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Abstract. We compute the cohomology of the Picard bundle on the desingulariza-
tion J̃ d (Y ) of the compactified Jacobian of an irreducible nodal curve Y . We use it to
compute the cohomology classes of the Brill–Noether loci in J̃ d (Y ).

We show that the moduli space M of morphisms of a fixed degree from Y to a pro-
jective space has a smooth compactification. As another application of the cohomology
of the Picard bundle, we compute a top intersection number for the moduli space M
confirming the Vafa–Intriligator formulae in the nodal case.
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1. Introduction

Let Y be an integral nodal curve of arithmetic genus g, with m (ordinary) nodes as only
singularities, defined over an algebraically closed field of characteristic 0. Let J̄ d(Y )

denote the compactified Jacobian of Y i.e., the space of torsion-free sheaves of rank 1 and
degree d on Y . The generalized Jacobian J d(Y ) ⊂ J̄ d(Y ), the subset consisting of locally
free sheaves, is the set of nonsingular points of J̄ d(Y ). There is a natural desingularization
of J̄ d(Y ) (Proposition 12.1, p. 64 of [9])

h : J̃ d(Y ) → J̄ d(Y ) .

Let θ̃ denote the pullback of the theta divisor (or the theta line bundle) on J̄ d(Y ) to
J̃ d(Y ). Let P̃ be the pullback to J̃ d(Y ) × Y of the Poincaré sheaf P on J̄ d(Y ) × Y . For
d ≥ 2g − 1, the direct image Ed of the Poincaré sheaf P̃ is a vector bundle on J̃ d(Y )

called the degree d Picard bundle. Unlike in the case of a nonsingular curve, Ed is neither
θ̃ -stable nor ample [6]. However, as the following theorem shows, the Chern classes of
this bundle are given by a formula exactly the same as that in the smooth case.

Theorem 1.1. The total Segre class s(Ed) of the Picard bundle Ed is

s(Ed) = eθ̃ and hence c(Ed) = e−θ̃ .

We give a few applications of this theorem. The Brill–Noether scheme BY (1, d, r) ⊂
J̄ d(Y ) is the scheme whose underlying set is the set of torsion-free sheaves of rank 1 and
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degree d on Y with at least r independent sections. The expected dimension of BY (1, d, r)

is given by the Brill–Noether number

βY (1, d, r) = g − r(r − d − 1 + g) .

Let B̃Y (1, d, r) := h−1 BY (1, d, r) ⊂ J̃ d(Y ) be the Brill–Noether locus in J̃ d(Y ).
Since h is a finite surjective map, BY (1, d, r) is nonempty if and only if B̃Y (1, d, r) is
nonempty. Using Theorem 1.1, we compute the fundamental class of B̃Y (1, d, r) and use
it to give an effective proof of the nonemptiness of B̃Y (1, d, r) for βY (1, d, r) ≥ 0.

Theorem 1.2. If B̃Y (1, d, r) is empty or if B̃Y (1, d, r) has the expected dimension
βY (1, d, r), then the fundamental class b̃1,d,r of B̃Y (1, d, r) coincides with

b1,d,r =
r−1∏

α=0

α!
g − d + r − 1 + α

θ̃r(g−d+r−1) .

COROLLARY 1.3

BY (1, d, r) and B̃Y (1, d, r) are nonempty for βY (1, d, r) ≥ 0.

For a fixed positive integer r , consider the direct sum of r copies of Ed ,

E = ⊕r Ed .

For L̃ ∈ J̃ d(Y ) with h(L̃) = L , the fibre of P(E) is isomorphic to P(⊕r H0(Y, L)).
A point in the fibre may be written as a class

(L̃, φ̄) = (L̃, φ1, . . . , φr ),

where

L̃ ∈ J̃ d(Y ), φi ∈ H0(Y, L) and (φ1, . . . , φr ) �= (0, . . . , 0).

Let Vφ be the subspace of H0(Y, L) generated by φ1, . . . , φr . Define

M := {(L̃, φ̄) ∈ P(E) | L locally free, Vφ generates L}. (1.1)

We show that M can be regarded as the moduli space of morphisms

Y → P
r−1

of degree d for d ≥ 2g − 1, d ≥ 0, r ≥ 2.

Theorem 1.4.

(1) There exists a morphism FM from M × Y to a P
r−1-bundle over M × Y such that for

any element a ∈ M, FM |a×Y determines a morphism fa : Y → P
r−1 of degree d.

(2) Given a scheme S and a morphism FS : S × Y → P
r−1 such that for any s ∈ S, the

morphism Fs : Y → P
r−1 is of degree d, there is a morphism

αS : S → M

such that the base change of FM by αS × id gives FS.
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Thus M̄ := P(E) can be regarded as a compactification of the moduli space of
morphisms Y → P

r−1 of degree d.

Fixing a nonsingular point t ∈ Y , we may assume that the Poincaré bundle is nor-
malized so that P̃ | J̃ d(Y ) × t is the trivial line bundle on J̃ d(Y ). Then we see that the
restriction of FM to M × t gives

Ft : M → P
r−1

defined by

Ft (L̃, φ̄) = (φ1(t), . . . , φr (t)) .

Fixing a hyperplane H of Pr−1, we get a Cartier divisor on M with the underlying set

X = X H := {(L̃, φ̄) ∈ M | Ft ((L̃, φ̄)) ∈ H}.
One shows that there exists a variety Z ⊂ M̄ such that c1(OM̄ (1)) = Z and Z∩M = X .

We define the top intersection number 〈Xn〉 of X in M as the top intersection number
Zn[M̄] of Z , n being the dimension of M .

Theorem 1.5.

〈Xn〉 = r g .

In case Y is smooth, a formula for the top intersection number was given by Vafa [10]
and Intriligator (eq. (5.5) of [8]). The formula was verified to be true by Bertram and
others (Theorem 5.11 of [3]). Theorem 1.5 shows that the intersection number is the same
in the nodal case.

2. Cohomology of the Picard bundle

2.1 Notation

Let Y be an integral nodal curve of arithmetic genus g with m (ordinary) nodes defined
over an algebraically closed field of characteristic 0. Let y1, . . . , ym be the nodes of Y .
We denote by Xk the curve with k nodes obtained by blowing up the nodes yk+1, . . . , ym ,
thus Y = Xm and X0 is the normalization of Y . Denote the normalization map by

p : X0 → Y.

Let p−1(yk) = {xk, zk} ∈ X0 be the inverse image of the nodal point yk in Y . By abuse of
notation, we denote by the same xk and zk , the image of these points in X j , for all j < k.
Let pk : Xk−1 → Xk be the natural morphism obtained by identifying xk and zk to the
single node yk .

Let us denote by Y o and Xo
0 the smooth irreducible open subsets Y −{∪m

j=1 y j } and X0−
∪m

j=1{x j , z j } respectively. Then one has Y o ∼= Xo
0. Note that Xo

0 maps isomorphically
onto an open subset Xo

k of Xk for each k. For x ∈ Xo
0, we use the same notation for x and

its image in Xo
k for all k (if no confusion is possible).

Once and for all, fix a (sufficiently general) point t ∈ Y o.
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2.2 The cycles W̃d and the nonsingular variety Bld

Let J̄ d(Y ) denote the compactified Jacobian i.e., the space of torsion-free sheaves of rank
1 and degree d on Y . It is a seminormal variety. The generalized Jacobian J d(Y ) ⊂
J̄ d(Y ), the subset consisting of locally free sheaves, is the set of nonsingular points of
J̄ d(Y ). The compactified Jacobian J̄ d(Y ) has a natural desingularization

h : J̃ d(Y ) → J̄ d(Y ).

It is a P
1 × · · · × P

1-bundle (m-fold product) over J d(X0) (Prop. 12.1, p. 64 of [9], [4]).
Since h is an isomorphism over J d(Y ), the Jacobian J d(Y ) is canonically embedded in
J̃ d(Y ).

We have the Abel–Jacobi map

Y → J̄ 1(Y )

which is an embedding [1]. However, it does not extend to a morphism Sd(Y ) → J̄ d(Y ),
where Sd(Y ) is the symmetric d-th power of Y . The problem being that, unlike in the
smooth case, the tensor products of non-locally free sheaves on Y have torsion.

Certainly the restriction of the Abel–Jacobi map to Y o extends to Sd(Y o) giving a
morphism

f ′
d : Sd(Y o) → J d(Y )

defined by

[x1, . . . , xd ] �→ OY (x1 + · · · + xd) ∈ J d(Y ).

Define cycles W̃d ⊂ J d(Y ) ⊂ J̃ d(Y ) to be the closure of the image of f ′
d in J̃ d(Y ) with

the reduced scheme structure. In particular, W̃g−1 is a divisor. Define the theta divisor θ̃ on
J̃ g−1(Y ) as W̃g−1. We identify W̃d with its isomorphic image in J̃ 0(Y ) under translation
by OY (−dt).

In Theorem 3.1 of [5], we have proved the following generalization of the Poincaré
formula. For 1 ≤ d ≤ g, one has

W̃g−d = θ̃d

d! (2.1)

as cycles in J̃ 0(Y ) modulo numerical equivalence.
We also identified W̃d with the Brill–Noether locus B̃Y (1, d, 1) whose underlying set is

B̃Y (1, d, 1) := {N ∈ J̃ d(Y ) | h0(Y, h(N )) ≥ 1}.
We constructed in § 4.1 of [5] a nonsingular variety Bld and a morphism

ψ : Bld → J̃ d(Y )

with image W̃d . The morphism ψ is analogous to the natural morphism

ψ0 : Sd(X0) → Wd(X0) ⊆ J d(X0),
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where Wd(X0) = BX0(1, d, 1). We define Bld
0 = Sd(X0). The variety Bld := Bld

m was
constructed from Bld

0 by induction on the number of nodes. For k = 1, . . . , m, we have
divisors �xk

∼= Sd−1(X0) × xk ⊂ Sd(X0) and �zk
∼= Sd−1(X0) × zk ⊂ Sd(X0). Bld

1
is obtained by blowing up �x1 ∩ �z1 in Bld

0 . Inductively Bld
k is obtained by blowing up

D(xk) ∩ D(zk) in Bld
k−1 where D(xk) and D(zk) are respectively the proper transforms

of �xk and �zk .
For x ∈ Y o, let �x ⊂ Sd(X0) be the divisor isomorphic to Sd−1(X0) × x and Dx its

proper transform in Bld . Let [Dx ] denote the class of Dx . Note that for d ≤ g, ψ : Bld →
W̃d is a surjective birational morphism. Therefore, for the cycle [Dx ]i of codimension i
in Bld , the cycle ψ∗[Dx ]i is of codimension i in W̃d . Since W̃d is of codimension g − d
in J̃ d(Y ), it follows that ψ∗[Dx ]i is of codimension g − d + i in J̃ d(Y ). In fact, we have
the following explicit description of the latter cycle.

PROPOSITION 2.1

ψ∗[Dx ]i = θ̃ g−d+i

(g − d + i)! .

Proof. We have a commutative diagram

Bld ψ−→ J̃ d(Y )

π

⏐⏐�
⏐⏐�p′

Bld
0

ψ0−→ J d(X0) .

The fibre of ψ0 over L0 ∈ J d(X0) is Fψ0
∼= P(H0(X0, L0)), the space of 1-dimensional

subspaces of H0(X0, L0). A point L̃ ∈ J̃ d(Y ) corresponds to a tuple (L0, Q1, . . . , Qm)

where L0 ∈ J d(X0) and Q j are 1-dimensional quotients of (L0)x j ⊕ (L0)z j . One has

h(L̃) ⊂ p∗L0 and hence H0(Y, h(L̃)) ⊂ H0(Y, p∗L0) ∼= H0(X0, L0). As in the proof of
Proposition 4.3 of [5], it follows that the map Bld → Bld

0 induces an injection of fibres
Fψ → Fψ0 . The fibre Fψ of ψ over L̃ ∈ J̃ d(Y ) is isomorphic to P(H0(Y, h(L̃)) (Propo-
sition 4.3 of [5]) and the injection Fψ → Fψ0 is the canonical injection H0(Y, h(L̃)) ⊂
H0(X0, L0).

The elements of Sd(X0) can be identified with divisors on X0. For x ∈ Xo
0,

�x = {D ∈ Sd(X0) | D = x + D′, D′ ∈ Sd−1(X0)}.

Equivalently, �x = {D ∈ Sd(X0) | D − x ≥ 0}. Thus

ψ0(�x ) = {L0 ∈ J d(X0) | L0(−x) ∈ Wd−1(X0)}

is a translate of Wd−1(X0).
One has Fψ0 ∩ �x ∼= H0(X0, L0(−x)) [3]. Hence

Dx ∩ Fψ = H0(X0, L0(−x)) ∩ H0(Y, h(L̃)) = H0(Y, h(L̃)(−x)).
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It follows that ψ(Dx ) is an x-translate of W̃d−1 ∼= B̃Y (1, d, 1). More generally, if
x1, . . . xi are general elements of Y o, then one has ψ(Dx1 ∩ · · · ∩ Dxi ) is an (

∑i
j=1 x j )-

translate of W̃d−i . By generalized Poincaré formula on Y (equation (2.1), Theorem 3.8
of [5]), we have

[W̃d−i ] = θ̃ g−d+i

(g − d + i)! .

Thus ψ∗[Dx1 ∩ · · · ∩ Dxi ] = θ̃ g−d+i/(g − d + i)! and hence

ψ∗[Dx ]i = θ̃ g−d+i

(g − d + i)!
for all x ∈ Y o. �

2.3 The Picard bundle

Recall that we have fixed a point t ∈ Y o. There exists a Poincaré sheaf P → J̄ d(Y ) ×
Y normalized by the condition that P | J̄ d(Y ) × t is the trivial line bundle on J̄ d(Y )

(see [7]). Let

P̃ → J̃ d(Y ) × Y

be the pullback of P to J̃ d(Y ) × Y . Then P̃ is a family of torsion-free sheaves of rank
1 and degree d on Y parametrized by J̃ d(Y ) and P̃ | J̃ d(Y ) × t is the trivial line bundle
on J̃ d(Y ). Let ν (respectively, pY ) denote the projections from J̃ d(Y ) × Y to J̃ d(Y )

(respectively, Y ).
For d ≥ 2g − 1, the direct image Ed of the Poincaré sheaf P̃ on J̃ d(Y ) × Y is a vector

bundle on J̃ d(Y ) called the degree d Picard bundle. It is a vector bundle of rank d +1−g.

PROPOSITION 2.2

For d ≥ 2g, Bld is isomorphic to the projective bundle P(Ed).

Proof. We prove the result by induction on the number k of nodes. Recall that Xk denotes
the curve with k nodes y1, . . . , yk . Let g(Xk) be the genus of Xk . For each k and d ∈ Z,
let J d(Xk) be the Jacobian and J̄ d(Xk) the compactified Jacobian of degree d on Xk . We
have a P

1-bundle

πk : J̃ d(Xk) → J̃ d(Xk−1) .

We identify J̄ 0(Xk) with J̄ d(Xk) by the morphism L �→ L(dt) for L ∈ J̄ 0(Xk) for all
k. This also gives an identification of J̃ 0(Xk) with J̃ d(Xk). Let Ed,k be the Picard bundle
on J̃ d(Xk). Let Bld

k be the variety Bld corresponding to Xk .
For k = 0, set Bld

0 = Sd(X0) and it is well-known that this symmetric product is
isomorphic to P(Ed,0) for d ≥ 2g(X0). Now, by induction, we may assume that for k ≥ 1,
we have P(Ed,k−1) ∼= Bld

k−1. Hence

π∗
k P(Ed,k−1) ∼= Bld

k−1 × J̃ d (Xk−1)
J̃ d(Xk) ⊂ Bld

k−1 × J̃ d(Xk).
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There is an injective morphism ik : Ed,k → π∗
k Ed,k−1 (Proposition 5.1 of [6]) so that

P(ik Ed,k) ⊂ Bld
k−1 × J̃ d(Xk) .

On the other hand, by the construction of Bld
k ,

Bld
k ⊂ Bld

k−1 × J̃ d(Xk).

In fact it is the closure of the graph of a rational map ψ ′
k : Bld

k−1 → J̃ d(Xk). We
recall the definition of ψ ′

k . There exists an open set Uk−1 ⊂ Sd(Xo
0) embedded in Bld

k−1
(i.e. isomorphic to an open subset of Bld

k−1) such that ψ ′
k is well-defined on Uk−1 and is

defined as follows: For
∑

i pi ∈ Uk−1, one has ψ ′
k(

∑
i pi ) = ( j, Q) ∈ J̃ d(Xk) where j

corresponds to the line bundle L = OXk−1(
∑

pi ), L has a unique (up to a scalar) section s
with zero scheme

∑
i pi and Q is the quotient of Lxk ⊕Lzk by the 1-dimensional subspace

generated by s(xk)+s(zk). The pair ( j, Q) determines j ′ = h( j, Q) and s gives a section
s′ of the line bundle L ′ corresponding to j ′.

Recall that by the definition of the direct image, the elements of Ed,k correspond to
all the pairs ( j ′, s′), j ′ ∈ J̃ d(Xk), s′ ∈ H0(Xk, L ′) where L ′ is the torsionfree sheaf
corresponding to h( j ′). Let j = h(πk( j)′), j ∈ J̄Xk−1 . If L corresponds to j , then the
injection (ik) j ′ corresponds to the inclusion H0(Xk, L ′) ⊂ H0(Xk−1, L). It follows that
P(ik(Ed,k)) ⊂ Bld

k−1 × J̃ d(Xk) contains the graph of ψ ′
k and hence its closure Bld

k .
Since Bld

k and P(ik(Ed,k)) are irreducible and of the same dimension, it follows that they
coincide. Since both Bld

k and P(ik(Ed,k)) are nonsingular, the injective homomorphism
ik induces an isomorphism from P(Ed,k) onto Bld

k . �

Theorem 2.3 (Theorem 1.1). The total Segre class s(Ed) of the Picard bundle is

s(Ed) = eθ̃ and c(Ed) = e−θ̃ .

Proof. Since P̃ | J̃ d (Y )×t
∼= O J̃ d (Y )

, the restriction of the evaluation map ev : ν∗ν∗P̃ → P̃
to J̃ d(Y ) × t gives a surjective homomorphism

evt : ν∗P̃ = Ed → O J̃ d (Y )
.

This defines a section st of OP(Ed )(1) whose zero set is the divisor

Dt = {(L̃, φ) ∈ P(Ed) | φ(t) = 0} .

Thus we have

[Dt ] = c1(OP(Ed )(1)) . (2.2)

By Proposition 2.1,

ψ∗[Dt ]d−g+
 = θ̃ 



! . (2.3)
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By VII(4.3), p. 318 of [2], if c(−Ed) := 1
c(Ed )

denotes the Segre class of Ed , then

cl(−Ed) = ψ∗[Dt ]d+1−g−1+l = ψ∗[Dt ]d−g+l .

Hence by eq. (2.3), one has cl(−Ed) = θ̃ l

l! and hence c(−Ed) = eθ̃ . Thus

c(Ed) = e−θ̃ .

�

3. Brill–Noether loci

The Brill–Noether scheme BY (1, d, r) ⊂ J̄ d(Y ) is the scheme whose underlying set is
the set of torsion-free sheaves of rank 1 and degree d on Y with at least r independent
sections. The expected dimension of BY (1, d, r) is given by the Brill–Noether number

βY (1, d, r) = g − r(r − d − 1 + g) .

Let B̃Y (1, d, r) := h−1 BY (1, d, r) ⊂ J̃ d(Y ) be the Brill–Noether locus in J̃ d(Y ).
Since h is a surjective map, J̃ d(Y ) is nonempty if and only if B̃Y (1, d, r) is nonempty.
In this section, we compute the fundamental class of B̃Y (1, d, r) ∈ J̃ d(Y ) using the Por-
teous’ formula. An application of this computation is an effective proof of nonemptiness
of B̃Y (1, d, r) for βY (1, d, r) ≥ 0 following VII, Theorem 4.4 of [2]. We note that since
J̃ d(Y ) is a smooth algebraic variety, the Porteous’ formula is valid in the Chow ring of
J̃ d(Y ) (II(4.2) of [2]). We recall the formula.

For a vector bundle V on a variety Z , one has ct (V ) = 1+ c1(V )t + c2(V )t2 +· · · and
ct extends to a homomorphism from the Grothendieck group K (Z) to the multiplicative
group of the invertible elements in the power series ring H∗(Z)[[t]]. Let −V denote the
negative of the class of V in K (Z) and V1 − V0 the difference of the classes of V1 and V0
in K (Z).

For a formal power series a(i) = ∑∞
−∞ ai t i , set

�p,q(a) = det A,

where A is the matrix
⎛

⎜⎜⎜⎜⎝

ap · · · ap+q−1
. · · · .

. · · · .

. · · · .

ap−q+1 · · · ap

⎞

⎟⎟⎟⎟⎠
.

3.1 Porteous’ formula

Let V0 and V1 be holomorphic vector bundles of respective ranks n and m over a complex
manifold Z and � : V0 → V1 a holomorphic mapping. Let Zk(�) be the k-th degeneracy
locus associated to �. It is supported on the set

Zk(�) = {z ∈ Z | rank �z ≤ k} .
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Then if Zk(�) is empty or has the expected dimension dim Z − (n − k)(m − k), the
fundamental class zk of Zk(�) coincides with

�m−k,n−k(ct (V1 − V0)) = (−1)(m−k)(n−k)�n−k,m−k(ct (V0 − V1)) .

Theorem 3.1 (Theorem 1.2). If B̃Y (1, d, r) is empty or if B̃Y (1, d, r) has the expected
dimension βY (1, d, r), then the fundamental class b̃1,d,r of B̃Y (1, d, r) coincides with

b1,d,r =
r−1∏

α=0

α!
g − d + r − 1 + α

θ̃r(g−d+r−1) .

Proof. Recall that P̃ denotes the Poincaré sheaf on J̃ d(Y ) × Y and ν : J̃ d(Y ) × Y →
J̃ d(Y ), pY : J̃ d(Y ) × Y → Y denote the projections.

Fix a Cartier divisor E on Y of degree m ≥ 2g −d −1 and let n = m +d −g +1. Then
(as seen in section 5.1 of [5]) B̃Y (1, d, r) ⊂ J̃ d(Y ) is the (n − r)-th degenaracy locus of
the morphism

� : Ṽ0 → Ṽ1 ,

where

Ṽ0 := ν∗(P̃ ⊗ p̃∗
YOY (E)) and Ṽ1 := ν̃∗(P̃ ⊗ p̃∗

YOY (E) | p̃−1
Y (E)

).

The sheaves Ṽ0 and Ṽ1 are locally free sheaves of rank n and m respectively. The vector
bundle Ṽ1 is a direct sum of line bundles with the first Chern class 0 and so it has a trivial
(total) Chern class. Hence by Porteous’ formula, one has

b̃1,d,r = �g−d+r−1,r (ct (−V0)) .

By Theorem 1.1, c(−V0) = eθ̃ . Then

b̃1,d,r = �g−d+r−1,r (e
t θ̃ ) .

By calculations exactly the same as those on page 320 of [2] (in the proof of VII,
Theorem (4.4) of [2]), we finally have

b̃1,d,r =
r−1∏

α=0

α!
g − d + r − 1 + α

θ̃r(g−d+r−1) .

�

COROLLARY 3.2 (Corollary 1.3)

BY (1, d, r) and B̃Y (1, d, r) are nonempty for βY (1, d, r) ≥ 0.

Proof. Note that βY (1, d, r) = g−r(g−d +r −1) ≥ 0 if and only if g ≥ r(g−d +r −1)

so that b1,d,r is nonzero if βY (1, d, r) ≥ 0 . The fundamental class b̃1,d,r of B̃Y (1, d, r)

coincides with b1,d,r (by Theorem 1.2) and hence is nonzero for βY (1, d, r) ≥ 0. Hence
B̃Y (1, d, r) is nonempty for βY (1, d, r) ≥ 0. It follows that BY (1, d, r) is nonempty for
βY (1, d, r) ≥ 0. �
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4. Maps from Y to PPP
r−1

Assume that d ≥ 2g − 1, d ≥ 0, r ≥ 2. Let E = ⊕r Ed where Ed is the Picard bundle on
J̃ d(Y ) defined in § 2.3. Let

u : P(E) → J̃ d(Y )

be the projection map. For L̃ ∈ J̃ d(Y ) with h(L̃) = L , the fibre of M̄ over L̃ is isomorphic
to P(⊕r H0(Y, L)). A point in the fibre may be written as a class (L̃, φ̄) = (L̃, φ1, . . . , φr )

with L̃ ∈ J̃ d(Y ), φi ∈ H0(Y, L) and (φ1, . . . , φr ) �= (0, . . . , 0). Let Vφ be the subspace
of H0(Y, L) generated by φ1, . . . , φr . Let

M = {(L̃, φ̄) ∈ P(E) | L locally free, Vφ generates L}.
The following theorem shows that M can be regarded as the moduli space of morphisms

Y → P
r−1

of degree d.

Theorem 4.1 (Theorem 1.4).

(1) There exists a morphism FM from M × Y to a projective bundle on M × Y such that
for any element a ∈ M, FM |a×Y gives a morphism fa : Y → P

r−1 of degree d.
(2) Given a scheme S and a morphism FS : S × Y → P

r−1 such that for any s ∈ S, the
morphism Fs = FS |s×Y : Y → P

r−1 is of degree d, there is a morphism

αS : S → M

such that the base change of FM by αS gives FS.

Thus M̄ := P(E) may be regarded as a compactification of the moduli space of morphisms
Y → P

r−1 of degree d.

Proof.

(1) Over J̃ d(Y ) × Y , we have the evaluation map evr : ν∗ν∗(⊕r P̃) → ⊕r P̃ . Pulling
back to M̄ × Y by u′ = u × I dY gives the map

u′∗evr : u′∗ν∗ν∗(⊕r P̃) → u′∗(⊕r P̃) .

Its restriction to M × Y induces a map

eM : P(u′∗ν∗ν∗(⊕r P̃)) → P(u′∗(⊕r P̃)) .

Note that the fibre of the bundle u′∗ν∗ν∗(⊕r P̃) over (L̃, φ̄, y) is ⊕r H0(Y, L). By defini-
tion, M = P(ν∗(⊕r P̃)). Hence P(u′∗ν∗ν∗(⊕r P̃)) → M × Y has a canonical section σ

defined by σ(L̃, φ̄, y) = (φ1, . . . , φr ) . Then

FM := eM ◦σ : M × Y → P(u′∗(⊕r P̃)) ∼= P((h◦u) × idY )∗(⊕rP)) (4.1)



Maps into projective spaces 341

is the required morphism. To see this, note that the restriction of this composite mor-
phism to (L̃, φ̄) × Y gives (φ1, . . . , φr ) ∈ P(H0(Y, L)) and hence determines the
morphism

f L̃,φ̄
: Y → P

r−1

defined by

f L̃,φ̄
(y) = (φ1(y), . . . , φr (y)) .

We remark that in case Y is a smooth curve, this map is the same as the pointwise map
defined in Proposition 2.7 of [3].

(2) Let FS : S × Y → P
r−1 be a morphism such that for any s ∈ S, the morphism

Fs = FS |s×Y : Y → P
r−1 is of degree d. Let

N := F∗
S (OPr−1(1)) .

Note that for all s ∈ S, Ns = N |s×Y is a line bundle of degree d generated by global
sections. The coordinate functions zi , i = 1, . . . , r , on C

r define sections zi of OPr−1(1).
FS gives sections �i = F∗

S (zi ) of N such that �i |s×Y , i = 1, . . . , r , generate Ns of all
s. Define

F ′
S : S × Y → P(⊕r N ),

F ′
S(s, y) := (�1(s, y), . . . , �r (s, y)) ∈ P(⊕r Ns,y) .

Since N := F∗
S (OPr−1(1)), we have a map βr : P(⊕r N ) → P(⊕rOPr−1(1)) lying over

FS . One has βr ((�i (s, y))i ) = (zi (FS(s, y))i ). Hence there is a commutative diagram

P(⊕r N )
βr→ P(⊕rOPr−1(1))

↑F ′
S ↓π

S × Y
FS→ P

r−1

showing that FS can be recovered from F ′
S .

Let P ′ = P̃ |J d (Y ). By the universal property of the Jacobian, the line bundle N →
S × Y defines a morphism α : S → J d(Y ) ⊂ J̃ d(Y ). One has (α × id)∗P ′ ∼= N ⊗ p∗

S N1,
where N1 is a line bundle on S. Thus

(α × id)∗(⊕rP ′) ∼= (⊕r N ) ⊗ p∗
S N1 . (4.2)

By the projection formula, we have

α∗(ν∗ ⊕r P ′) ∼= pS∗(α × id)∗(⊕rP ′) ∼= pS∗((⊕r N ) ⊗ p∗
S N1)

∼= (pS∗(⊕r N )) ⊗ N1.

Thus α∗(E) ∼= (pS∗(⊕r N )) ⊗ N1. We have

α∗(M̄) = α∗(PE) = P(α∗E)
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and hence

α∗(M̄ |J d (Y ))
∼= P(pS∗(⊕r N )) .

This gives the cartesian diagram

P(pS∗(⊕r N ))
ᾱ→ M̄ |J d (Y )

↓ ↓u

S
α→ J d(Y ) .

The sections �i ∈ H0(S × Y, N ) give � ∈ ⊕r H0(S × Y, N )) ∼= H0(S, pS∗(⊕r N ).
Since N is generated by �i ’s, this gives a section φ̄S of P(pS∗(⊕r N )) over S such
that if

αS = ᾱ ◦ φ̄S, then αS(S) ⊂ M .

Then u ◦ αS = α and the isomorphism (4.2) implies that

(αS × id)∗(u′∗ ⊕r P ′) = (α × id)∗(⊕rP ′) ∼= (⊕r N ) ⊗ p∗
S(N1)

so that

(αS × id)∗(P(u′∗ ⊕r P ′)) = P(⊕r N ) .

It follows that the family F ′
S : S × Y → P(⊕r N ) is the base change of the family

FM : M × Y → P(u′∗ ⊕r P ′) by αS × id. As explained in the beginning, F ′
S gives FS .

This completes the proof of the theorem. �

We remark that the proof of Theorem 1.4 is valid for any integral curve Y with its
(compactified) Jacobian irreducible.

4.1 Top intersection number

Recall that u : M̄ → J̃ d(Y ) is a projective bundle so that

n = dim M̄ = r(d + 1 − g) + dim J̃ d(Y ) − 1 = r(d + 1 − g) + g − 1 .

Let OM̄ (1) = OP(⊕r Ed )(1) be the relative ample line bundle.
The restriction of FM to M × t followed by the projection to P

r−1 gives

Ft : M → P(⊕rOM ) = M × P
r−1 → P

r−1

defined by

Ft (L̃, φ̄) = (φ1(t), . . . , φr (t)) .

Fix a section s ∈ H0(Pr−1,OPr−1(1)). It determines a hyperplane H of P
r−1. Then

F∗
t s ∈ H0(M, F∗

t OPr−1(1)) defines a Cartier divisor on M . The underlying set of the
Cartier divisor is given by

X = X H := {(L̃, φ̄) ∈ M | Ft ((L̃, φ̄)) ∈ H}.
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Lemma 4.2. There exists a variety Z ⊂ M̄ such that c1(OM̄ (1)) = Z and Z ∩ M = X.

Proof. Restricting the evaluation map ev : ν∗ν∗P̃ → P̃ to J̃ d(Y ) × t we get

evt : ν∗P̃ → (P̃)t = O J̃ d (Y )
.

Composing a projection (say 1st) ν∗(⊕r P̃) → ν∗P̃ with this map evt gives the surjective
homomorphism ν∗(⊕r P̃) = E → O J̃ d (Y )

. This defines a section st of OM̄ (1) whose zero
set is

Z := Z(st ) = {(L̃, φ̄) | φ1(t) = 0} .

Then Z ∩ M = X H1 where H1 = {(z1, . . . , zr ) ∈ P
r−1 | z1 = 0}. �

DEFINITION 4.3

We define the top intersection number 〈Xn〉 of X in M as the intersection number

〈Xn〉 := Zn[M̄] = c1(OM̄ (1))n[M̄] .

Theorem 4.4. (Theorem 1.5).

〈Xn〉 = r g .

Proof. By Lemma 4.2 and VII(4.3), p. 318 of [2] applied to the vector bundle E = ⊕r Ed ,
we have (for u∗ : Hn(PE) → H g( J̃ d(Y )))

u∗Zn = cg(−E) = sg(E) ,

where sg(E) is the g-th Segre class of E . By Theorem 1.1, s(E) = er θ̃ so that

sg(E) = r g θ̃ g

g! .

By the generalized Poincaré formula (see eq. (2.1)), θ̃ g[ J̃ d(Y )] = g! so that

sg(E)[ J̃ d(Y )] = r g,

proving the theorem. �

4.2 The formulas of Vafa and Intriligator

Let X be a smooth curve (a compact Riemann surface). The formula for the top intersec-
tion number for the space of maps from X to projective spaces (and more generally for
intersection numbers for the space of maps from X to Grassmannians) was given by Vafa
and worked out in detail by Intriligator (eq. (5.5) of [8], [10]). The formula was verified
to be true by Bertram et al (Theorem 5.11 of [3]) by showing that the top intersection
number is r g . Our Theorem 1.5 generalizes this to maps from nodal curves to projective
spaces and shows that the top intersection number has the same value.
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