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ABSTRACT

In this paper, we explore for the first time the relative magnitudes of three fundamental sources of uncertainty,
namely, foreground contamination, thermal noise, and sample variance, in detecting the H i power spectrum from
the epoch of reionization (EoR). We derive limits on the sensitivity of a Fourier synthesis telescope to detect EoR
based on its array configuration and a statistical representation of images made by the instrument. We use the
Murchison Widefield Array (MWA) configuration for our studies. Using a unified framework for estimating signal
and noise components in the H i power spectrum, we derive an expression for and estimate the contamination from
extragalactic point-like sources in three-dimensional k-space. Sensitivity for EoR H i power spectrum detection is
estimated for different observing modes with MWA. With 1000 hr of observing on a single field using the 128 tile
MWA, EoR detection is feasible (S/N > 1 for k � 0.8 Mpc−1). Bandpass shaping and refinements to the EoR
window are found to be effective in containing foreground contamination, which makes the instrument tolerant to
imaging errors. We find that for a given observing time, observing many independent fields of view does not offer
an advantage over a single field observation when thermal noise dominates over other uncertainties in the derived
power spectrum.

Key words: dark ages, reionization, first stars – large-scale structure of universe – methods: statistical – radio
continuum: galaxies – radio lines: general – techniques: interferometric
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1. INTRODUCTION

Precise measurements of the cosmic microwave background
(CMB) anisotropies have constrained the background cosmol-
ogy and initial conditions for structure formation. However, un-
derstanding the nonlinear growth of density perturbations and
astrophysical evolution in the epoch of reionization (EoR) has
been difficult. Evidence to date suggests a complex reioniza-
tion history (Haiman & Holder 2003; Cen 2003; Sokasian et al.
2003; Madau et al. 2004); for instance, the CMB data, when
fitted to models of instantaneous reionization, point to a reion-
ization redshift of z ≈ 10.5–11 (Kogut et al. 2003; Jarosik et al.

2011; Komatsu et al. 2011; Larson et al. 2011), which is in con-
flict with observations of Gunn–Peterson absorption troughs and
near-zone transmission toward distant quasars indicating rapid
evolution in the ionization fraction as late as z ≈ 6–7 (Becker
et al. 2001; Djorgovski et al. 2001; Fan et al. 2002; Mortlock
et al. 2011).

Direct observation of redshifted 21 cm spin transition of
neutral hydrogen has been identified to be a useful method
for detecting structures in cosmological gas at high redshifts
(Sunyaev & Zeldovich 1972; Scott & Rees 1990; Madau et al.
1997; Tozzi et al. 2000; Iliev et al. 2002). Tomography of
the redshifted 21 cm line promises to be a key probe of
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reionization history (Zaldarriaga et al. 2004). Observing images
of the three-dimensional distribution of neutral hydrogen tem-
perature fluctuations in excess relative to the CMB temperature
is expected to reveal the epoch as well as the process of reion-
ization in detail; however, Furlanetto & Briggs (2004) point out
that such imaging requires the sensitivity of the Square Kilo-
meter Array (SKA). Recently, through the use of simulations,
the potential of SKA precursors for direct imaging and detec-
tion of ionized regions during late stages of reionization has
been demonstrated (Zaroubi et al. 2012; Malloy & Lidz 2013).
Numerous first-generation radio telescopes such as the Murchi-
son Widefield Array (MWA; Lonsdale et al. 2009; Tingay et al.
2013), the Low Frequency Array (van Haarlem et al. 2013),
and the Precision Array for Probing the Epoch of Reionization
(PAPER; Parsons et al. 2010) are becoming operational with
enough sensitivity for a statistical detection of the EoR H i power
spectrum. Measuring the H i power spectrum and its cosmolog-
ical evolution is a first step to understanding structure formation
and astrophysics in the EoR.

Power spectrum measurements of the redshifted 21 cm from
EoR are difficult for the following reasons. The EoR signal is ex-
tremely weak relative to the foreground emission of the Galaxy
and extragalactic sources (Bernardi et al. 2009; Ghosh et al.
2012). Considerable effort is required to distinguish their signa-
tures from residual errors even after careful spectral modeling
and subtraction of these foregrounds (Di Matteo et al. 2002;
Zaldarriaga et al. 2004). Morales & Hewitt (2004) show that the
inherent isotropy and symmetry of the EoR signal in frequency
and spatial wavenumber (k) space make it distinguishable from
sources of contamination which lack such symmetry. But they
note that such symmetry considerations provide only an addi-
tional tool for separating foreground contamination from the
signal and do not guarantee that foreground contamination will
be removed.

An inherent mechanism of foreground contamination via the
frequency-dependent structure (chromaticity) of the primary
and synthesized beams has been pointed out by Bowman et al.
(2009) and Morales et al. (2012). The chromatic nature of the
primary and synthesized beams carries the transverse structure
of contamination due to the residuals of continuum foreground
subtraction into the line-of-sight direction. This has been termed
mode-mixing. Both analytic calculations of Vedantham et al.
(2012) and simulations of Datta et al. (2010) and Trott et al.
(2012) have shown that foreground contamination by residuals
after source subtraction is predominantly localized to a wedge-
like region in k-space. The region excluded by the wedge has
been termed the EoR window (Morales et al. 2012; Vedantham
et al. 2012). They have also indicated that appropriate choices
of bandpass window functions and imaging algorithms can
significantly minimize levels of such contamination in specific
regions of k-space.

In this paper, we present a unified framework for estimating
three fundamental sources of uncertainty, namely, foreground
contamination, thermal noise, and sample variance in k-space.
We apply this general understanding to the case of MWA using
different observing modes. We have also explored the effects
of shaping the bandpass window and refining the EoR window.
With detailed estimates, we compare the relative magnitudes of
different sources of uncertainties and obtain a more complete
view of the EoR sensitivity of the 128-tile MWA.

The rest of the paper is organized as follows. Section 2 pro-
vides a quick snapshot of the cosmology that motivates radio
observations. Section 3 sets up the basic radio interferometer

measurements of signal and uncertainties. Parameters and no-
tations used are introduced that bridge the radio interferometer
measurements and cosmological motivations. Section 4 intro-
duces the framework upon which we build our understanding
and estimates of different sources of uncertainties. Here, we
also list some assumptions that have gone into our study. In
Sections 5 and 6, we describe the k-space occupancy and es-
timates of foreground and thermal noise components, respec-
tively, in the power spectrum. Section 7 provides estimates of
the EoR H i power spectrum and sample variance. The detailed
interplay between various uncertainties under different observ-
ing modes and instrument parameters in determining sensitivity
of the instrument for statistical measurements of EoR signatures
is discussed in Section 8. The results are then summarized in
Section 9. In Appendices A and B, we provide the details behind
the derivation and estimation of classical radio source confu-
sion and power spectrum of extragalactic point-like sources in
k-space, respectively.

2. BASIC THEORY

Lidz et al. (2008) provide a basis for understanding the power
spectrum of the 21 cm brightness temperature (relative to CMB)
fluctuations in the limit that the spin temperature, TS, is globally
much larger than the CMB temperature, TCMB. Ignoring peculiar
velocities, the 21 cm brightness temperature relative to the CMB
at spatial position r is

δT (r) = T0 〈xH〉 [1 + δx(r)] [1 + δρ(r)]. (1)

Here, T 0 is the 21 cm brightness temperature of a neutral gas
element with cosmic mean gas density, at redshift z, observed
at frequency f0 = 1420/(1 + z) MHz, relative to the CMB
temperature at that epoch. T0 = 28 [(1 + z)/10]1/2 mK for the
cosmological parameters we have adopted throughout this paper
(symbols have their usual meanings): H0 = 70 km s−1 Mpc−1,
Ωm = 0.27, ΩΛ = 0.73, and ΩK = 1 − Ωm − ΩΛ. 〈xH〉
is the volume-averaged neutral fraction, δx is the fractional
fluctuation in the neutral fraction, and δρ is the fractional gas
density fluctuation. The volume-averaged ionization fraction is
〈xi〉 = 1 − 〈xH〉.

The power spectrum of δT (r) is given in k-space by P H i(k),
which is the Fourier transform of

〈
δT (r) δT (r + Δr)

〉
, and k is the

Fourier conjugate variable of Δr. Assuming isotropy of neutral
hydrogen distribution, P H i(k) may be described using only the
radial coordinate k, as P H i(k). Equivalently, the dimensionless
quantity Δ2

H i(k) is frequently used to represent power in a
logarithmic interval of k, given by (Zaldarriaga et al. 2004;
McQuinn et al. 2006; Lidz et al. 2008)

Δ2
H i(k) = k3P H i(k)/2π2T 2

0 . (2)

3. INTERFEROMETER MEASUREMENTS
IN THE EoR CONTEXT

P H i(k) is estimated using the image cube, I (l, m, f ), repre-
senting the sky brightness distribution in (l, m, f )-coordinates.
In radio interferometry, I (l, m, f ) is obtained by Fourier
transforming the visibility measurements, V (u, v, f ), made in
(u, v, f )-coordinates. u and v are baseline lengths in units of
wavelength, and l and m denote the direction cosines on the
celestial sphere. f denotes the frequency of observation. η repre-
sents instrumental delay. (l, m, f ) and (u, v, η) form a Fourier
conjugate pair of variables. We adopt the following convention
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for Fourier transform:

V (u, v, η) =
∫ ∫ ∫

I (l, m, f )e−j2π(ul+vm+ηf ) dl dm df, (3)

I (l, m, f ) =
∫ ∫ ∫

V (u, v, η) ej2π(ul+vm+ηf ) du dv dη, (4)

where j = √−1.
The sky brightness distribution comprising the true EoR

H i signal and foregrounds is multiplied by the primary beam
power pattern, W P

lm(l, m), on the sky. Equivalently, the visibil-
ities of true EoR H i signal, V

H i;T
uvf (u, v, f ), and foregrounds,

V
FG;T
uvf (u, v, f ), are convolved with the spatial frequency re-

sponse of the power pattern of an individual antenna, W P
uv(u, v).

W P
lm(l, m) and W P

uv(u, v) form a Fourier transform pair. The
convolved visibilities are corrupted by additive thermal noise,
V N

uvf (u, v, f ), sampled at the baseline locations given by the
sampling function, Suv(u, v). The sampling function is the
Fourier counterpart of the synthesized beam, Slm(l, m). Along
the line of sight, the visibilities are modified by the frequency
bandpass weights, WB

f (f ). Thus, the measured visibilities may
be expressed as

V obs
uvf (u, v, f ) = {[

V
H i;T
uvf (u, v, f ) + V

FG;T
uvf (u, v, f )

]
∗ W P

uv(u, v) + V N
uvf (u, v, f )

}
Suv(u, v) WB

f (f ), (5)

where the symbol ∗ denotes convolution. Equation (5) forms
the basis of our estimates of signal and various components of
uncertainty in the power spectrum. A matrix-based framework
is described in Liu & Tegmark (2011).

In Fourier space, V obs
uvf (u, v, f ) is transformed to

V obs
uvη(u, v, η) =

∫
V obs

uvf (u, v, f ) e−j2πηf df. (6)

This is obtained by Fourier transforming along frequency.
The characteristic size of the spatial frequency response of

the tile’s power pattern, W P
uv(u, v), is Ae/λ

2, where Ae is the
effective area of a tile and λ is the observing wavelength. The
Fourier response of the bandpass window, WB

f (f ), is WB
η (η).

The characteristic width of the bandpass response function,
WB

η (η), is set by the inverse of effective bandwidth, Beff .
Wuvη(u, v, η) = W P

uvη(u, v, η) ∗ WB
η (η) is the instrumental

response in the spatial frequency domain, where W P
uvη(u, v, η)

may be interpreted as the spatial frequency response of the tile’s
power pattern obtained over a uniform and infinite bandpass
window, and W P

uv(u, v) = W P
uvη(u, v, η = 0). Here, we have

assumed that the power pattern of the tile does not vary
significantly over the chosen frequency band. Wuvη(u, v, η) is set
such that

∫
Wuvη du dv dη = 1, where δu δv δη � Ae/(λ2Beff).

In our adopted Fourier convention, the primary beam, W P
lm(l, m),

and bandpass window function, WB
f (f ), each have peaks of

value unity.
True sky visibilities are uncorrelated between non-identical

baseline vectors (spatial frequencies). Wuvη(u, v, η) is an instru-
mental function that introduces correlations between true sky
visibilities. W P

uv(u, v) and WB
η (η) are the transverse and line-of-

sight components, respectively, of this correlating instrumental
function. W P

uv(u, v) is a convolution of the electric field distribu-
tion over the tile with itself, which is, alternatively, the Fourier

transform of the power pattern of the tile. If the electric field
pattern of the tile was a uniform square, W P

uv(u, v) takes the
shape of a square pyramid in the (uv)-plane.

We use the array configuration of MWA to estimate the signal
and uncertainties. For such an estimation, we gridded the (uv)-
plane with a cell size of λ/2 on each side. This is to avoid
aliasing effects in the image up to the spatial scale of the
horizon, (l, m) ∈ [−1, +1]. W P

uv(u, v) is obtained on the grid
by the convolution described above. We assume each MWA
array element to be a 4 × 4 array of identical radiators. This
results in a discrete form of the square pyramid for W P

uv(u, v).
Some authors (McQuinn et al. 2006; Bowman et al. 2006,
2007; Beardsley et al. 2013) have assumed that Wuvη(u, v, η)
is a sharply peaked function, and hence approximated it by a
delta function. In our study, we use the full functional form.
It is important to keep this functional form in order to take
into account the multi-baseline mode-mixing, which has been
described in Hazelton et al. (2013). The shape of W P

uv(u, v) we
use is also consistent with the baseline power response shown
in Hazelton et al. (2013).

We place the synthesized baselines represented by the sam-
pling function Suv(u, v) as a two-dimensional histogram on this
grid. Compared to an optimal gridding scheme, the histogram
method could place the baselines in the grid with a maximum
error of λ/2. This could cause a jitter in the weights on the grid
which is most severe on scales comparable to the cell size in the
grid (corresponds to spatial scale of horizon or larger). While
such a jitter will be important in the case of a synthesis imaging
procedure, it is not as significant in determining grid weights in
our study.

In describing the aforementioned radio interferometer quan-
tities and desired cosmological measurements, we use the fol-
lowing notation interchangeably throughout this paper:

u ≡ (u, v), l ≡ (l, m), u ≡ (u, η), and l ≡ (l, f ). (7)

The spatial wave vectors, k ≡ (k, k‖) ≡ (kx, ky, k‖), are related
to u as (Morales & Hewitt 2004)

k = 2π u
D(z)

, k‖ ≈ 2π η(
c (1+z)2

H0 f21 E(z)

) , (8)

with ΔD(z) ≈ c (1 + z)2

H0 f21 E(z)
Δf, (9)

where H0 and E(z) ≡ [ΩM(1 + z)3 + Ωk(1 + z)2 + ΩΛ]1/2

are standard terms in cosmology and D(z) is the transverse
comoving distance at redshift z (Hogg 1999). f21 is the rest
frequency of the 21 cm line. In the last equation, ΔD(z) may be
identified as the line-of-sight comoving width of the observation
at redshift z if Δf is set to the observing bandwidth. The
following relations may also be noted:

k⊥ = | k| = (
k2
x + k2

y

)1/2
and k = | k| = (

k2
⊥ + k2

‖
)1/2

. (10)

k⊥ and k‖ may be viewed as components of k along the
transverse and line-of-sight directions, respectively.

Figure 1 is a schematic illustration of different regions of
significance in k-space. The range in k⊥ is set by the minimum
and maximum baseline lengths, while that along k‖ is set
by the channel resolution and bandwidth. This region is the
instrumental window. Residuals from unsubtracted foregrounds
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Figure 1. Schematic illustration of regions in k-space, including instru-
mental, foreground, and EoR windows. The panel on the left shows the
three-dimensional k-space. The panel on the right is obtained by collapsing
k-space along kx and ky into k⊥ using Equation (10). The shaded volume in
the panel on the left is now reduced to a wedge-shaped region (Datta et al.
2010; Vedantham et al. 2012) shown in a darker shade in the panel on the right.
Being dominated by foreground sources and their sidelobes due to frequency-
dependent synthesized beams, this region is referred to as the “foreground
window.” The unshaded region excluded by the shaded cylindrical volume is
referred to as the EoR window, where the signal is believed to be relatively free
of such contaminations. This reduces to the region shown in a lighter shade in
the panel on the right. The axes are not to scale.

and the structure of their frequency-dependent sidelobes occupy
the wedge-shaped region labeled as “foregrounds.” The part of
the instrumental window excluding the wedge, called the EoR
window, is also shown.

The radio measurements described above are related to the
desired cosmological quantities. The power spectrum of EoR H i
fluctuations is related to the diagonal of the covariance matrix
of true H i visibilities in Fourier space as (Morales & Hewitt
2004; Morales 2005)

P H i(u) = 〈
V H i;T

uvη (ui)
�V H i;T

uvη (uj )
〉
δij = 〈∣∣V H i;T

uvη (u)
∣∣2〉

, (11)

where P H i(u) = P H i(k)

(
1

D

)2 (
Beff

ΔD

)
. (12)

The last equation is obtained using the Fourier conventions and
Jacobian in the transformation between quantities in (kx, ky, k‖)-
and (u, v, η)-coordinates.

4. FRAMEWORK

Following the notations established in Section 3, we start with
visibility measurements, V (u, v, f ), which when Fourier trans-
formed along (u, v)-coordinates yield an image cube I (l, m, f ).
From I (l, m, f ) we assume that the extragalactic point-like fore-
ground sources have been perfectly removed down to a certain
source confusion threshold, to obtain a residual image cube
ΔI (l, m, f ), which consists of unsubtracted sources and their
sidelobes. A statistical representation of ΔI (l, m, f ), together
with the sampling in the (u, v)-plane given by the array con-
figuration, forms the basis of our understanding of different
uncertainties.

Table 1
Properties of 128-tile MWA Used in Our Model Observations

Parameter Symbol Value

Number of tiles 128
Center frequency f0 170.7 MHz (z ∼ 7.3)
Effective bandwidth Beff 8 MHz
Channel resolution Δf 40 kHz
Effective area of tile Ae 12.3 m2

System temperature Tsys 440 K
Integration time tint 8 s

4.1. Instrument Properties and Adopted EoR Model

Sampling of the (u, v)-plane is provided by the 128-tile MWA
array configuration (Beardsley et al. 2012), in which the array
elements (tiles) are quasi-randomly distributed with 112 of them
distributed over an aperture 1.5 km in diameter and a small
number (16) of outliers extending to 3 km.

We have adopted a natural weighting scheme where each
visibility measurement has equal weight. The weight of a
(uv)-cell is proportional to the number of baselines, including
redundant ones, that fall inside the cell. Such a weighting
has a better sidelobe response and thermal noise sensitivity,
while emphasizing short spacings (large-scale structures) of the
interferometer array compared to uniform weighting (Taylor
et al. 1999; Bowman et al. 2009).

We note that Lidz et al. (2008) predict the amplitude of
the EoR power spectrum to peak at 〈xi〉 ∼ 0.5 and z ∼ 7.3.
This determined our choice of observing frequency, f0 =
170.7 MHz, at which the system temperature is Tsys � 440 K
(Bowman et al. 2006) and the effective area of a tile is
Ae � 12.3 m2 (Bowman et al. 2006). The frequency resolution
of MWA (40 kHz) is used. A bandwidth of 8 MHz is chosen
to have minimal EoR signal evolution with redshift (Bowman
et al. 2006; McQuinn et al. 2006). Some relevant instrument
parameters are listed in Table 1.

For the model power spectrum P H i(k) we have chosen, the
expected signal strength ranges from 1 to 107 (in observer’s
units of K2 Hz2) for 0.01 Mpc−1 � k � 4 Mpc−1. The strength
of the signal expected in observations made with the 128-tile
MWA is discussed in detail in Section 7.

4.2. Case Studies of Model Observations

We consider observations in which the MWA array is pointed
at a declination δ = −26.◦7. This is equal in value to the latitude
of MWA and, hence, passes through zenith. We investigate two
observing modes.

1. 6 hr synthesis on a single patch of sky repeated about
160 times to get a total observing time of 1000 hr.

2. 6 hr synthesis on 20 different patches of sky (different R.A.
with the same declination), each observed about eight times
(also amounting to a total observing time of 1000 hr), where
each patch is separated from others by at least one FWHM
of the primary beam.19

The choice of 6 hr of aperture synthesis was made to confine
the observations to within ±3 hr in hour angle on either side

19 We model the primary beam power pattern of the MWA tile as a 4 × 4 array
of identical radiators. At 170.7 MHz, the primary beam has an FWHM of
θP ≈ 21◦. A strip of 24 hr range in R.A. at a declination δ with a declination
width Δδ subtends a solid angle ΔΩ = 4π sin(Δδ/2) cos δ. For δ = −26.◦7 and
Δδ = θP, the strip subtends a solid angle of ≈ 2 sr and corresponds to ≈ 20
non-overlapping primary beams at the specified FWHM.
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Table 2
Parameters Used in Different Case Studies of Model Observations

S. No. tsyn Nfields Ncad tfield tobs

1 6 hr 1 166.7 1000 hr 1000 hr
2 6 hr 20 8.3 50 hr 1000 hr

of zenith as per the MWA EoR observing plan (Beardsley et al.
2013). The different observing modes used are summarized in
Table 2. The first column refers to the numbering of different
observational case studies, the second refers to the time of
synthesis, the third refers to the number of independent patches
of the sky observed, the fourth refers to the number of times
each of these fields is observed with their respective times
of synthesis, the fifth denotes the total amount of time spent
observing each field, and the sixth column lists the total
observing time used in each case study. We assume that Tsys
is identical for all patches of sky in these observing modes.

The motivation to explore model observations with multiple
fields of view is as follows: if the total time spent observing
a single field is divided over multiple fields, an independent
measurement of the power spectrum for each of the fields will
be obtained. Upon averaging these power spectra, different
components of uncertainty, specifically sample variance, will
be reduced. However, since the observing time on each field
has reduced, the thermal noise component in individual power
spectra obtained over each field will be worse than when all
the time was spent observing a single field. This is because
all visibilities in a single-field observation will be combined
coherently before estimating the power spectrum, unlike that in
a multi-field observation. What are the relative levels of various
components of uncertainty in the measured power spectrum?
Are there regions in k-space where sample variance is the
dominant source of uncertainty relative to the thermal noise
component? And can sensitivity be improved in these regions
by averaging power spectrum measurements from independent
fields, which reduces sample variance? Should a particular
observing mode be preferred over others?

4.3. Assumptions

We only consider point-like extragalactic sources in our
analysis and leave the treatment of extended emission from the
Galaxy and extragalactic sources to future work. Extragalactic
point-like sources above the detection threshold and their
sidelobes are assumed to be perfectly subtracted. For simplicity,
we assume that the flux densities of residual sources are
constant with frequency over the band of interest after source
subtraction.

Tsys could change at most by ∼6% over an 8 MHz band
relative to the mean value at 170.7 MHz, assuming a synchrotron
temperature spectral index of γ = −2.5 (T ∝ f γ ). For this
study, we assume that Tsys is constant over an 8 MHz frequency
band.

The bandpass can only be determined as accurately as
the continuum model we have for the sky because it is
solved for using the sky model including frequency struc-
ture of sources. Hence, errors in calibration of amplitude
and phase that result in imaging errors will then lead to er-
rors in deriving accurate bandpass calibration as well. The
frequency structure of the bandpass could also be affected
due to radio frequency interference (RFI). In this paper,
we neglect effects of calibration errors and RFI. We also ne-
glect the effects of non-coplanarity of baselines.

5. FOREGROUND POWER SPECTRUM

One of the major contaminants in the EoR H i signal is the syn-
chrotron emission from extragalactic and Galactic foregrounds
(Di Matteo et al. 2002; Zaldarriaga et al. 2004). Thus far, nei-
ther of these causes of foreground contamination have been ac-
counted for in the estimates of sensitivity of three-dimensional
EoR H i power spectrum in a comprehensive manner. For in-
stance, Beardsley et al. (2013) estimated sensitivity by exclud-
ing a wedge-shaped region, thereby removing a majority of
foreground contamination. But they did not consider possible
spillover from this contamination. Does it imply with certainty
that foregrounds play no role any more in contaminating the
EoR window or in estimates of sensitivity? Detailed estimates
of extragalactic foreground contamination as done below in this
paper show that contamination is also present in the EoR window
outside the wedge-shaped region, even after a perfect subtrac-
tion of foregrounds.

5.1. Classical Radio Source Confusion

The foreground contamination in the sought EoR H i power
spectrum is seeded by classical radio source confusion. The
cause of classical confusion and the theory behind it have been
well studied in literature (Condon 1974; Rohlfs & Wilson 2000).
The basic ingredients for estimating classical confusion are radio
source count statistics on the sky and instrument parameters such
as synthesized beam size.

Assuming that sources brighter than five times the classical
source confusion noise and their sidelobes have been subtracted
perfectly, the source confusion variance, σ 2

C(l) ≡ P FG
lm (l), was

estimated across the residual image, ΔI (l, m, f ), using the
source count statistics provided by Hopkins et al. (2003) at
a frequency of 1.4 GHz. σ 2

C increases with the solid angle
subtended by an image pixel in (l, m)-coordinates, which in
turn is a function of the pixel location. Hence, σ 2

C varies with l.
In obtaining the confusion variance at 170.7 MHz, we used a

mean spectral index of α = −0.78 (Ishwara-Chandra et al. 2010;
S ∝ f α). Flux densities are converted to temperature units
using T = SAe/(2 kB), where kB is the Boltzmann constant.
Hereafter, fluctuations in the residual image cube are statistically
represented by the classical source confusion variance P FG

lm (l).
In a naturally weighted image made using the 128-tile MWA,

a typical pixel close to the zenith subtends a solid angle of
Ω ≈ 2 × 10−6 sr. Statistically, the flux contained in such pixels
has uncertainties whose rms is σC ≈ 35 mJy.

Appendix A gives details of an iterative procedure used to
arrive at the classical source confusion rms σC. An illustration
of the numerical solution for the variation of source confusion
variance with solid angle, which varies across the residual
image, is also presented.

5.2. Foregrounds in k-space

The foreground component of measured visibilities may be
written from Equation (5) as

V FG
uvf (u, f ) = V

FG;T
uvf (u, f ) ∗ W P

uv(u) Suv(u) WB
f (f ). (13)

Thus,

V FG
uvf (u) = V FG;T

uvη (u) Suv(u) ∗ W P
uv(u) ∗ WB

η (η), (14)

where the true foreground visibilities, V
FG;T
uvf (u, f ), have been

convolved with the spatial frequency response of the tile’s

5
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power pattern, W P
uv(u), multiplied by the sampling function in

the (u, v)-plane, Suv(u), multiplied by the frequency bandpass
window function, WB

f (f ), and Fourier transformed along f.
The power spectrum of foregrounds is extracted from the

diagonal of the covariance matrix 〈V FG
uvη(ui)�V FG

uvη(uj )〉. After
certain algebraic simplifications between quantities in Fourier
(u)- and real (l)-space, the foreground component of the power
spectrum may be expressed as

P FG
inst(u) =

∫ ∫
P FG

lm (l) ∗ |Slm(l)|2 |W P
lm(l)|2

∗ ∣∣WB
η (η)

∣∣2 ∗ δ

(
η +

x · l
c

)
d2l, (15)

where P FG
lm (l) ≡ σ 2

C(l). The classical source confusion variance
estimated across the image is weighted by primary beam squared
|W P

lm(l)|2, then convolved with the synthesized beam squared
|Slm(l)|2, and is finally convolved with the instrumental delay
response squared |WB

η (η)|2, which is shifted in η by x · l/c as
prescribed by the delta function δ(η + (x · l/c)). x ≡ uλ is the
baseline vector in units of distance. The details of the derivation
of Equation (15) have been laid out in Appendix B.

Equation (15) enables evaluation of foreground contamina-
tion in k-space, which depends on classical source confusion
P FG

lm (l), the primary beam pattern of the tile W P
lm(l), Fourier

response of bandpass weights WB
η (η), and synthesized beam

Slm(l). It expresses the foreground contamination that is in
(u, v, η)-coordinates (Fourier space) in terms of quantities in
(l, m)-coordinates (real space). This expression aids in under-
standing the mode-mixing aspect of foreground contamination.
The delta function indicates that unsubtracted sources at dif-
ferent locations and their sidelobes contribute predominantly
to specific values of η in delay space (and corresponding k‖-
modes) given by η � x · l/c = u · l/f . This is consistent with
the findings of Vedantham et al. (2012). The equation natu-
rally leads to a wedge-shaped region, whose boundary is set by
the horizon limit (Parsons et al. 2012) in (l, m)-space given by
| l |2 = l2 + m2 = 1. The equation in k-space for the horizon
limit (wedge boundary) is

k‖ = H0 E(z) DM(z)

c (1 + z)
k⊥. (16)

Using a natural weighted synthesized beam, Slm(l), primary
beam, W P

lm(l), obtained by a phased 4 × 4 array of identical
radiators, instrumental delay response WB

η (η) for different
bandpass shapes, and source confusion variance, P FG

lm (l), we
have estimated foreground contamination of power spectrum
in full three-dimensional k-space by evaluating the integral in
Equation (15). The size of a cell in three-dimensional k-space,
termed voxel, corresponds to ∼Ae and ∼B−1

eff in the transverse
and line-of-sight directions, respectively. The k-space volume
of a voxel is �9.1 × 10−8 Mpc−3.

In order to illustrate the three-dimensional foreground con-
tamination in the two-dimensional (k⊥, k‖)-plane, we az-
imuthally averaged the foreground contamination using an in-
verse quadrature weighting as though foregrounds were the only
source of uncertainty. Figure 2 shows the averaged foreground
contamination (in units of K2) in k-space for a 6 hr synthesis,
where the effects of band shape, WB

η (η), are not applied. The
structure of the foreground power spectrum is found to be in
agreement with the foreground window illustrated in Figure 1.

Figure 2. Logarithm of azimuthally averaged foreground contamination (in units
of K2) in k-space for 6 hr of synthesis when bandpass effects are not applied. The
gray horizontal line denotes the minimum k‖ (0.048 Mpc−1 ∼ 1/Beff ) mode
that can be observed in the EoR H i power spectrum. The upper limit on k‖ is
4.7 Mpc−1 (∼1/2 Δf ). The range in k⊥ is 0.0014 Mpc−1 � k⊥ � 1.47 Mpc−1,
which is set by the range in baseline lengths (�3–1636λ). The gray line with
positive slope defining the wedge boundary denotes the horizon limit within
which the foreground power is predominantly contained. The slope of the
wedge is 3.18. The top axis denotes baseline lengths, | u | ∼ k⊥, in units
of wavelength. The axis on the right denotes instrumental delay, η ∼ k‖.
The gray-scale color bar used is in logarithm units. Maximum contamination
�1.5 × 10−9 K2 occurs below the instrumental window. Contamination at
(k⊥, k‖) � (0.015, 0.047) Mpc−1 is typically ∼10−10 K2. Contamination is
enhanced close and parallel to the horizon limit because the confusion variance
increases owing to rise in solid angles subtended. The black vertical segments
near the right edge of the image indicate absence of measurements at the
corresponding baselines.

The lower and upper bounds on the k⊥-axis are provided by the
minimum (�3λ) and maximum (�1636λ) baseline lengths, and
those on the k‖-axis are provided by ∼1/Beff (gray horizontal
line, ηmin � 0.125 μs) and ∼1/(2 Δf ) (ηmax � 12.5 μs), respec-
tively. The foreground component of the power spectrum occu-
pies a wedge-shaped region in k-space. The horizon limit (gray
line with positive slope) sets the boundary of the wedge. For the
parameters listed in Table 1, the instrumental window is given by
0.0014 Mpc−1 � k⊥ � 1.47 Mpc−1 and 0.048 Mpc−1 � k‖ �
4.7 Mpc−1, and the slope of the foreground wedge is 3.18. The
maximum foreground contamination is ≈1.5 × 10−9 K2 but oc-
curs below the instrumental window. The typical contamination
close to (k⊥, k‖) � (0.015, 0.047) Mpc−1 is ∼10−10 K2. The
model EoR H i signal strength in this region is ∼3 × 10−10 K2.
An apparent increase in foreground contamination closer and
parallel to the wedge is noted. This is attributed to an increase
in σ 2

C(l), which in turn is due to an increase in solid angles as
| l | approaches the horizon limit.

If independent power spectra are averaged from Nfields patches
of sky, the foreground contamination in the averaged power
spectrum goes as ∼1/

√
Nfields.

5.3. Role of Bandpass Shapes in Foreground Contamination

An important consequence of convolution in Equation (15)
by the term WB

η (η), the response of the bandpass shape in

6



The Astrophysical Journal, 776:6 (17pp), 2013 October 10 Thyagarajan et al.

Figure 3. Bandpass window functions centered at 170.7 MHz. The dotted
curve is a rectangular window, the solid gray curve represents a standard
Blackman–Nuttall window, and the solid black curve represents an extended
Blackman–Nuttall window whose effective bandwidth (Beff ∼ 8 MHz) is equal
to that of the rectangular window. For the standard Blackman–Nuttall window,
Beff ∼ 2.9 MHz.

instrumental delay space, is to spill the contamination from
foreground emission, which is restricted to the wedge, into the
regions beyond. This spillover, therefore, fills even the desirable
portions of k-space, namely, the EoR window. Hence, a simple
removal of the wedge-shaped region from data analysis does not
completely remove all the effects of foreground contamination.
The level of this spillover may be controlled by appropriate
choice of bandpass shapes. Vedantham et al. (2012) have
discussed the possibility of using a Blackman–Nuttall window
function (Nuttall 1981).

In the context of bandpass window shaping, this paper
addresses the following questions: what is the effect of bandpass
shaping on foreground contamination in three-dimensional
k-space? And, what is its significance to overall sensitivity when
other uncertainties are also taken into account?

An infinite bandpass will convolve the power spectrum of
foregrounds by a delta function, resulting in zero spillover,
but is impossible to achieve in practice. A more practical band
shape, such as a rectangular window, will manifest as a sinc-
shaped response along η (and k‖). A Blackman–Nuttall window
is known to have a much reduced sidelobe response (3–4 orders
of magnitude) along η, but its peak (area under band shape)
in η-space is ≈2.76 times less than that of a sinc function,
which implies a loss of sensitivity. The resolution in η is also
relatively poorer. However, if the effective bandwidth, Beff , is
made equal to that of a rectangular band shape by extending
the standard Blackman–Nuttall window, a significant reduction
in sidelobes in the response function along η may be achieved
without compromising either sensitivity or resolution, compared
to those from a rectangular window. We define the effective
bandwidth as

Beff =
∫ B0/2

−B0/2
WB

f (f ) df = WB
η (0), (17)

where the second equality comes from the Fourier transform
convention and the limits of the integral form the edges of the
band.

Figure 4. Amplitude of the responses of the bandpass window functions of
Figure 3 shown vs. η, the instrumental delay. Line styles are identical to those
in Figure 3. The responses of rectangular and extended Blackman–Nuttall
bandpass windows are almost identical in sensitivity and resolution along
η, while the standard Blackman–Nuttall window is poorer in resolution and
≈2.76 times lesser in sensitivity.

Figure 3 shows the rectangular (dotted), standard (solid gray),
and extended (solid black) versions of Blackman–Nuttall band
shapes. Their effective bandwidths are 8 MHz, 2.9 MHz, and
8 MHz, respectively. Figure 4 shows, using the respective line
styles, the amplitude of the respective responses, |WB

η (η)|, of the
aforementioned band shapes along η. As expected, the standard
Blackman–Nuttall window has reduced sensitivity visible by
its peak and is of a poorer resolution. The extended version,
however, is identical in sensitivity and resolution to that of a
rectangular window.

Using WB
η (η) for rectangular and extended Blackman–Nuttall

windows described above, the power spectrum of unsubtracted
foreground sources was estimated in three-dimensional k-space
using the integral in Equation (15).

Once again for purposes of illustration we averaged these
power spectra in independent cells azimuthally in k-space
using inverse quadrature weighting. Figures 5 and 6 show the
azimuthally averaged power spectra of foregrounds (in units
of K2 Hz2) for rectangular and extended Blackman–Nuttall
band shapes, respectively, each with an effective bandwidth of
8 MHz. The features already noted in Figure 2 are also noted
here. But the bandpass effects were not applied in Figure 2.
Due to the presence of the term WB

η (η) in Equation (15), the
foreground contamination is seen to spill over into the EoR
window in both cases. The spillover into the EoR window up to
k‖ < 0.1 Mpc−1 is similar in both cases and is ∼104 K2 Hz2.
A Blackman–Nuttall window is expected to be superior by
7–8 orders of magnitude in reducing the spillover beyond the
wedge-shaped region relative to a rectangular window because
of the term |WB

η (η)|2. Higher levels of foreground contamination
are seen due to a rectangular bandpass window in the region
k⊥ � 0.03 Mpc−1, k‖ � 0.1 Mpc−1 when compared to that
due to a Blackman–Nuttall window. In fact, this is confirmed
from Figure 7, which compares the foreground power along
slices at k⊥ � 0.01 Mpc−1 shown in Figures 5 and 6 as
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Figure 5. Logarithm of azimuthally averaged foreground power spectrum (in
units of K2 Hz2) with 6 hr of synthesis using a rectangular window. The solid
gray lines are identical to those in Figure 2. The spillover of foreground power
beyond the wedge is due to the response of the rectangular bandpass window.
The spillover into the EoR window around (k⊥, k‖) � (0.01, 0.2) Mpc−1

is ∼103 K2 Hz2. The gray dotted lines denote boundaries of bins of k =
(k2

⊥ + k2
‖ )1/2, inside which the signal and uncertainties are averaged to obtain

sensitivity. The gray-scale color bar used is logarithm units. A slice of the
foreground power spectrum is obtained along the gray dashed line to estimate the
spillover level beyond the wedge. The black vertical segments in the right edge
of the image indicate absence of measurements at the corresponding baselines.

Figure 6. Same as Figure 5 but for an extended Blackman–Nuttall bandpass win-
dow. The spillover into the EoR window around (k⊥, k‖) � (0.01, 0.2) Mpc−1

is ∼10−5 K2 Hz2.

gray dashed lines. In the range 0.2 Mpc−1 � k‖ � 5 Mpc−1,
the extended Blackman–Nuttall window produces a foreground
contamination spillover ∼10−6 to 10−5 K2 Hz2, which is about
7–8 orders of magnitude smaller than that from a rectangular
window.

Are there undesirable effects of using an extended
Blackman–Nuttall band shape? A wideband observation might

Figure 7. Comparison of foreground contamination within the wedge and the
spillover beyond for rectangular (solid line) and extended Blackman–Nuttall
(dotted line) bandpass windows. The spillover is estimated along the slices
shown as gray dashed lines in Figures 5 and 6. The spillover due to the latter
is 7–8 orders of magnitude lower in the range 0.2 Mpc−1 � k‖ � 5 Mpc−1 at
k⊥ � 0.01 Mpc−1.

be analyzed with a sliding window to examine for any change in
EoR detection with redshift. Thus, bandwidth is not discarded
when an extended Blackman–Nuttall window is deployed. But
such a window uses larger total bandwidth (more channels)
than a nominal rectangular window to achieve the same effec-
tive bandwidth. If there is significant cosmic evolution of the
EoR signal within the band, the assumption of statistical sta-
tionarity of EoR signal could break down and lead to a dilution
of measured signal power.

6. THERMAL NOISE POWER SPECTRUM

The thermal noise component in a sampled visibility mea-
surement in Fourier space, from Equations (5) and (6), is

V N
uvη(u) =

∫
V N

uvf (u, f ) Suv(u) WB
f (f ) e−j2πηf df. (18)

The rms of thermal noise in a measured visibility sample in a
single frequency channel is given by (Morales 2005; McQuinn
et al. 2006)

ΔV N
uvf (u, f ) = λ2 Tsys

Ae

√
Δf tint

, (19)

where tint is the integration time used to obtain visibility samples.
In a natural weighting scheme, the weight of a certain (u, v)-

cell is proportional to the number of baselines (or measurements)
in that cell. When data measured by baselines inside (uv)-cells
are averaged, the thermal noise in the averaged cell visibility is
inversely proportional to the square root of number of baselines
sampling that cell. Thus, the power spectrum uncertainty due to
thermal noise in a spatial frequency mode (u) may be written as
(Morales 2005; McQuinn et al. 2006)

CN(u) =
(

λ2 Tsys

Ae

)2
εBeff

tu
, (20)
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Figure 8. Logarithm of thermal power spectrum (in units of K2 Hz2) for a 1000 hr
observation with 6 hr synthesis on a single field (first observing mode in Table 2),
using a rectangular bandpass window (ε = 1). The solid and dotted gray lines are
identical to those shown in Figure 5. The gray-scale color bar used is in logarithm
units. The minimum (≈640 K2 Hz2) and maximum (≈1.4 × 109 K2 Hz2) are
attained at k⊥ � 0.004 Mpc−1 and k⊥ � 1 Mpc−1, respectively, for the natural
weighting scheme used. The black vertical segments in the right edge of the
image indicate absence of measurements at the corresponding baselines.

where ε is the factor arising out of bandpass weights and tu
is the effective time of observation for a given mode, which is
effectively a product of the number of baselines sampling the
mode during aperture synthesis and the integration time used in
producing a visibility sample.

The thermal noise power spectrum is estimated as prescribed
by Morales (2005) and McQuinn et al. (2006). ε arises in
Equation (20) from the sum of squares of bandpass weights,
WB

f (f ), while determining the power spectrum. ε is given by

ε =
∑Nch

i=1

∣∣WB
f (fi)

∣∣2

∑Nch
i=1 WB

f (fi)
, (21)

where i indexes the frequency channels in the bandpass,
Nch is the number of channels in the bandpass, and∑Nch

i=1 WB
f (fi) Δf = Beff . The value of ε is 1 and 0.72, respec-

tively, for rectangular and extended Blackman–Nuttall window
band shapes. It indicates that an extended Blackman–Nuttall
window also reduces the thermal noise component in the power
spectrum by 28%. As a result, in order to achieve a thermal
noise power equal to that from an extended Blackman–Nuttall
window using a rectangular window, an observation has to be
≈40% longer.

Uncertainty in power spectrum due to thermal noise is very
sensitive to observing time. In each k-mode, it is inversely
proportional to the number of baselines, including redundant
ones that sample that k-mode during the entire synthesis. It
depends on band shape that is parameterized by ε. In the
context of our model observations listed in Table 2, the thermal
noise power spectrum in Equation (20) at any k-mode may be

Figure 9. Same as Figure 8 but evaluated for 1000 hr with 6 hr synthesis on
20 fields (observing mode 2 in Table 2). In this case, thermal noise power
spectrum relative to observing mode 1 (in Figure 8) is worse by a factor ≈4.47
throughout, owing to a decrease in observing time on individual fields as the
number of independent fields observed is increased from 1 to 20.

rewritten as

CN(k) =
(

λ2 Tsys

Ae

)2
ε Beff

Ncad tint N (k)
√

Nfields
, (22)

where N (k) is the number of baselines (redundant ones in-
cluded) observing the k-mode during a single synthesis obser-
vation of duration tsyn and Ncad = tobs/(tsyn Nfields).

For illustration, this is azimuthally averaged in bins of
k⊥ = (k2

x + k2
y)1/2 by adding the thermal noise component of the

power spectrum contained in cells in this bin, in inverse quadra-
ture, to yield a two-dimensional thermal noise power spectrum,
CN(k⊥, k‖). In Figures 8 and 9, we show CN(k⊥, k‖) for observ-
ing modes 1 and 2, respectively, using a rectangular bandpass
window. In observing mode 1, the azimuthally averaged ther-
mal noise power spectrum attains minimum (≈640 K2 Hz2) at
k⊥ � 0.004 Mpc−1 and maximum (≈1.4 × 109 K2 Hz2) at
k⊥ � 1 Mpc−1. The thermal noise power spectra are similar in
the two observing modes except that it is higher by a factor of
≈4.47 in the latter as predicted by the scaling in Equation (22).
In the first observing mode, the visibilities are added coherently
for a total of 1000 hr. In the second observing mode, the vis-
ibilities on each field are added coherently only for 50 hr and
power spectra are estimated. These power spectra are then aver-
aged. This increases the thermal noise component in the power
spectrum by a factor

√
20 ≈ 4.47.

The thermal noise power spectrum exhibits cylindrical sym-
metry about the k‖-axis. When an extended Blackman–Nuttall
window is used, the thermal noise component in the power spec-
trum drops by 28% (ε = 0.72) relative to that from a rectangular
bandpass window.

9
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7. EoR H i POWER SPECTRUM AND SAMPLE VARIANCE

The measured H i component of Fourier space visibilities
in Equation (5) in a manner similar to Equation (14) may be
expressed as

V H i
uvη(u) = V H i;T

uvη (u) Suv(u) ∗ Wuvη(u). (23)

The EoR H i power spectrum measured by the instru-
ment, P H i

inst(k), is the diagonal of the covariance matrix
〈V H i

uvη(ui)�V H i
uvη(uj )〉 and is given by (Morales & Hewitt 2004;

Morales 2005; McQuinn et al. 2006; Bowman et al. 2006, 2007)

P H i
inst(k) =

∫ ∫ ∫
P H i(u′) |Wuvη(u − u′)|2 d3u′ (24)

at the sampled baseline locations, and P H i(u) is given by
Equation (12). Although some authors (McQuinn et al. 2006;
Bowman et al. 2006, 2007) have approximated Wuvη(u) by a
delta function, it will exhibit some spillover along η depending
on the bandpass shape WB

f (f ). Hence, we retain the general
form of the power spectrum in Equation (24) for our work.

In Equation (24), we note the convolving effect arising out of
instrumental factors, thereby introducing correlations between
neighboring spatial frequencies. The observed power spectrum
of the signal is a modification of the true EoR H i power spectrum
by instrumental parameters of observation such as primary beam
and bandpass shape.

Sample variance is equal to the power spectrum (Jungman
et al. 1996; McQuinn et al. 2006). If a number of independent
measurements (Nfields) of power spectrum are averaged, the
sample variance goes as P SV(k) = P H i

inst(k)/
√

Nfields.
P H i(k), in Equation (2), represents the variance in k-space of

the spin temperature fluctuations of H i relative to the CMB.
As already mentioned in Section 4.1, simulations of Lidz
et al. (2008) show that the variance in the ionization field
peaks at a value close to 50% ionization. We choose from the
family of P H i(k) curves they provide the one parameterized
by (〈xi〉, z) = (0.54, 7.32) and use it as the input model in
this study. 〈xi〉 and z are the mean volume-averaged ionization
fraction and redshift, respectively. Redshifted emission from
H i at z = 7.32 occurs at 170.7 MHz, which is chosen as our
observing frequency. We have obtained the values of power
spectrum predicted for (〈xi〉, z) = (0.54, 7.32) from the plots
of Lidz et al. (2008; A. Lidz 2011, private communication).
Since we required the predicted values of the power spectrum
at intermediate values of k not tabulated, we used a third-order
polynomial fit to interpolate the predicted power spectrum to
the required values.

Two primary causes contribute to the power spectrum of EoR
H i fluctuations:

1. the underlying matter density fluctuations, and
2. the ionized bubbles during the reionization process.

The contribution from matter density fluctuations is anisotropic
due to redshift–space distortions caused by peculiar velocity
effects along the line of sight (Barkana & Loeb 2005), whereas
the contribution from ionization fluctuations is isotropic. In
our adopted model the ionization fraction is about 50%, which
indicates significant ionization. Hence, the contribution to the
EoR can be assumed to be dominated by ionized bubbles rather
than due to underlying matter density fluctuations (Lidz et al.
2008). Therefore, we neglect anisotropic effects arising out of
peculiar velocities in our model power spectrum.

Figure 10. Logarithm of EoR H i signal power spectrum (in units of K2 Hz2)
for observing mode 1 listed in Table 2 using a rectangular bandpass window.
The solid and dotted gray lines are identical to those shown in Figure 5. The
gray-scale color bar used is in logarithm units.

The observed power spectrum is computed from
Equation (24) using the input model. It is identical for the two
observing modes listed in Table 2. The observed sample vari-
ance is higher in observing mode 1 relative to observing mode
2 by a factor

√
20 ≈ 4.47.

Figure 10 shows the observed EoR H i power spectrum
in (k⊥, k‖)-plane corresponding to observing mode 1 while
employing a rectangular band shape. Bandpass shape causes
a convolution with the true power spectrum along k‖, as in the
case of the foreground power spectrum. Although not shown, as
expected the extended Blackman–Nuttall window causes a far
lesser spillover of the EoR H i power spectrum relative to the
rectangular band shape. For our paper, we term this the “signal
spillover.” It is caused by the same reason (bandpass window
shape) that causes foreground spillover beyond the horizon limit.

8. EoR SIGNAL DETECTION

We have estimated the EoR H i power spectrum expected to
be observed and individual uncertainties in three-dimensional
k-space. The total uncertainty in the power spectrum in three-
dimensional k-space was obtained by summing the component
uncertainties,

ΔP (k) = P FG
inst(k) + CN(k) + P SV(k). (25)

8.1. Family of EoR Windows

By knowing the occupancy of various uncertainties in k-space
and excluding these regions where uncertainties dominate, the
estimates are expected to be relatively free of contamination
(Morales et al. 2012). Within the instrumental window, results
from Datta et al. (2010), Vedantham et al. (2012), Williams
et al. (2012), and our study have shown that the wedge-
shaped region in k-space is contaminated due to unsubtracted
foreground sources and their sidelobes relatively more than in
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Figure 11. Family of EoR windows parameterized by e in Equation (26). The
gray box denotes the instrumental window in k-space. The straight dotted line
marks the boundary of the wedge-shaped region given by Equation (16). e
denotes the number of characteristic widths (∝ B−1

eff ) of convolution due to the
instrumental delay function WB

η (η). e = 0 denotes that only the wedge term is
removed, while e = 3 denotes removal of three characteristic widths in addition
to the wedge.

other regions in k-space. Hence, the EoR window for the H i
power spectrum has been designated as the region in k-space
inside the instrumental window excluding the wedge. The idea
of an optimal window is investigated further.

We have shown that foregrounds are not strictly contained
within the wedge-shaped region (see Section 5.3). A spillover
from the wedge-shaped region is caused by the instrumental de-
lay function WB

η (η). The characteristic width of this convolving

instrumental response is proportional to B−1
eff . Thus, immedi-

ately following the wedge boundary determined by the horizon
limit given by Equation (16), the spillover up to a few char-
acteristic widths of convolution by the instrumental frequency
response is also found to contain higher levels of contamination
(see Figures 2, 5, and 6).

We investigate refinements to the so-called EoR window.
We narrow the EoR window by adding a term proportional
to the characteristic convolution width. We define a refined EoR
window as the region

k‖ � H0 E(z) DM(z)

c (1 + z)

(
k⊥ +

e

Beff

2π f21

(1 + z) DM(z)

)
. (26)

This will reduce to the horizon limit in Equation (16) without the
second term in parentheses. The second term is proportional to
the characteristic width of the convolution arising from instru-
mental delay function WB

η (η). e parameterizes this constant of
proportionality. Equation (26) represents a family of EoR win-
dows. This concept is illustrated in Figure 11. The instrumental
window in k-space is shown as a gray box. The bottom right
corner of this box is the region contaminated by foregrounds,
and the top left corner represents the refined EoR window.

8.2. One-dimensional Sensitivity

Using the model for the EoR H i power spectrum and
with estimates of three primary uncertainties, namely, the
foregrounds, thermal noise, and sample variance, the sensitivity
of the instrument to EoR power spectrum detection may be
obtained. By averaging signal and uncertainties in independent
voxels in spherical shells of k = (k2

⊥ + k2
‖)1/2, sensitivity may be

improved.
The model EoR H i power spectrum we have considered

is spherically symmetric and hence a function only of radial
coordinates in k-space. This symmetry is modified to an extent
by the instrument observing the power spectrum because the
instrumental term, Wuvη(u), in Equation (24) is not spherically
symmetric. During spherical averaging, we ignore this loss of
spherical symmetry caused by instrumental distortion. While
averaging in shells of k, we average the observed signal in these
shells and, correspondingly, estimate the uncertainties by adding
them in inverse quadrature.

We compare the one-dimensional signal and noise estimates
for the cases listed in Table 2, while deploying rectangular
and extended Blackman–Nuttall band shapes, for a range of
values of e.

Figures 12(a)–(d) show in detail the signal and uncertainties
expected with the MWA for observing mode 1 listed in Table 2.
Figure 12(a) demonstrates the levels of signal (solid circles)
and uncertainty (solid line) expected with either of the bandpass
windows employed for the EoR window parameter e = 0. Also
shown are the individual components of the total uncertainty
in different line styles (foregrounds: dot–dashed; thermal noise:
dashed; sample variance: dotted). Figure 12(b) shows the change
in the power spectrum of EoR H i and that of foregrounds when
e is varied (e = 1, 2, 3 in red, green, and blue, respectively)
relative to their respective values at e = 0 (black). Similarly,
Figure 12(c) shows the change in thermal noise component
of the power spectrum for different values of e, relative to its
values at e = 0. In other words, Figures 12(b) and (c) show
signal and uncertainty components normalized with respect to
themselves obtained at e = 0. Hence, the quantities at e = 0 are
shown for reference in these figures at a constant value of unity.
Figure 12(d) shows the ratio of signal to uncertainty (S/N) as
e is varied. The left sub-panel in each panel corresponds to a
rectangular bandpass window, while that on the right is obtained
with an extended Blackman–Nuttall window.

With observing mode 1 using 128-tile MWA, the signal
clearly appears to be detectable (S/N > 1) for k � 0.8 Mpc−1

(see Figures 12(a) and (d)). From Figure 12(a), with e = 0,
foreground contamination (dot–dashed line) exceeds thermal
noise (dashed line) for k � 0.2 Mpc−1 and k � 0.1 Mpc−1 while
using rectangular and Blackman–Nuttall windows, respectively.
Beyond this crossover, thermal noise takes over as the dominant
source of uncertainty in the power spectrum. Foregrounds
(dot–dashed line) and sample variance (dotted line) are roughly
equal up to this crossover. As e increases, progressively larger
regions get excluded from k-space. This is clearly visible in
Figures 12(b)–(d), especially for k � 1 Mpc−1, through a
systematic drift of radii of spherical shells (“+” symbols)
toward higher values as e increases (red to green to blue). In
other words, increasing e from 0 to 3 makes it progressively
harder to recover scales with 0.06 Mpc−1 � k � 0.2 Mpc−1.
This results in partial removal of different uncertainties and
the signal, besides an inherent decrease in signal strength
with increasing k. However, the decrease in signal by �1–2
orders of magnitude (solid red, green, and blue curves) is less
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(a) Sensitivity for e = 0 (b) EoR Hi and foregrounds

(c) Thermal noise (d) S/N ratio

Figure 12. Properties of signal and uncertainty components in the power spectrum (in units of K2 Hz2) for observing mode 1. These are determined by averaging in
shells of k for various values of EoR window parameter, e. In each panel, the sub-panel on the left is obtained with a rectangular bandpass shape, while that on the
right is due to an extended Blackman–Nuttall window. The averaging excludes from the (k⊥, k‖)-plane the wedge-shaped foreground window and an additional region
parameterized by e in Equation (26). (a) Expected EoR H i signal and uncertainties in the power spectrum. The solid circles and lines denote the signal and the total
uncertainty, respectively. The latter consists of sample variance (dotted), thermal noise (dashed), and foreground contamination (dot–dashed). (b) Signal (solid lines)
and foreground contamination (dotted lines) for different values of e (e = 1, 2, 3 in red, green, and blue, respectively) normalized by their respective values at e = 0
(black) in Figure 12(a). (c) Thermal noise component in the power spectrum for different values of e (shown in legend) normalized by its values at e = 0. (d) S/N for
different values of e. In panels (b)–(d), “+” symbols denote the mean radii of spherical shells.

(A color version of this figure is available in the online journal.)

rapid than that in the foreground contamination (dashed red,
green, and blue curves), which decreases by �1–2 orders of
magnitude. This is true for both bandpass shapes but is quite
pronounced for the extended Blackman–Nuttall window (see
Figure 12(b)), where the foreground contamination reduces by
∼ 5–10 orders of magnitude. On the other hand, as e increases,
the thermal noise component changes at most by a factor of
two as seen from Figure 12(c). Effectively, the thermal noise
component is only mildly affected compared to the signal and
foregrounds. Regardless of the bandpass window used, the
colored curves which are almost coincident in Figure 12(d)
show that there is no improvement in overall sensitivity as
e is varied. This is a consequence of the nature of inverse
quadrature weighting used in averaging in spherical shells of

k. However, it is very important to reiterate that the foreground
contamination decreases more rapidly than the loss in signal
as e is increased. In fact, foregrounds are almost completely
removed for e � 1 while using the Blackman–Nuttall window.
Hence, using a combination of extended Blackman–Nuttall band
shape with certain members of the family of EoR window
(1 � e � 2) does not appear to improve MWA sensitivity, but
offers significant leverage in reducing foreground contamination
from the power spectrum, thereby providing a cleaner EoR
window. This could become very significant when imperfect
source subtraction (position and calibration errors) and extended
emission from extragalactic and Galactic foregrounds are also
taken into account. This is due to the 7–8 orders of magnitude
of extra tolerance provided by an extended Blackman–Nuttall
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(a) Sensitivity for e = 0 (b) S/N ratio

Figure 13. Properties of signal and uncertainty components in the power spectrum (in units of K2 Hz2) for observing mode 2, similar to Figure 12. The left and right
sub-panels in each panel are obtained with rectangular and Blackman–Nuttall windows, respectively. (a) Averaged signal (solid circles) and uncertainties in different
line styles (foregrounds: dot–dashed; thermal noise: dashed; sample variance: dotted; and total uncertainty: solid) in spherical shells of k for e = 0. (b) S/N for
different values of e (shown in legend). “+” symbols denote the mean radii of spherical shells. EoR H i power spectrum is detectable (S/N > 1) for k � 0.4 Mpc−1.

(A color version of this figure is available in the online journal.)

window relative to a rectangular window in the amount of
spillover of foreground contamination into the EoR window.

We investigate the sensitivity for observing mode 2, where a
total of 1000 hr were divided over 20 patches of sky to obtain 20
independent measurements of power spectrum. This differs from
observing mode 1 in that the total observing time is now divided
on multiple fields. Figure 13(a) is the counterpart of Figure 12(a)
and illustrates the signal and different uncertainty components
obtained with the MWA in this observing mode. Counterparts
to Figures 12(b) and (c) will be identical and are not shown.
Figure 13(b) shows the ratio of signal to total uncertainty (S/N)
for this observing mode.

Since the time on individual fields has reduced by a factor of
Nfields = 20, leading to a reduction in the number of coherent
visibility measurements per field, the thermal noise component
in each measurement of the power spectrum has increased by the
same factor. The foreground contamination and sample variance
in an individual power spectrum measurement remain identical
to those in observing mode 1, where only a single field is
observed. When independent measurements of power spectra
are averaged, all the components of uncertainty in the averaged
power spectrum are reduced by a factor

√
Nfields ≈ 4.47

relative to what they were in the individual measurements of
power spectra. The net result, relative to observing mode 1,
is that the foreground contamination and sample variance have
reduced by a factor 4.47, while the thermal noise component has
worsened by the same amount. This is evident when Figure 13(a)
is compared with Figure 12(a). As a result, the crossover,
up to which foreground contamination and sample variance
dominate over thermal noise, moves leftward and now occurs at
k � 0.1 Mpc−1 for both bandpass windows. This has a twofold
effect on overall sensitivity relative to that in the previous case:
(1) the sensitivity in lowest bin of k (k � 0.06 Mpc−1), where
sample variance and foreground components dominated over the
thermal noise component in observing mode 1, has improved
to 20, a factor of ≈4 (consistent with

√
Nfields ≈ 4.47); and

(2) the sensitivity in other bins of k (k � 0.1 Mpc−1) has
degraded because the thermal noise component, which was

already dominant in this regime, has worsened. The final effect
on detectability is that S/N > 1 only for k � 0.4 Mpc−1.

How does sensitivity in observing mode 2 compare to that in
observing mode 1? Sensitivity is the result of a complex inter-
play between the relative magnitudes of the desired EoR H i sig-
nal and different uncertainty components in the power spectrum.
As far as MWA is concerned, the thermal noise component ap-
pears to be dominant on scales with k � 0.1–0.2 Mpc−1. Hence,
dividing the observing time over multiple fields and averaging
the independent measurements of power spectra helps improve
the sensitivity by a factor of ≈4 for k � 0.1 Mpc−1 but degrades
it everywhere else. Consequently, the zone of detectability
(S/N > 1) in k-space becomes narrower from k � 0.8 Mpc−1 to
k � 0.4 Mpc−1. Thus, except for an improvement in sensitivity
on the largest scales (k � 0.1 Mpc−1), increasing the number
of independent fields seems to offer no significant advantage.

As far as effects of bandpass windowing and family of EoR
windows are concerned, significant improvement in MWA sen-
sitivity is seen neither with bandpass window shapes nor with
the EoR window parameter e. However, it is crucial to ob-
tain the cleanest EoR window possible in order to reduce
the amount of systematics in the data, which may not be
fully understood, such as those arising from unsubtracted fore-
ground residuals. We find that refinements to the EoR window
(through parameter e), a Blackman–Nuttall bandpass window
shape, and a combination of both significantly reduce the ex-
tragalactic foreground contamination in the measured power
spectrum.

9. SUMMARY

The primary goal of this work was to understand and
estimate some of the fundamental factors that limit sensitivity
of an EoR H i power spectrum measurement, namely, point-
like extragalactic foreground contamination, thermal noise, and
sample variance of the H i brightness temperature fluctuations.
A secondary goal was to understand how these uncertainties
compete with each other on different scales in determining the

13



The Astrophysical Journal, 776:6 (17pp), 2013 October 10 Thyagarajan et al.

sensitivity of a radio interferometer array, such as the MWA,
toward detection of the EoR H i power spectrum.

An analytic-cum-statistical approach was used in represent-
ing residual image cubes by assuming a radio source count
distribution on the sky. For the 128-tile MWA at 170.7 MHz,
when sources above the 5σ classical source confusion threshold
were subtracted, the 1σ classical source confusion limit near the
zenith was found to be ≈35 mJy for a natural weighting scheme.

Unsubtracted foreground sources and their sidelobes contam-
inate the predicted EoR signal. The frequency dependence of
synthesized beam distributes the contamination from sidelobes
onto a wedge-shaped region in k-space. We have presented a
unified framework for signal and noise estimation, using which
we estimate foreground contamination in three-dimensional
k-space. This framework also attempts to take into account
multi-baseline mode-mixing effects caused by loss of coher-
ence between non-identical baselines inside an independent cell
in the spatial frequency domain. Using this framework, we es-
tablish an expression for the boundary of the wedge set by the
horizon limit.

We show for the first time, quantitatively, how the usage of
a finite bandpass spills the contamination from unsubtracted
sources and their sidelobes into the EoR window. This spillover
decreases by 7–8 orders of magnitude, for instance, in the range
0.2 Mpc−1 � k‖ � 5 Mpc−1 at k⊥ ≈ 0.01 Mpc−1, by switching
from a rectangular to an extended Blackman–Nuttall window.
We argue that this additional tolerance provided by the latter
could prove to be of crucial significance in minimizing power
spectrum contamination when the impact of imperfect source
subtraction (due to position and calibration errors) and extended
extragalactic and Galactic foregrounds are also considered. The
frequency weighting in an extended Blackman–Nuttall bandpass
window also lowers the thermal noise component of the power
spectrum by 28% relative to that achievable with a rectangular
window. Conversely, in order to achieve the same thermal noise
power with both windows, the duration of observing with a
rectangular window has to be ≈40% longer when compared to
an extended Blackman–Nuttall window.

We performed case studies of two different observing mod-
es—6 hr synthesis repeated for a total of 1000 hr on a single
field, and 6 hr synthesis repeated on 20 independent fields for
a total of 1000 hr—and studied the effects of the aforemen-
tioned uncertainties on EoR H i power spectrum detection us-
ing the MWA. In both cases, detection appears to be possible
(S/N > 1). A total of 1000 hr on a single field shows that
the signal is detectable on scales with k � 0.8 Mpc−1, while
dividing it over 20 independent fields narrows the zone of de-
tectability to scales with k � 0.4 Mpc−1. Since sample variance
and foregrounds, rather than thermal noise, are the dominant
uncertainties on the largest scales (k � 0.1 Mpc−1), detection
sensitivity on these scales improves by roughly four times if the
observing time is divided over 20 independent regions of sky.

The concept of EoR window was probed quantitatively.
Foreground contamination can be drastically reduced by using
an extended Blackman–Nuttall bandpass window and through
refinements (1 � e � 2) to the EoR window.

By modeling in detail the various uncertainties, we have
shown the significance of different uncertainties on various
scales and their roles in determining overall sensitivity. Ob-
serving many independent fields of view worsens the thermal
noise and hence degrades the sensitivity for the MWA relative
to a single field observation of the same duration. Bandpass
window shaping and refinements to the EoR window do not

affect sensitivity, but have a significant effect on containing the
foreground contamination.
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APPENDIX A

ESTIMATING CLASSICAL SOURCE CONFUSION NOISE

At any given frequency, the field of view contains many
sources. Any given synthesized beam area of an array consists
of many unresolved sources along that line of sight. Due to the
statistical nature of the distribution of sources, the flux density
contained in a synthesized beam area varies across the sky. The
classical source confusion is the variation in flux density due to
random distribution of unresolved sources across different beam
areas on the sky. The theory on confusion is discussed in detail
in Condon (1974) and Rohlfs & Wilson (2000). This paper uses
the discussion and notations presented in the latter.

The differential number density of sources per unit solid angle
with respect to flux density is denoted by dn/dS, where dn is
the number of sources per steradian in a flux density interval
between S and S + dS. The variance in confusing source flux
density in a given solid angle, Ω, due to the number count
distribution of sources is given by

σ 2
C = Ω

∫ SC

Smin

S2 dn

dS
dS, (A1)

where Smin and SC are the lower and upper limits on the flux
density of radio sources, respectively.

Since σ 2
C is determined from the entire range of flux densi-

ties up to SC, if there are bright sources, σ 2
C will be overesti-

mated. Hence, we perform an iterative procedure wherein all
foreground sources brighter than ρC σC and their sidelobes are
subtracted, thereby updating the upper end of the flux density
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(a) modified differential source counts (b) confusion noise vs. solid angle

Figure 14. Left: modified source count distribution of Hopkins et al. (2003) from Equation (A3) extrapolated outside the range 0.05 mJy–1 Jy (shown as vertical
dotted lines) at 1400 MHz. The flat extrapolation for S > 1 Jy is consistent with a Euclidean geometry representative of the local universe. The extrapolation for
S < 0.05 mJy has an identical slope to that in the flux density range 2–20 mJy (dashed lines). Right: the dependence of classical source confusion (1σ ) on solid angle
at 170.7 MHz for various values of thresholds, ρC, as indicated in the legend. This is derived from the extrapolated version of Equation (A3) shown in Figure 14(a).
σC depends on the choice of ρC: it increases with ρC. The dot–dashed line denotes the cutoff SC at which on average one source of flux density exceeding the cutoff
is expected (Subrahmanyan & Ekers 2002). The gray vertical line at Ω ≈ 2 × 10−6 sr denotes the typical size of a resolution element for a naturally weighted image
obtained with 128-tile MWA.

range, SC. Here, ρC acts as the source subtraction threshold fac-
tor. This iterative procedure of subtracting foreground sources
brighter than SC = ρC σC, and updating SC and σC, is performed
until there are no sources brighter than ρC σC. We consider the σ 2

C
so computed as the “true” classical source confusion variance.

In practice, usually, deconvolution procedures can estimate
and subtract foreground sources and their associated sidelobes
to a limited extent, leaving behind a residual image. With
the knowledge of distribution of radio sources encoded in
dn/dS, a set threshold factor (ρC), and the solid angle (Ω)
corresponding to the angular resolution limit, the depth of source
subtraction and corresponding residuals in the residual image
can be determined using the iterative procedure described above
and is given by the following equation (Rohlfs & Wilson 2000):

ρ2
C = S2

C

Ω
∫ SC

Smin
S2 dn

dS
dS

. (A2)

This is obtained by imposing the criterion that the residual image
is allowed to have unsubtracted sources of flux densities up
to SC � ρC σC. We have assumed that the source subtraction
threshold, SC, is set only by the classical source confusion noise,
whereas, in practice, confusion caused by sidelobes in a residual
image will also play a role in determining the source subtraction
threshold in this iterative procedure.

We use the radio source statistics provided by Hopkins et al.
(2003). Their best-fit expression for the source counts is

log[(dn/dS)/(S−2.5)] =
6∑

i=0

ai [log(S/mJy)]i , (A3)

valid at 1400 MHz for 0.05 mJy � S � 1000 mJy, where
a0 = 0.859, a1 = 0.508, a2 = 0.376, a3 = −0.049, a4 =
−0.121, a5 = 0.057, and a6 = −0.008. S is in units of mJy,
and (dn/dS)/S−2.5 is in units of Jy1.5 sr−1. The normalization
by S−2.5 indicates that the expression is relative to a Euclidean
universe.

The solid angle at various locations of an image in (l, m)-
coordinates scales as

Ω = Δl Δm√
1 − l2 − m2

, (A4)

where Δl Δm is the pixel size. This implies, from Equation (A2),
that confusion variance (σC) and flux density cutoff (SC) are
functions of position in the residual image. Estimating confusion
noise over a wide range of solid angles requires an extrapolation
of the empirical function in Equation (A3) on both ends of the
flux density range. We have extrapolated at the higher end by
a flat function mimicking a Euclidean local universe behavior,
and at the lower end by an extension of the same slope found
between 2 and 20 mJy. Figure 14(a) shows Equation (A3)
extrapolated at both ends beyond the aforementioned range in
flux density (specified by vertical dotted lines). The dashed
segments S < 0.05 mJy and 2 mJy � S � 20 mJy have slopes
identical to each other.

Under the assumption that the source population remains
the same at the relevant frequency (170.7 MHz, for instance)
under consideration as at 1400 MHz, and that these sources
are unresolved with the MWA, the same expression for the
distribution of source counts can be used once the spectral index
is taken into account. There has been conflicting evidence in
literature (Randall et al. 2012, and references therein) over the
spectral index properties of radio sources at frequencies below
1.4 GHz and whether the spectral index flattens for faint sources
at low frequencies. Further, Kellermann (1964) has pointed
out that spectral index distribution is not independent of the
observing frequency since sources with flatter spectral index
are more likely to be observed at higher frequencies and those
at lower frequencies tend to have steeper spectral index, and
has subsequently provided a spectral index correction that tends
to offset this bias. However, for our work, we have adopted a
mean spectral index for radio sources as α = −0.78 (Ishwara-
Chandra et al. 2010), where S ∝ f α . Compared to flatter values
of spectral index, our adopted value of α = −0.78 gives us
higher values for the classical source confusion at 170.7 MHz,
making our sensitivity estimates conservative.
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Sources can be subtracted down to various levels of threshold
factor, ρC. Figure 14(b) represents a numerical solution for
Equation (A2) using dn/dS from Equation (A3) for various
values of ρC, as a function of the beam solid angle, Ω. As
expected from Equation (A2), Figure 14(b) shows that σC and
SC are nonlinear functions of both ρC and Ω. σC depends on the
choice of ρC: it increases with ρC.

APPENDIX B

FOREGROUND CONTAMINATION

Following the notations established in Section 3, the true
visibilities of foregrounds, V

FG;T
uvf (u, f ), are modified by the

instrument as

V FG
uvη(u) =

∫
V

FG;T
uvf (u, f ) Suv(u) WB

f (f ) ∗ W P
uv(u) e−j2πηf df

= V FG;T
uvη (u) Suv(u) ∗ WB

η (η) ∗ W P
uv(u)

= V FG;T
uvη (u) Suv(u) ∗ Wuvη(u), (B1)

where the true foreground visibilities, V
FG;T
uvf (u, f ), have been

convolved with the spatial frequency response of the antenna’s
power pattern, W P

uv(u), multiplied by the sampling function,
Suv(u), in the (u, v)-plane, multiplied by the bandpass window
function in frequency, WB

f (f ), and Fourier transformed along
frequency to obtain the measurements in Fourier space (u).
WB

η (η) is the Fourier transform of WB
f (f ), and j = √−1.

Wuvη(u) = W P
uvη(u)∗WB

η (η), where W P
uvη(u) may be interpreted

as the spatial frequency response of the antenna’s power pattern
over an infinitely uniform bandpass. Assuming that changes
in the antenna power pattern over the observing band are
insignificant, W P

uv(u) = W P
uvη(u, η = 0).

The covariance matrix for the measured foreground visibili-
ties in Fourier space may be written as

CFG(ki , kj ) = 〈
V FG

uvη(ui)
�V FG

uvη(uj )
〉

=
∫ ∫ ∫ ∫ ∫ ∫ 〈

V FG;T
uvη (up)�V FG;T

uvη (uq)
〉

× Suv(up)� Suv(uq) Wuvη(ui − up)�

× Wuvη(uj − uq) d3up d3uq, (B2)

where � denotes a complex conjugate. But, being an uncorrelated
statistical signal, 〈V FG;T

uvη (up)�V FG;T
uvη (uq)〉 = P FG(up) δ(up −

uq). Hence,

CFG(ki , kj ) =
∫ ∫ ∫

P FG(u) |Suv(u)|2 Wuvη(ui − u)�

× Wuvη(uj − u) d3u

=
∫ ∫ ∫

P FG(u)|Suv(u)|2 W P
uv(ui − u)�

× W P
uv(uj − u) WB

η (ηi − η)� WB
η (ηj − η) d3u.

(B3)

The power spectrum is simply the diagonal of the covariance
matrix, i.e., when the intensities at locations are compared with
themselves: P FG

inst(k) = CFG(ki , kj ) δij . Thus,

P FG
inst(u) =

∫ ∫ ∫
P FG(u′)|Suv(u′)|2 |Wuvη(u − u′)|2 d3u′.

(B4)

An insight into mode-mixing may be obtained if the above
expression for the power spectrum is re-expressed as a Fourier
transform of quantities in the (l, m, f )-coordinates as follows:

P FG
inst(u) =

∫ ∫ ∫
P FG

lmf (l) ∗ |Slm(l)|2 ∣∣W P
lm(l)

∣∣2 ∣∣WB
f (f )

∣∣2

× e−j2π(u·l+ηf ) d3 l. (B5)

Confusion variance, P FG
lmf (l), from extragalactic foreground

sources will be considered as the cause for foreground con-
tamination in the power spectrum. It may be computed using
Equations (A2) and (A4). When line-of-sight (f and η) terms
are dropped, the integrand in the above equation is consistent
with that in Equation (24) of Bowman et al. (2009).

We further assume that P FG
lmf is independent of frequency,

provided that the residuals have no spectral variations. Noting
that u = f x/c, the above equation may be rewritten as

P FG
inst(u) =

∫ ∫ ∫
P FG

lm (l) ∗ |Slm(l)|2 ∣∣W P
lm(l)

∣∣2 ∣∣WB
f (f )

∣∣2

× e−j2π( x·l
c

+η)f d2l df

=
∫ ∫

P FG
lm (l) ∗ |Slm(l)|2 ∣∣W P

lm(l)
∣∣2 ∗ ∣∣WB

η (η)
∣∣2

∗ δ

(
η +

x · l
c

)
d2l, (B6)

where x is the baseline vector in units of distance. The argument
of the delta function connects transverse spatial structure to
that along the line of sight. This demonstrates the mode-
mixing aspect of contamination from foregrounds in the power
spectrum.
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