the order of three days, which is within the characteristic time of irregular
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variation of light observed in red giants. Interestingly, even with only a few tens of
unstable convective modes it is demonstrably possible to construct a linear super-
position of these modes, which can reasonably reproduce the model convective flux
profile. The quasi-nonlinear technique is thus evidently applicable both for Sun-like
stars and late-type giants with large convective envelopes. Of course, it still remains to
be seen whether the results predicted for these stars are verified by actual observations.
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