Maps into projective spaces

USHA N BHOSLE
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
E-mail: usha@math.tifr.res.in

MS received 10 April 2011; revised 4 May 2013

Abstract

We compute the cohomology of the Picard bundle on the desingularization $\tilde{J}^{d}(Y)$ of the compactified Jacobian of an irreducible nodal curve Y. We use it to compute the cohomology classes of the Brill-Noether loci in $\tilde{J}^{d}(Y)$.

We show that the moduli space M of morphisms of a fixed degree from Y to a projective space has a smooth compactification. As another application of the cohomology of the Picard bundle, we compute a top intersection number for the moduli space M confirming the Vafa-Intriligator formulae in the nodal case.

Keywords. Nodal curves; torsionfree sheaves; Picard bundle.

1. Introduction

Let Y be an integral nodal curve of arithmetic genus g, with m (ordinary) nodes as only singularities, defined over an algebraically closed field of characteristic 0 . Let $\bar{J}^{d}(Y)$ denote the compactified Jacobian of Y i.e., the space of torsion-free sheaves of rank 1 and degree d on Y. The generalized Jacobian $J^{d}(Y) \subset \bar{J}^{d}(Y)$, the subset consisting of locally free sheaves, is the set of nonsingular points of $\bar{J}^{d}(Y)$. There is a natural desingularization of $\bar{J}^{d}(Y)$ (Proposition 12.1, p. 64 of [9])

$$
h: \tilde{J}^{d}(Y) \rightarrow \bar{J}^{d}(Y)
$$

Let $\tilde{\theta}$ denote the pullback of the theta divisor (or the theta line bundle) on $\bar{J}^{d}(Y)$ to $\tilde{J}^{d}(Y)$. Let $\tilde{\mathcal{P}}$ be the pullback to $\tilde{J}^{d}(Y) \times Y$ of the Poincaré sheaf \mathcal{P} on $\bar{J}^{d}(Y) \times Y$. For $d \geq 2 g-1$, the direct image E_{d} of the Poincaré sheaf $\tilde{\mathcal{P}}$ is a vector bundle on $\tilde{J}^{d}(Y)$ called the degree d Picard bundle. Unlike in the case of a nonsingular curve, E_{d} is neither $\tilde{\theta}$-stable nor ample [6]. However, as the following theorem shows, the Chern classes of this bundle are given by a formula exactly the same as that in the smooth case.

Theorem 1.1. The total Segre class $s\left(E_{d}\right)$ of the Picard bundle E_{d} is

$$
s\left(E_{\mathrm{d}}\right)=\mathrm{e}^{\tilde{\theta}} \text { and hence } c\left(E_{\mathrm{d}}\right)=\mathrm{e}^{-\tilde{\theta}}
$$

We give a few applications of this theorem. The Brill-Noether scheme $B_{Y}(1, d, r) \subset$ $\bar{J}^{d}(Y)$ is the scheme whose underlying set is the set of torsion-free sheaves of rank 1 and
degree d on Y with at least r independent sections. The expected dimension of $B_{Y}(1, d, r)$ is given by the Brill-Noether number

$$
\beta_{Y}(1, d, r)=g-r(r-d-1+g)
$$

Let $\tilde{B}_{Y}(1, d, r):=h^{-1} B_{Y}(1, d, r) \subset \tilde{J}^{d}(Y)$ be the Brill-Noether locus in $\tilde{J}^{d}(Y)$. Since h is a finite surjective map, $B_{Y}(1, d, r)$ is nonempty if and only if $\tilde{B}_{Y}(1, d, r)$ is nonempty. Using Theorem 1.1, we compute the fundamental class of $\tilde{B}_{Y}(1, d, r)$ and use it to give an effective proof of the nonemptiness of $\tilde{B}_{Y}(1, d, r)$ for $\beta_{Y}(1, d, r) \geq 0$.

Theorem 1.2. If $\tilde{B}_{Y}(1, d, r)$ is empty or if $\tilde{B}_{Y}(1, d, r)$ has the expected dimension $\beta_{Y}(1, d, r)$, then the fundamental class $\tilde{b}_{1, d, r}$ of $\tilde{B}_{Y}(1, d, r)$ coincides with

$$
b_{1, d, r}=\prod_{\alpha=0}^{r-1} \frac{\alpha!}{g-d+r-1+\alpha} \tilde{\theta}^{r(g-d+r-1)}
$$

COROLLARY 1.3
$B_{Y}(1, d, r)$ and $\tilde{B}_{Y}(1, d, r)$ are nonempty for $\beta_{Y}(1, d, r) \geq 0$.
For a fixed positive integer r, consider the direct sum of r copies of E_{d},

$$
\mathcal{E}=\oplus_{r} E_{d}
$$

For $\tilde{L} \in \tilde{J}^{d}(Y)$ with $h(\tilde{L})=L$, the fibre of $\mathbb{P}(\mathcal{E})$ is isomorphic to $\mathbb{P}\left(\oplus_{r} H^{0}(Y, L)\right)$. A point in the fibre may be written as a class

$$
(\tilde{L}, \bar{\phi})=\left(\tilde{L}, \phi_{1}, \ldots, \phi_{r}\right),
$$

where

$$
\tilde{L} \in \tilde{J}^{d}(Y), \phi_{i} \in H^{0}(Y, L) \quad \text { and } \quad\left(\phi_{1}, \ldots, \phi_{r}\right) \neq(0, \ldots, 0) .
$$

Let V_{ϕ} be the subspace of $H^{0}(Y, L)$ generated by $\phi_{1}, \ldots, \phi_{r}$. Define

$$
\begin{equation*}
M:=\left\{(\tilde{L}, \bar{\phi}) \in \mathbb{P}(\mathcal{E}) \mid L \text { locally free, } V_{\phi} \text { generates } L\right\} \tag{1.1}
\end{equation*}
$$

We show that M can be regarded as the moduli space of morphisms

$$
Y \rightarrow \mathbb{P}^{r-1}
$$

of degree d for $d \geq 2 g-1, d \geq 0, r \geq 2$.

Theorem 1.4.

(1) There exists a morphism F_{M} from $M \times Y$ to a \mathbb{P}^{r-1}-bundle over $M \times Y$ such that for any element $a \in M,\left.F_{M}\right|_{a \times Y}$ determines a morphism $f_{a}: Y \rightarrow \mathbb{P}^{r-1}$ of degree d.
(2) Given a scheme S and a morphism $F_{S}: S \times Y \rightarrow \mathbb{P}^{r-1}$ such that for any $s \in S$, the morphism $F_{S}: Y \rightarrow \mathbb{P}^{r-1}$ is of degree d, there is a morphism

$$
\alpha_{S}: S \rightarrow M
$$

such that the base change of F_{M} by $\alpha_{S} \times i d$ gives F_{S}.

Thus $\bar{M}:=\mathbb{P}(\mathcal{E})$ can be regarded as a compactification of the moduli space of morphisms $Y \rightarrow \mathbb{P}^{r-1}$ of degree d.

Fixing a nonsingular point $t \in Y$, we may assume that the Poincare bundle is normalized so that $\tilde{\mathcal{P}} \mid \tilde{J}^{d}(Y) \times t$ is the trivial line bundle on $\tilde{J}^{d}(Y)$. Then we see that the restriction of F_{M} to $M \times t$ gives

$$
F_{t}: M \rightarrow \mathbb{P}^{r-1}
$$

defined by

$$
F_{t}(\tilde{L}, \bar{\phi})=\left(\phi_{1}(t), \ldots, \phi_{r}(t)\right)
$$

Fixing a hyperplane H of \mathbb{P}^{r-1}, we get a Cartier divisor on M with the underlying set

$$
X=X_{H}:=\left\{(\tilde{L}, \bar{\phi}) \in M \mid F_{t}((\tilde{L}, \bar{\phi})) \in H\right\}
$$

One shows that there exists a variety $Z \subset \bar{M}$ such that $c_{1}\left(\mathcal{O}_{\bar{M}}(1)\right)=Z$ and $Z \cap M=X$. We define the top intersection number $\left\langle X^{n}\right\rangle$ of X in M as the top intersection number $Z^{n}[\bar{M}]$ of Z, n being the dimension of M.

Theorem 1.5.

$$
\left\langle X^{n}\right\rangle=r^{g}
$$

In case Y is smooth, a formula for the top intersection number was given by Vafa [10] and Intriligator (eq. (5.5) of [8]). The formula was verified to be true by Bertram and others (Theorem 5.11 of [3]). Theorem 1.5 shows that the intersection number is the same in the nodal case.

2. Cohomology of the Picard bundle

2.1 Notation

Let Y be an integral nodal curve of arithmetic genus g with m (ordinary) nodes defined over an algebraically closed field of characteristic 0 . Let y_{1}, \ldots, y_{m} be the nodes of Y. We denote by X_{k} the curve with k nodes obtained by blowing up the nodes y_{k+1}, \ldots, y_{m}, thus $Y=X_{m}$ and X_{0} is the normalization of Y. Denote the normalization map by

$$
p: X_{0} \rightarrow Y
$$

Let $p^{-1}\left(y_{k}\right)=\left\{x_{k}, z_{k}\right\} \in X_{0}$ be the inverse image of the nodal point y_{k} in Y. By abuse of notation, we denote by the same x_{k} and z_{k}, the image of these points in X_{j}, for all $j<k$. Let $p_{k}: X_{k-1} \rightarrow X_{k}$ be the natural morphism obtained by identifying x_{k} and z_{k} to the single node y_{k}.

Let us denote by Y^{o} and X_{0}^{o} the smooth irreducible open subsets $Y-\left\{\cup_{j=1}^{m} y_{j}\right\}$ and $X_{0}-$ $\cup_{j=1}^{m}\left\{x_{j}, z_{j}\right\}$ respectively. Then one has $Y^{o} \cong X_{0}^{o}$. Note that X_{0}^{o} maps isomorphically onto an open subset X_{k}^{o} of X_{k} for each k. For $x \in X_{0}^{o}$, we use the same notation for x and its image in X_{k}^{o} for all k (if no confusion is possible).

Once and for all, fix a (sufficiently general) point $t \in Y^{o}$.

2.2 The cycles \tilde{W}_{d} and the nonsingular variety $B l^{d}$

Let $\bar{J}^{d}(Y)$ denote the compactified Jacobian i.e., the space of torsion-free sheaves of rank 1 and degree d on Y. It is a seminormal variety. The generalized Jacobian $J^{d}(Y) \subset$ $\bar{J}^{d}(Y)$, the subset consisting of locally free sheaves, is the set of nonsingular points of $\bar{J}^{d}(Y)$. The compactified Jacobian $\bar{J}^{d}(Y)$ has a natural desingularization

$$
h: \tilde{J}^{d}(Y) \rightarrow \bar{J}^{d}(Y)
$$

It is a $\mathbb{P}^{1} \times \cdots \times \mathbb{P}^{1}$-bundle (m-fold product) over $J^{d}\left(X_{0}\right)$ (Prop. 12.1, p. 64 of [9], [4]). Since h is an isomorphism over $J^{d}(Y)$, the Jacobian $J^{d}(Y)$ is canonically embedded in $\tilde{J}^{d}(Y)$.

We have the Abel-Jacobi map

$$
Y \rightarrow \bar{J}^{1}(Y)
$$

which is an embedding [1]. However, it does not extend to a morphism $S^{d}(Y) \rightarrow \bar{J}^{d}(Y)$, where $S^{d}(Y)$ is the symmetric d-th power of Y. The problem being that, unlike in the smooth case, the tensor products of non-locally free sheaves on Y have torsion.

Certainly the restriction of the Abel-Jacobi map to Y^{o} extends to $S^{d}\left(Y^{o}\right)$ giving a morphism

$$
f_{d}^{\prime}: S^{d}\left(Y^{o}\right) \rightarrow J^{d}(Y)
$$

defined by

$$
\left[x_{1}, \ldots, x_{d}\right] \mapsto \mathcal{O}_{Y}\left(x_{1}+\cdots+x_{d}\right) \in J^{d}(Y)
$$

Define cycles $\tilde{W}_{d} \subset J^{d}(Y) \subset \tilde{J}^{d}(Y)$ to be the closure of the image of f_{d}^{\prime} in $\tilde{J}^{d}(Y)$ with the reduced scheme structure. In particular, \tilde{W}_{g-1} is a divisor. Define the theta divisor $\tilde{\theta}$ on $\tilde{J}^{g-1}(Y)$ as \tilde{W}_{g-1}. We identify \tilde{W}_{d} with its isomorphic image in $\tilde{J}^{0}(Y)$ under translation by $\mathcal{O}_{Y}(-d t)$.

In Theorem 3.1 of [5], we have proved the following generalization of the Poincaré formula. For $1 \leq d \leq g$, one has

$$
\begin{equation*}
\tilde{W}_{g-d}=\frac{\tilde{\theta}^{d}}{d!} \tag{2.1}
\end{equation*}
$$

as cycles in $\tilde{J}^{0}(Y)$ modulo numerical equivalence.
We also identified \tilde{W}_{d} with the Brill-Noether locus $\tilde{B}_{Y}(1, d, 1)$ whose underlying set is

$$
\tilde{B}_{Y}(1, d, 1):=\left\{N \in \tilde{J}^{d}(Y) \mid h^{0}(Y, h(N)) \geq 1\right\} .
$$

We constructed in § 4.1 of [5] a nonsingular variety $B l^{d}$ and a morphism

$$
\psi: B l^{d} \rightarrow \tilde{J}^{d}(Y)
$$

with image \tilde{W}_{d}. The morphism ψ is analogous to the natural morphism

$$
\psi_{0}: S^{d}\left(X_{0}\right) \rightarrow W_{d}\left(X_{0}\right) \subseteq J^{d}\left(X_{0}\right)
$$

where $W_{d}\left(X_{0}\right)=B_{X_{0}}(1, d, 1)$. We define $B l_{0}^{d}=S^{d}\left(X_{0}\right)$. The variety $B l^{d}:=B l_{m}^{d}$ was constructed from $B l_{0}^{d}$ by induction on the number of nodes. For $k=1, \ldots, m$, we have divisors $\Sigma_{x_{k}} \cong S^{d-1}\left(X_{0}\right) \times x_{k} \subset S^{d}\left(X_{0}\right)$ and $\Sigma_{z_{k}} \cong S^{d-1}\left(X_{0}\right) \times z_{k} \subset S^{d}\left(X_{0}\right) . B l_{1}^{d}$ is obtained by blowing up $\Sigma_{x_{1}} \cap \Sigma_{z_{1}}$ in $B l_{0}^{d}$. Inductively $B l_{k}^{d}$ is obtained by blowing up $D\left(x_{k}\right) \cap D\left(z_{k}\right)$ in $B l_{k-1}^{d}$ where $D\left(x_{k}\right)$ and $D\left(z_{k}\right)$ are respectively the proper transforms of $\Sigma_{x_{k}}$ and $\Sigma_{z_{k}}$.

For $x \in Y^{o}$, let $\Sigma_{x} \subset S^{d}\left(X_{0}\right)$ be the divisor isomorphic to $S^{d-1}\left(X_{0}\right) \times x$ and D_{x} its proper transform in $B l^{d}$. Let $\left[D_{x}\right]$ denote the class of D_{x}. Note that for $d \leq g, \psi: B l^{d} \rightarrow$ \tilde{W}_{d} is a surjective birational morphism. Therefore, for the cycle $\left[D_{x}\right]^{i}$ of codimension i in $B l^{d}$, the cycle $\psi_{*}\left[D_{x}\right]^{i}$ is of codimension i in \tilde{W}_{d}. Since \tilde{W}_{d} is of codimension $g-d$ in $\tilde{J}^{d}(Y)$, it follows that $\psi_{*}\left[D_{x}\right]^{i}$ is of codimension $g-d+i$ in $\tilde{J}^{d}(Y)$. In fact, we have the following explicit description of the latter cycle.

PROPOSITION 2.1

$$
\psi_{*}\left[D_{x}\right]^{i}=\frac{\tilde{\theta}^{g-d+i}}{(g-d+i)!} .
$$

Proof. We have a commutative diagram

The fibre of ψ_{0} over $L_{0} \in J^{d}\left(X_{0}\right)$ is $F_{\psi_{0}} \cong \mathbb{P}\left(H^{0}\left(X_{0}, L_{0}\right)\right)$, the space of 1-dimensional subspaces of $H^{0}\left(X_{0}, L_{0}\right)$. A point $\tilde{L} \in \tilde{J}^{d}(Y)$ corresponds to a tuple $\left(L_{0}, Q_{1}, \ldots, Q_{m}\right)$ where $L_{0} \in J^{d}\left(X_{0}\right)$ and Q_{j} are 1-dimensional quotients of $\left(L_{0}\right)_{x_{j}} \oplus\left(L_{0}\right)_{z_{j}}$. One has $h(\tilde{L}) \subset p_{*} L_{0}$ and hence $H^{0}(Y, h(\tilde{L})) \subset H^{0}\left(Y, p_{*} L_{0}\right) \cong H^{0}\left(X_{0}, L_{0}\right)$. As in the proof of Proposition 4.3 of [5], it follows that the map $B l^{d} \rightarrow B l_{0}^{d}$ induces an injection of fibres $F_{\psi} \rightarrow F_{\psi_{0}}$. The fibre F_{ψ} of ψ over $\tilde{L} \in \tilde{J}^{d}(Y)$ is isomorphic to $\mathbb{P}\left(H^{0}(Y, h(\tilde{L}))\right.$ (Proposition 4.3 of [5]) and the injection $F_{\psi} \rightarrow F_{\psi_{0}}$ is the canonical injection $H^{0}(Y, h(\tilde{L})) \subset$ $H^{0}\left(X_{0}, L_{0}\right)$.

The elements of $S^{d}\left(X_{0}\right)$ can be identified with divisors on X_{0}. For $x \in X_{0}^{o}$,

$$
\Sigma_{x}=\left\{D \in S^{d}\left(X_{0}\right) \mid D=x+D^{\prime}, D^{\prime} \in S^{d-1}\left(X_{0}\right)\right\}
$$

Equivalently, $\Sigma_{x}=\left\{D \in S^{d}\left(X_{0}\right) \mid D-x \geq 0\right\}$. Thus

$$
\psi_{0}\left(\Sigma_{x}\right)=\left\{L_{0} \in J^{d}\left(X_{0}\right) \mid L_{0}(-x) \in W_{d-1}\left(X_{0}\right)\right\}
$$

is a translate of $W_{d-1}\left(X_{0}\right)$.
One has $F_{\psi_{0}} \cap \Sigma_{x} \cong H^{0}\left(X_{0}, L_{0}(-x)\right)$ [3]. Hence

$$
D_{x} \cap F_{\psi}=H^{0}\left(X_{0}, L_{0}(-x)\right) \cap H^{0}(Y, h(\tilde{L}))=H^{0}(Y, h(\tilde{L})(-x))
$$

It follows that $\psi\left(D_{x}\right)$ is an x-translate of $\tilde{W}_{d-1} \cong \tilde{B}_{Y}(1, d, 1)$. More generally, if $x_{1}, \ldots x_{i}$ are general elements of Y^{o}, then one has $\psi\left(D_{x_{1}} \cap \cdots \cap D_{x_{i}}\right)$ is an $\left(\sum_{j=1}^{i} x_{j}\right)$ translate of \tilde{W}_{d-i}. By generalized Poincaré formula on Y (equation (2.1), Theorem 3.8 of [5]), we have

$$
\left[\tilde{W}_{d-i}\right]=\frac{\tilde{\theta}^{g-d+i}}{(g-d+i)!} .
$$

Thus $\psi_{*}\left[D_{x_{1}} \cap \cdots \cap D_{x_{i}}\right]=\tilde{\theta}^{g-d+i} /(g-d+i)$! and hence

$$
\psi_{*}\left[D_{x}\right]^{i}=\frac{\tilde{\theta}^{g-d+i}}{(g-d+i)!}
$$

for all $x \in Y^{o}$.

2.3 The Picard bundle

Recall that we have fixed a point $t \in Y^{o}$. There exists a Poincaré sheaf $\mathcal{P} \rightarrow \bar{J}^{d}(Y) \times$ Y normalized by the condition that $\mathcal{P} \mid \bar{J}^{d}(Y) \times t$ is the trivial line bundle on $\bar{J}^{d}(Y)$ (see [7]). Let

$$
\tilde{\mathcal{P}} \rightarrow \tilde{J}^{d}(Y) \times Y
$$

be the pullback of \mathcal{P} to $\tilde{J}^{d}(Y) \times Y$. Then $\tilde{\mathcal{P}}$ is a family of torsion-free sheaves of rank 1 and degree d on Y parametrized by $\tilde{J}^{d}(Y)$ and $\tilde{\mathcal{P}} \mid \tilde{J}^{d}(Y) \times t$ is the trivial line bundle on $\tilde{J}^{d}(Y)$. Let v (respectively, p_{Y}) denote the projections from $\tilde{J}^{d}(Y) \times Y$ to $\tilde{J}^{d}(Y)$ (respectively, Y).

For $d \geq 2 g-1$, the direct image E_{d} of the Poincaré sheaf \tilde{P} on $\tilde{J}^{d}(Y) \times Y$ is a vector bundle on $\tilde{J}^{d}(Y)$ called the degree d Picard bundle. It is a vector bundle of rank $d+1-g$.

PROPOSITION 2.2

For $d \geq 2 g, B l^{d}$ is isomorphic to the projective bundle $\mathbb{P}\left(E_{d}\right)$.
Proof. We prove the result by induction on the number k of nodes. Recall that X_{k} denotes the curve with k nodes y_{1}, \ldots, y_{k}. Let $g\left(X_{k}\right)$ be the genus of X_{k}. For each k and $d \in \mathbb{Z}$, let $J^{d}\left(X_{k}\right)$ be the Jacobian and $\bar{J}^{d}\left(X_{k}\right)$ the compactified Jacobian of degree d on X_{k}. We have a \mathbb{P}^{1}-bundle

$$
\pi_{k}: \tilde{J}^{d}\left(X_{k}\right) \rightarrow \tilde{J}^{d}\left(X_{k-1}\right) .
$$

We identify $\bar{J}^{0}\left(X_{k}\right)$ with $\bar{J}^{d}\left(X_{k}\right)$ by the morphism $L \mapsto L(d t)$ for $L \in \bar{J}^{0}\left(X_{k}\right)$ for all k. This also gives an identification of $\tilde{J}^{0}\left(X_{k}\right)$ with $\tilde{J}^{d}\left(X_{k}\right)$. Let $E_{d, k}$ be the Picard bundle on $\tilde{J}^{d}\left(X_{k}\right)$. Let $B l_{k}^{d}$ be the variety $B l^{d}$ corresponding to X_{k}.

For $k=0$, set $B l_{0}^{d}=S^{d}\left(X_{0}\right)$ and it is well-known that this symmetric product is isomorphic to $\mathbb{P}\left(E_{d, 0}\right)$ for $d \geq 2 g\left(X_{0}\right)$. Now, by induction, we may assume that for $k \geq 1$, we have $\mathbb{P}\left(E_{d, k-1}\right) \cong B l_{k-1}^{d}$. Hence

$$
\pi_{k}^{*} \mathbb{P}\left(E_{d, k-1}\right) \cong B l_{k-1}^{d} \times \tilde{\tilde{J}}^{d}\left(X_{k-1}\right) \tilde{J}^{d}\left(X_{k}\right) \subset B l_{k-1}^{d} \times \tilde{J}^{d}\left(X_{k}\right)
$$

There is an injective morphism $i_{k}: E_{d, k} \rightarrow \pi_{k}^{*} E_{d, k-1}$ (Proposition 5.1 of [6]) so that

$$
\mathbb{P}\left(i_{k} E_{d, k}\right) \subset B l_{k-1}^{d} \times \tilde{J}^{d}\left(X_{k}\right)
$$

On the other hand, by the construction of $B l_{k}^{d}$,

$$
B l_{k}^{d} \subset B l_{k-1}^{d} \times \tilde{J}^{d}\left(X_{k}\right)
$$

In fact it is the closure of the graph of a rational map $\psi_{k}^{\prime}: B l_{k-1}^{d} \rightarrow \tilde{J}^{d}\left(X_{k}\right)$. We recall the definition of ψ_{k}^{\prime}. There exists an open set $U_{k-1} \subset S^{d}\left(X_{0}^{o}\right)$ embedded in $B l_{k-1}^{d}$ (i.e. isomorphic to an open subset of $B l_{k-1}^{d}$) such that ψ_{k}^{\prime} is well-defined on U_{k-1} and is defined as follows: For $\sum_{i} p_{i} \in U_{k-1}$, one has $\psi_{k}^{\prime}\left(\sum_{i} p_{i}\right)=(j, Q) \in \tilde{J}^{d}\left(X_{k}\right)$ where j corresponds to the line bundle $L=\mathcal{O}_{X_{k-1}}\left(\sum p_{i}\right), L$ has a unique (up to a scalar) section s with zero scheme $\sum_{i} p_{i}$ and Q is the quotient of $L_{x_{k}} \oplus L_{z_{k}}$ by the 1-dimensional subspace generated by $s\left(x_{k}\right)+s\left(z_{k}\right)$. The pair (j, Q) determines $j^{\prime}=h(j, Q)$ and s gives a section s^{\prime} of the line bundle L^{\prime} corresponding to j^{\prime}.

Recall that by the definition of the direct image, the elements of $E_{d, k}$ correspond to all the pairs $\left(j^{\prime}, s^{\prime}\right), j^{\prime} \in \tilde{J}^{d}\left(X_{k}\right), s^{\prime} \in H^{0}\left(X_{k}, L^{\prime}\right)$ where L^{\prime} is the torsionfree sheaf corresponding to $h\left(j^{\prime}\right)$. Let $j=h\left(\pi_{k}(j)^{\prime}\right), j \in \bar{J}_{X_{k-1}}$. If L corresponds to j, then the injection $\left(i_{k}\right)_{j^{\prime}}$ corresponds to the inclusion $H^{0}\left(X_{k}, L^{\prime}\right) \subset H^{0}\left(X_{k-1}, L\right)$. It follows that $\mathbb{P}\left(i_{k}\left(E_{d, k}\right)\right) \subset B l_{k-1}^{d} \times \tilde{J}^{d}\left(X_{k}\right)$ contains the graph of ψ_{k}^{\prime} and hence its closure $B l_{k}^{d}$. Since $B l_{k}^{d}$ and $\mathbb{P}\left(i_{k}\left(E_{d, k}\right)\right)$ are irreducible and of the same dimension, it follows that they coincide. Since both $B l_{k}^{d}$ and $\mathbb{P}\left(i_{k}\left(E_{d, k}\right)\right)$ are nonsingular, the injective homomorphism i_{k} induces an isomorphism from $\mathbb{P}\left(E_{d, k}\right)$ onto $B l_{k}^{d}$.

Theorem 2.3 (Theorem 1.1). The total Segre class $s\left(E_{d}\right)$ of the Picard bundle is

$$
s\left(E_{d}\right)=\mathrm{e}^{\tilde{\theta}} \quad \text { and } \quad c\left(E_{d}\right)=\mathrm{e}^{-\tilde{\theta}} .
$$

Proof. Since $\left.\tilde{\mathcal{P}}\right|_{\tilde{J} d_{(Y) \times t}} \cong \mathcal{O}_{\tilde{J}^{d}(Y)}$, the restriction of the evaluation map ev $: v^{*} v_{*} \tilde{\mathcal{P}} \rightarrow \tilde{\mathcal{P}}$ to $\tilde{J}^{d}(Y) \times t$ gives a surjective homomorphism

$$
e v_{t}: v_{*} \tilde{\mathcal{P}}=E_{d} \rightarrow \mathcal{O}_{\tilde{J}^{d}(Y)} .
$$

This defines a section s_{t} of $\mathcal{O}_{\mathbb{P}\left(E_{d}\right)}(1)$ whose zero set is the divisor

$$
D_{t}=\left\{(\tilde{L}, \phi) \in \mathbb{P}\left(E_{d}\right) \mid \phi(t)=0\right\} .
$$

Thus we have

$$
\begin{equation*}
\left[D_{t}\right]=c_{1}\left(\mathcal{O}_{\mathbb{P}\left(E_{d}\right)}(1)\right) \tag{2.2}
\end{equation*}
$$

By Proposition 2.1,

$$
\begin{equation*}
\psi_{*}\left[D_{t}\right]^{d-g+\ell}=\frac{\tilde{\theta}^{\ell}}{\ell!} . \tag{2.3}
\end{equation*}
$$

By VII(4.3), p. 318 of [2], if $c\left(-E_{d}\right):=\frac{1}{c\left(E_{d}\right)}$ denotes the Segre class of E_{d}, then

$$
c_{l}\left(-E_{d}\right)=\psi_{*}\left[D_{t}\right]^{d+1-g-1+l}=\psi_{*}\left[D_{t}\right]^{d-g+l} .
$$

Hence by eq. (2.3), one has $c_{l}\left(-E_{d}\right)=\frac{\tilde{\theta}^{l}}{l!}$ and hence $c\left(-E_{d}\right)=\mathrm{e}^{\tilde{\theta}}$. Thus

$$
c\left(E_{d}\right)=\mathrm{e}^{-\tilde{\theta}}
$$

3. Brill-Noether loci

The Brill-Noether scheme $B_{Y}(1, d, r) \subset \bar{J}^{d}(Y)$ is the scheme whose underlying set is the set of torsion-free sheaves of rank 1 and degree d on Y with at least r independent sections. The expected dimension of $B_{Y}(1, d, r)$ is given by the Brill-Noether number

$$
\beta_{Y}(1, d, r)=g-r(r-d-1+g) .
$$

Let $\tilde{B}_{Y}(1, d, r):=h^{-1} B_{Y}(1, d, r) \subset \tilde{J}^{d}(Y)$ be the Brill-Noether locus in $\tilde{J}^{d}(Y)$. Since h is a surjective map, $\tilde{J}^{d}(Y)$ is nonempty if and only if $\tilde{B}_{Y}(1, d, r)$ is nonempty. In this section, we compute the fundamental class of $\tilde{B}_{Y}(1, d, r) \in \tilde{J}^{d}(Y)$ using the Porteous' formula. An application of this computation is an effective proof of nonemptiness of $\tilde{B}_{Y}(1, d, r)$ for $\beta_{Y}(1, d, r) \geq 0$ following VII, Theorem 4.4 of [2]. We note that since $\tilde{J}^{d}(Y)$ is a smooth algebraic variety, the Porteous' formula is valid in the Chow ring of $\tilde{J}^{d}(Y)(\mathrm{II}(4.2)$ of [2]). We recall the formula.

For a vector bundle V on a variety Z, one has $c_{t}(V)=1+c_{1}(V) t+c_{2}(V) t^{2}+\cdots$ and c_{t} extends to a homomorphism from the Grothendieck group $K(Z)$ to the multiplicative group of the invertible elements in the power series ring $H^{*}(Z)[[t]]$. Let $-V$ denote the negative of the class of V in $K(Z)$ and $V_{1}-V_{0}$ the difference of the classes of V_{1} and V_{0} in $K(Z)$.

For a formal power series $a(i)=\sum_{-\infty}^{\infty} a_{i} t^{i}$, set

$$
\Delta_{p, q}(a)=\operatorname{det} A
$$

where A is the matrix

$$
\left(\begin{array}{ccc}
a_{p} & \cdots & a_{p+q-1} \\
\cdot & \cdots & \cdot \\
\cdot & \cdots & \cdot \\
\cdot & \cdots & \cdot \\
a_{p-q+1} & \cdots & a_{p}
\end{array}\right)
$$

3.1 Porteous' formula

Let V_{0} and V_{1} be holomorphic vector bundles of respective ranks n and m over a complex manifold Z and $\Psi: V_{0} \rightarrow V_{1}$ a holomorphic mapping. Let $Z_{k}(\Psi)$ be the k-th degeneracy locus associated to Ψ. It is supported on the set

$$
Z_{k}(\Psi)=\left\{z \in Z \mid \operatorname{rank} \Psi_{z} \leq k\right\}
$$

Then if $Z_{k}(\Psi)$ is empty or has the expected dimension $\operatorname{dim} Z-(n-k)(m-k)$, the fundamental class z_{k} of $Z_{k}(\Psi)$ coincides with

$$
\Delta_{m-k, n-k}\left(c_{t}\left(V_{1}-V_{0}\right)\right)=(-1)^{(m-k)(n-k)} \Delta_{n-k, m-k}\left(c_{t}\left(V_{0}-V_{1}\right)\right) .
$$

Theorem 3.1 (Theorem 1.2). If $\tilde{B}_{Y}(1, d, r)$ is empty or if $\tilde{B}_{Y}(1, d, r)$ has the expected dimension $\beta_{Y}(1, d, r)$, then the fundamental class $\tilde{b}_{1, d, r}$ of $\tilde{B}_{Y}(1, d, r)$ coincides with

$$
b_{1, d, r}=\prod_{\alpha=0}^{r-1} \frac{\alpha!}{g-d+r-1+\alpha} \tilde{\theta}^{r(g-d+r-1)} .
$$

Proof. Recall that $\tilde{\mathcal{P}}$ denotes the Poincare sheaf on $\tilde{J}^{d}(Y) \times Y$ and $v: \tilde{J}^{d}(Y) \times Y \rightarrow$ $\tilde{J}^{d}(Y), p_{Y}: \tilde{J}^{d}(Y) \times Y \rightarrow Y$ denote the projections.

Fix a Cartier divisor E on Y of degree $m \geq 2 g-d-1$ and let $n=m+d-g+1$. Then (as seen in section 5.1 of [5]) $\tilde{B}_{Y}(1, d, r) \subset \tilde{J}^{d}(Y)$ is the $(n-r)$-th degenaracy locus of the morphism

$$
\Psi: \tilde{V}_{0} \rightarrow \tilde{V}_{1}
$$

where

$$
\tilde{V}_{0}:=v_{*}\left(\tilde{\mathcal{P}} \otimes \tilde{p}_{Y}^{*} \mathcal{O}_{Y}(E)\right) \quad \text { and } \quad \tilde{V}_{1}:=\tilde{v}_{*}\left(\left.\tilde{\mathcal{P}} \otimes \tilde{p}_{Y}^{*} \mathcal{O}_{Y}(E)\right|_{\tilde{p}_{Y}^{-1}(E)}\right)
$$

The sheaves \tilde{V}_{0} and \tilde{V}_{1} are locally free sheaves of rank n and m respectively. The vector bundle \tilde{V}_{1} is a direct sum of line bundles with the first Chern class 0 and so it has a trivial (total) Chern class. Hence by Porteous' formula, one has

$$
\tilde{b}_{1, d, r}=\Delta_{g-d+r-1, r}\left(c_{t}\left(-V_{0}\right)\right) .
$$

By Theorem 1.1, $c\left(-V_{0}\right)=\mathrm{e}^{\tilde{\theta}}$. Then

$$
\tilde{b}_{1, d, r}=\Delta_{g-d+r-1, r}\left(\mathrm{e}^{t \tilde{\theta}}\right) .
$$

By calculations exactly the same as those on page 320 of [2] (in the proof of VII, Theorem (4.4) of [2]), we finally have

$$
\tilde{b}_{1, d, r}=\prod_{\alpha=0}^{r-1} \frac{\alpha!}{g-d+r-1+\alpha} \tilde{\theta}^{r(g-d+r-1)} .
$$

COROLLARY 3.2 (Corollary 1.3)
$B_{Y}(1, d, r)$ and $\tilde{B}_{Y}(1, d, r)$ are nonempty for $\beta_{Y}(1, d, r) \geq 0$.
Proof. Note that $\beta_{Y}(1, d, r)=g-r(g-d+r-1) \geq 0$ if and only if $g \geq r(g-d+r-1)$ so that $b_{1, d, r}$ is nonzero if $\beta_{Y}(1, d, r) \geq 0$. The fundamental class $\tilde{b}_{1, d, r}$ of $\tilde{B}_{Y}(1, d, r)$ coincides with $b_{1, d, r}$ (by Theorem 1.2) and hence is nonzero for $\beta_{Y}(1, d, r) \geq 0$. Hence $\tilde{B}_{Y}(1, d, r)$ is nonempty for $\beta_{Y}(1, d, r) \geq 0$. It follows that $B_{Y}(1, d, r)$ is nonempty for $\beta_{Y}(1, d, r) \geq 0$.

4. Maps from Y to \mathbb{P}^{r-1}

Assume that $d \geq 2 g-1, d \geq 0, r \geq 2$. Let $\mathcal{E}=\oplus_{r} E_{d}$ where E_{d} is the Picard bundle on $\tilde{J}^{d}(Y)$ defined in $\S 2.3$. Let

$$
u: \mathbb{P}(\mathcal{E}) \rightarrow \tilde{J}^{d}(Y)
$$

be the projection map. For $\tilde{L} \in \tilde{J}^{d}(Y)$ with $h(\tilde{L})=L$, the fibre of \bar{M} over \tilde{L} is isomorphic to $\mathbb{P}\left({\underset{\sim}{L}}^{r} H^{0}(Y, L)\right)$. A point in the fibre may be written as a class $(\tilde{L}, \bar{\phi})=\left(\tilde{L}, \phi_{1}, \ldots, \phi_{r}\right)$ with $\tilde{L} \in \tilde{J}^{d}(Y), \phi_{i} \in H^{0}(Y, L)$ and $\left(\phi_{1}, \ldots, \phi_{r}\right) \neq(0, \ldots, 0)$. Let V_{ϕ} be the subspace of $H^{0}(Y, L)$ generated by $\phi_{1}, \ldots, \phi_{r}$. Let

$$
M=\left\{(\tilde{L}, \bar{\phi}) \in \mathbb{P}(\mathcal{E}) \mid L \text { locally free, } V_{\phi} \text { generates } L\right\}
$$

The following theorem shows that M can be regarded as the moduli space of morphisms

$$
Y \rightarrow \mathbb{P}^{r-1}
$$

of degree d.

Theorem 4.1 (Theorem 1.4).

(1) There exists a morphism F_{M} from $M \times Y$ to a projective bundle on $M \times Y$ such that for any element $a \in M,\left.F_{M}\right|_{a \times Y}$ gives a morphism $f_{a}: Y \rightarrow \mathbb{P}^{r-1}$ of degree d.
(2) Given a scheme S and a morphism $F_{S}: S \times Y \rightarrow \mathbb{P}^{r-1}$ such that for any $s \in S$, the morphism $F_{S}=\left.F_{S}\right|_{s \times Y}: Y \rightarrow \mathbb{P}^{r-1}$ is of degree d, there is a morphism

$$
\alpha_{S}: S \rightarrow M
$$

such that the base change of F_{M} by α_{S} gives F_{S}.
Thus $\bar{M}:=\mathbb{P}(\mathcal{E})$ may be regarded as a compactification of the moduli space of morphisms $Y \rightarrow \mathbb{P}^{r-1}$ of degree d.

Proof.
(1) Over $\tilde{J}^{d}(Y) \times Y$, we have the evaluation map $e v_{r}: v^{*} v_{*}\left(\oplus_{r} \tilde{\mathcal{P}}\right) \rightarrow \oplus_{r} \tilde{\mathcal{P}}$. Pulling back to $\bar{M} \times Y$ by $u^{\prime}=u \times I d_{Y}$ gives the map

$$
u^{\prime *} e_{v_{r}}: u^{\prime *} v^{*} v_{*}\left(\oplus_{r} \tilde{\mathcal{P}}\right) \rightarrow u^{*}\left(\oplus_{r} \tilde{\mathcal{P}}\right)
$$

Its restriction to $M \times Y$ induces a map

$$
e_{M}: \mathbb{P}\left(u^{\prime *} v^{*} v_{*}\left(\oplus_{r} \tilde{\mathcal{P}}\right)\right) \rightarrow \mathbb{P}\left(u^{\prime *}\left(\oplus_{r} \tilde{\mathcal{P}}\right)\right)
$$

Note that the fibre of the bundle $u^{*} \nu^{*} \nu_{*}\left(\oplus_{r} \tilde{\mathcal{P}}\right)$ over $(\tilde{L}, \bar{\phi}, y)$ is $\oplus_{r} H^{0}(Y, L)$. By definition, $M=\mathbb{P}\left(\nu_{*}\left(\oplus_{r} \tilde{\mathcal{P}}\right)\right)$. Hence $\mathbb{P}\left(u^{*} v^{*} \nu_{*}\left(\oplus_{r} \tilde{\mathcal{P}}\right)\right) \rightarrow M \times Y$ has a canonical section σ defined by $\sigma(\tilde{L}, \bar{\phi}, y)=\left(\phi_{1}, \ldots, \phi_{r}\right)$. Then

$$
\begin{equation*}
\left.F_{M}:=e_{M} \circ \sigma: M \times Y \rightarrow \mathbb{P}\left(u^{*}\left(\oplus_{r} \tilde{\mathcal{P}}\right)\right) \cong \mathbb{P}\left((h \circ u) \times i d_{Y}\right)^{*}\left(\oplus_{r} \mathcal{P}\right)\right) \tag{4.1}
\end{equation*}
$$

is the required morphism. To see this, note that the restriction of this composite morphism to $(\tilde{L}, \bar{\phi}) \times Y$ gives $\left(\phi_{1}, \ldots, \phi_{r}\right) \in \mathbb{P}\left(H^{0}(Y, L)\right)$ and hence determines the morphism

$$
f_{\tilde{L}, \bar{\phi}}: Y \rightarrow \mathbb{P}^{r-1}
$$

defined by

$$
f_{\tilde{L}, \bar{\phi}}(y)=\left(\phi_{1}(y), \ldots, \phi_{r}(y)\right) .
$$

We remark that in case Y is a smooth curve, this map is the same as the pointwise map defined in Proposition 2.7 of [3].
(2) Let $F_{S}: S \times Y \rightarrow \mathbb{P}^{r-1}$ be a morphism such that for any $s \in S$, the morphism $F_{S}=\left.F_{S}\right|_{s \times Y}: Y \rightarrow \mathbb{P}^{r-1}$ is of degree d. Let

$$
N:=F_{S}^{*}\left(\mathcal{O}_{\mathbb{P}^{r-1}}(1)\right)
$$

Note that for all $s \in S, N_{s}=\left.N\right|_{s \times Y}$ is a line bundle of degree d generated by global sections. The coordinate functions $z_{i}, i=1, \ldots, r$, on \mathbb{C}^{r} define sections z_{i} of $\mathcal{O}_{\mathbb{P}^{r-1}}(1)$. F_{S} gives sections $\Phi_{i}=F_{S}^{*}\left(z_{i}\right)$ of N such that $\left.\Phi_{i}\right|_{s \times Y}, i=1, \ldots, r$, generate N_{s} of all s. Define

$$
\begin{aligned}
& F_{S}^{\prime}: S \times Y \rightarrow \mathbb{P}\left(\oplus_{r} N\right) \\
& F_{S}^{\prime}(s, y):=\left(\Phi_{1}(s, y), \ldots, \Phi_{r}(s, y)\right) \in \mathbb{P}\left(\oplus_{r} N_{s, y}\right)
\end{aligned}
$$

Since $N:=F_{S}^{*}\left(\mathcal{O}_{\mathbb{P}^{r-1}}(1)\right)$, we have a map $\beta_{r}: \mathbb{P}\left(\oplus_{r} N\right) \rightarrow \mathbb{P}\left(\oplus_{r} \mathcal{O}_{\mathbb{P}^{r-1}}(1)\right)$ lying over F_{S}. One has $\beta_{r}\left(\left(\Phi_{i}(s, y)\right)_{i}\right)=\left(z_{i}\left(F_{S}(s, y)\right)_{i}\right)$. Hence there is a commutative diagram

$$
\begin{array}{ccc}
\mathbb{P}\left(\oplus_{r} N\right) & \xrightarrow{\beta_{r}} & \mathbb{P}\left(\oplus_{r} \mathcal{O}_{\mathbb{P}^{r-1}}(1)\right) \\
\uparrow F_{S}^{\prime} & & \downarrow \pi \\
S \times Y & \xrightarrow{F_{S}} & \mathbb{P}^{r-1}
\end{array}
$$

showing that F_{S} can be recovered from F_{S}^{\prime}.
Let $\mathcal{P}^{\prime}=\left.\tilde{\mathcal{P}}\right|_{J^{d}(Y)}$. By the universal property of the Jacobian, the line bundle $N \rightarrow$ $S \times Y$ defines a morphism $\alpha: S \rightarrow J^{d}(Y) \subset \tilde{J}^{d}(Y)$. One has $(\alpha \times i d)^{*} \mathcal{P}^{\prime} \cong N \otimes p_{S}^{*} N_{1}$, where N_{1} is a line bundle on S. Thus

$$
\begin{equation*}
(\alpha \times i d)^{*}\left(\oplus_{r} \mathcal{P}^{\prime}\right) \cong\left(\oplus_{r} N\right) \otimes p_{S}^{*} N_{1} \tag{4.2}
\end{equation*}
$$

By the projection formula, we have

$$
\begin{aligned}
\alpha^{*}\left(\nu_{*} \oplus_{r} \mathcal{P}^{\prime}\right) & \cong p_{S *}(\alpha \times i d)^{*}\left(\oplus_{r} \mathcal{P}^{\prime}\right) \cong p_{S *}\left(\left(\oplus_{r} N\right) \otimes p_{S}^{*} N_{1}\right) \\
& \cong\left(p_{S *}\left(\oplus_{r} N\right)\right) \otimes N_{1}
\end{aligned}
$$

Thus $\alpha^{*}(\mathcal{E}) \cong\left(p_{S *}\left(\oplus_{r} N\right)\right) \otimes N_{1}$. We have

$$
\alpha^{*}(\bar{M})=\alpha^{*}(\mathbb{P} \mathcal{E})=\mathbb{P}\left(\alpha^{*} \mathcal{E}\right)
$$

and hence

$$
\alpha^{*}\left(\left.\bar{M}\right|_{J^{d}(Y)}\right) \cong \mathbb{P}\left(p_{S_{*}}\left(\oplus_{r} N\right)\right)
$$

This gives the cartesian diagram

The sections $\Phi_{i} \in H^{0}(S \times Y, N)$ give $\left.\Phi \in \oplus_{r} H^{0}(S \times Y, N)\right) \cong H^{0}\left(S, p_{S *}\left(\oplus_{r} N\right)\right.$. Since N is generated by Φ_{i} 's, this gives a section $\bar{\phi}_{S}$ of $\mathbb{P}\left(p_{S *}\left(\oplus_{r} N\right)\right)$ over S such that if

$$
\alpha_{S}=\bar{\alpha} \circ \overline{\phi_{S}}, \text { then } \alpha_{S}(S) \subset M
$$

Then $u \circ \alpha_{S}=\alpha$ and the isomorphism (4.2) implies that

$$
\left(\alpha_{S} \times i d\right)^{*}\left(u^{\prime *} \oplus_{r} \mathcal{P}^{\prime}\right)=(\alpha \times i d)^{*}\left(\oplus_{r} \mathcal{P}^{\prime}\right) \cong\left(\oplus_{r} N\right) \otimes p_{S}^{*}\left(N_{1}\right)
$$

so that

$$
\left(\alpha_{S} \times i d\right)^{*}\left(\mathbb{P}\left(u^{\prime *} \oplus_{r} \mathcal{P}^{\prime}\right)\right)=\mathbb{P}\left(\oplus_{r} N\right)
$$

It follows that the family $F_{S}^{\prime}: S \times Y \rightarrow \mathbb{P}\left(\oplus_{r} N\right)$ is the base change of the family $F_{M}: M \times Y \rightarrow \mathbb{P}\left(u^{\prime *} \oplus_{r} \mathcal{P}^{\prime}\right)$ by $\alpha_{S} \times i d$. As explained in the beginning, F_{S}^{\prime} gives F_{S}.

This completes the proof of the theorem.

We remark that the proof of Theorem 1.4 is valid for any integral curve Y with its (compactified) Jacobian irreducible.

4.1 Top intersection number

Recall that $u: \bar{M} \rightarrow \tilde{J}^{d}(Y)$ is a projective bundle so that

$$
n=\operatorname{dim} \bar{M}=r(d+1-g)+\operatorname{dim} \tilde{J}^{d}(Y)-1=r(d+1-g)+g-1
$$

Let $\mathcal{O}_{\bar{M}}(1)=\mathcal{O}_{\mathbb{P}\left(\oplus_{r} E_{d}\right)}(1)$ be the relative ample line bundle.
The restriction of F_{M} to $M \times t$ followed by the projection to \mathbb{P}^{r-1} gives

$$
F_{t}: M \rightarrow \mathbb{P}\left(\oplus_{r} \mathcal{O}_{M}\right)=M \times \mathbb{P}^{r-1} \rightarrow \mathbb{P}^{r-1}
$$

defined by

$$
F_{t}(\tilde{L}, \bar{\phi})=\left(\phi_{1}(t), \ldots, \phi_{r}(t)\right)
$$

Fix a section $s \in H^{0}\left(\mathbb{P}^{r-1}, \mathcal{O}_{\mathbb{P}^{r-1}}(1)\right)$. It determines a hyperplane H of \mathbb{P}^{r-1}. Then $F_{t}^{*} s \in H^{0}\left(M, F_{t}^{*} \mathcal{O}_{\mathbb{P}^{r-1}}(1)\right)$ defines a Cartier divisor on M. The underlying set of the Cartier divisor is given by

$$
X=X_{H}:=\left\{(\tilde{L}, \bar{\phi}) \in M \mid F_{t}((\tilde{L}, \bar{\phi})) \in H\right\} .
$$

Lemma 4.2. There exists a variety $Z \subset \bar{M}$ such that $c_{1}\left(\mathcal{O}_{\bar{M}}(1)\right)=Z$ and $Z \cap M=X$.

Proof. Restricting the evaluation map $e v: v^{*} v_{*} \tilde{\mathcal{P}} \rightarrow \tilde{\mathcal{P}}$ to $\tilde{J}^{d}(Y) \times t$ we get

$$
e v_{t}: v_{*} \tilde{\mathcal{P}} \rightarrow(\tilde{\mathcal{P}})_{t}=\mathcal{O}_{\tilde{J}^{d}(Y)}
$$

Composing a projection (say 1st) $v_{*}\left(\oplus_{r} \tilde{\mathcal{P}}\right) \rightarrow v_{*} \tilde{\mathcal{P}}$ with this map $e v_{t}$ gives the surjective homomorphism $v_{*}\left(\oplus_{r} \tilde{\mathcal{P}}\right)=\mathcal{E} \rightarrow \mathcal{O}_{\tilde{J}^{d}(Y)}$. This defines a section s_{t} of $\mathcal{O}_{\bar{M}}(1)$ whose zero set is

$$
Z:=Z\left(s_{t}\right)=\left\{(\tilde{L}, \bar{\phi}) \mid \phi_{1}(t)=0\right\} .
$$

Then $Z \cap M=X_{H_{1}}$ where $H_{1}=\left\{\left(z_{1}, \ldots, z_{r}\right) \in \mathbb{P}^{r-1} \mid z_{1}=0\right\}$.

DEFINITION 4.3

We define the top intersection number $\left\langle X^{n}\right\rangle$ of X in M as the intersection number

$$
\left\langle X^{n}\right\rangle:=Z^{n}[\bar{M}]=c_{1}\left(\mathcal{O}_{\bar{M}}(1)\right)^{n}[\bar{M}] .
$$

Theorem 4.4. (Theorem 1.5).

$$
\left\langle X^{n}\right\rangle=r^{g} .
$$

Proof. By Lemma 4.2 and VII(4.3), p. 318 of [2] applied to the vector bundle $\mathcal{E}=\oplus_{r} E_{d}$, we have (for $u_{*}: H^{n}(\mathbb{P E}) \rightarrow H^{g}\left(\tilde{J}^{d}(Y)\right)$)

$$
u_{*} Z^{n}=c_{g}(-\mathcal{E})=s_{g}(\mathcal{E}),
$$

where $s_{g}(\mathcal{E})$ is the g-th Segre class of \mathcal{E}. By Theorem 1.1, $s(\mathcal{E})=\mathrm{e}^{r \tilde{\theta}}$ so that

$$
s_{g}(\mathcal{E})=\frac{r^{g} \tilde{\theta}^{g}}{g!}
$$

By the generalized Poincaré formula (see eq. (2.1)), $\tilde{\theta}^{g}\left[\tilde{J}^{d}(Y)\right]=g!$ so that

$$
s_{g}(\mathcal{E})\left[\tilde{J}^{d}(Y)\right]=r^{g},
$$

proving the theorem.

4.2 The formulas of Vafa and Intriligator

Let X be a smooth curve (a compact Riemann surface). The formula for the top intersection number for the space of maps from X to projective spaces (and more generally for intersection numbers for the space of maps from X to Grassmannians) was given by Vafa and worked out in detail by Intriligator (eq. (5.5) of [8], [10]). The formula was verified to be true by Bertram et al (Theorem 5.11 of [3]) by showing that the top intersection number is r^{g}. Our Theorem 1.5 generalizes this to maps from nodal curves to projective spaces and shows that the top intersection number has the same value.

Acknowledgements

This work was initiated during the author's visit to the Isaac Newton Institute, Cambridge, UK as a visiting fellow to participate in the programme Moduli Spaces (MOS) during June 2011. She would like to thank the Institute for hospitality and excellent working environment.

References

[1] Altman A and Kleiman S, Compactifying the Picard scheme, Adv. Math. 35(1) (1980) 50-112
[2] Arbarello E, Cornalba M, Griffiths P A and Harris J, Geometry of algebraic curves (1985) (Springer-Verlag)
[3] Bertram A, Dasklopoulos G and Wentworth R, Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians, J. Amer. Math. Soc. 9(2) (1996) 529-571
[4] Bhosle Usha N, Generalised parabolic bundles and applications to torsion free sheaves on nodal curves, Arkiv för Matematik 30(2) (1992) 187-215
[5] Bhosle Usha N and Parameswaran A J, On the Poincare formula and Riemann singularity theorem over a nodal curve, Math. Ann. 342 (2008) 885-902
[6] Bhosle Usha N and Parameswaran A J, Picard bundles and Brill-Noether loci on the compactified Jacobian of a nodal curve, IMRN (2013); doi:10.1093/imrn/rnto69
[7] D'Souza C, Compactifications of generalised Jacobians, Proc. Indian Acad. Sci. (Math. Sci.) 88(5) (1979) 419-457
[8] Intriligator K, Fusion residues, Mod. Phy. Lett. A6 (1991) 3543-3556
[9] Oda T and Seshadri C S, Compactifications of the generalised Jacobian variety, Trans. Am. Math. Soc. 253 (1979) 1-90
[10] Vafa C, Topological mirrors and quantum rings, in: Essays on Mirror manifolds (ed.) S-T Yau (1992) (Hong Kong: International Press)

