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Abstract

The present article reports the development of soft nanohybrids comprising of single walled carbon nanotube (SWCNT)
included silver nanoparticles (AgNPs) having superior antibacterial property. In this regard aqueous dispersing agent of
carbon nanotube (CNT) containing a silver ion reducing unit was synthesised by the inclusion of tryptophan and tyrosine
within the backbone of the amphiphile. The dispersions were characterized spectroscopically and microscopically using
TEM, AFM and Raman spectroscopy. The nanotube-nanoparticle conjugates were prepared by the in situ photoreduction of
AgNO3. The phenolate residue and the indole moieties of tyrosine and tryptophan, respectively reduces the sliver ion as well
as acts as stabilizing agents for the synthesized AgNPs. The nanohybrids were characterized using TEM and AFM. The
antibacterial activity of the nanohybrids was studied against Gram-positive (Bacillus subtilis and Micrococcus luteus) and
Gram-negative bacteria (Escherichia coli and Klebsiella aerogenes). The SWCNT dispersions showed moderate killing ability
(40–60%) against Gram-positive bacteria however no antibacterial activity was observed against the Gram negative ones.
Interestingly, the developed SWCNT-amphiphile-AgNP nanohybrids exhibited significant killing ability (,90%) against all
bacteria. Importantly, the cell viability of these newly developed self-assemblies was checked towards chinese hamster
ovarian cells and high cell viability was observed after 24 h of incubation. This specific killing of bacterial cells may have
been achieved due to the presence of higher –SH containing proteins in the cell walls of the bacteria. The developed
nanohybrids were subsequently infused into tissue engineering scaffold agar-gelatin films and the films similarly showed
bactericidal activity towards both kinds of bacterial strains while allowing normal growth of eukaryotic cells on the surface
of the films.

Citation: Brahmachari S, Mandal SK, Das PK (2014) Fabrication of SWCNT-Ag Nanoparticle Hybrid Included Self-Assemblies for Antibacterial Applications. PLoS
ONE 9(9): e106775. doi:10.1371/journal.pone.0106775

Editor: Vipul Bansal, RMIT University, Australia

Received June 10, 2014; Accepted August 3, 2014; Published September 5, 2014

Copyright: � 2014 Brahmachari et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Supporting Information files.

Funding: P.K.D. is thankful to Department of Science and Technology, India (SR/S1/OC-25/2011) for financial assistance. S.B. and S.K.M. acknowledge the Council
of Scientific and Industrial Research, India for Research fellowships. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: bcpkd@iacs.res.in

Introduction

Over the decades, the development of novel antimicrobial

agents has undergone a continuous process of evolution and still

remains an important domain of research [1–13]. The growing

resistance of microbes against the conventional antibiotics

necessitated the restructuring of the antibiotic design and newer

formulations have emerged with time. This drug resistance mostly

arises as a natural process of adaptation and random selection

through mutation. To this end, in addition to the conventionally

known antibiotics, nanomaterials like silver nanoparticles (AgNPs)

have emerged as a class of alternative antibiotics possessing a

different mechanism of bacteria killing [14–19]. The mechanism

of antibacterial activity of AgNPs is still not well understood,

however there are theories like (i) membrane damage by free

radicals, (ii) membrane structure degradation by ‘‘pits’’ in cell

walls, and (iii) penetration of cell walls and dephosphorylation of

key peptides in cellular signalling cycles [20–22]. To date there are

few reports of bacterial resistance towards these nanoparticles and

this antibacterial activity has enhanced the broad spectrum

applications of these nanomaterials [23–24]. In fact recently gold

and silver nanoparticles were shown to have specific antibacterial

and anticancer activities and AgNP is being used to incorporate

antimicrobial activity in paints and biomedical implants [20,25–

27].

Single walled carbon nanotube (SWCNTs) – the one dimen-

sional allotrope of carbon, also belongs to the important class of

nanomaterials because of its extraordinary optical, electronic,

mechanical properties and high aspect ratio [28–31]. It is finding

applications in almost all branches of sciences from energy

research to biotechnology due to its unique intrinsic features.

Amongst others, the huge surface area of carbon nanotubes

(CNTs) makes it suitable to be utilized as cellular transporters [28–

31]. However, studies on its interaction with the prokaryotic cells

have received comparatively little attention. Few recent reports

investigated the antibacterial activity of CNTs and its modified

forms [32–41]. Size dependent antibacterial activity of CNTs was

first reported by Kang et al [33]. Later on the findings were further

supported by Liu et al where the membrane damage of

prokaryotic cells resulting from direct contact with pristine

SWCNTs was investigated [36]. However, the inherent insolubil-

ity of these nanostructures greatly bars its applications and the key
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towards exploiting this nanomaterial in the biomedicinal arena lies

in designing judicious CNT dispersing agents [42–51]. To this

end, we recently reported amino acid based biocompatible

SWCNT dispersions for the delivery of biomolecules and drugs

into eukaryotic cells [52–55]. Additionally we have also utilized

AgNPs for the development of composite hydrogel matrices having

antibacterial activity [56–58]. However it would be intriguing if

the complementary properties of these two nanomaterials could be

simultaneously exploited to develop superior antimicrobial agents.

In particular, fabrication of AgNPs decorated CNT dissolution in

aqueous medium by the assistance of amphiphilic dispersing agent

could be used for developing antibacterial scaffolds. Such soft-

nanocomposites would find wide range application in the

biomedicinal arena including tissue engineering, drug delivery

and so forth.

Herein, the present work reports the design and development of

aqueous SWCNT dispersion by L-tyrosine and L-tryptophan

based neutral amphiphiles (Figure 1) comprising of polyethylene

glycol (PEG) unit. The AgNP was synthesized within these

dispersions by in situ photo-reduction under sunlight [59]. The

SWCNT dispersion and nanoconjugates were characterized using

transmission elector microscopy (TEM), atomic force microscopy

(AFM) and Raman spectroscopy. Encouragingly, more than 90%

killing of both Gram-positive (Bacillus subtilis and Micrococcus
luteus) and Gram-negative bacteria (Escherichia coli and Klebsiella
aerogenes) was achieved using SWCNT-amphiphile-AgNP hybrid

(6–10 mg/mL AgNP). Moreover, substantial cell viability of the

nanohybrids was observed against Chinese Hamster Ovarian cells

(CHO cells). Interestingly, normal growth of eukaryotic cells were

noted on the surface of these nanocomposites infused agar-gelatin

film (tissue engineering scaffold) while it was lethal toward

bacteria.

Results and Discussion

Synthesis of dispersing agent
Development of SWCNT based antimicrobial agents is still at

its infancy while its potential demands wider exploitation

particularly in the backdrop of antibiotics resistance microbes.

The first step towards developing biocompatible antibacterial

dispersion of CNTs is to design dispersing agents that would

facilitate the exfoliation of CNTs in water. Any non-covalent

SWCNT dispersing agent typically contains a hydrophobic and a

hydrophilic end. Generally, the hydrophobic unit binds to the

surface of the nanotubes while the hydrophilic end assists its

solubilization in water through the formation of supramolecular

aggregates. To this end recently we reported the formation of

electrostatically bound composite material of SWCNT and gold

nanoparticles where the nanotubes were dispersed in water using

cationic amphiphile and the nanoparticles were capped with

anionic surfactants [60]. However in several previous instances the

cationic dispersing agents was found to be cytotoxic towards

mammalian cells and hence those SWCNT dispersions were not

suitable for developing biocompatible scaffolds [54,56]. On the

other hand, nanotubes dispersing with anionic surfactants may

result in overall repulsion with the negatively charged membrane

of prokaryotic and eukaryotic cells. Hence, instead of cationic or

anionic hydrophilic head groups, we designed amino acid based

neutral dispersing agent comprising of polyethylene glycol (PEG)

as the hydrophilic unit. The cetyl (C-16) chain generally acts as a

good surface anchoring unit for the CNTs and it was taken as the

hydrophobic unit. Additionally, the presence of a nanoparticle

capping residue was mandatory to ensure the binding of AgNP on

the nanotube surface. Therefore, tryptophan and tyrosine amino

acids were integrated into the backbone of dispersing agent

because of the well known capping and nanoparticle stabilizing

ability of the indole residue of tryptophan and phenolate residue of

tyrosine [56–58]. Thus, amphiphilic dispersing gents 1 and 2 were

synthesized by coupling of the C-16 chain to the acid terminal of

the amino acid and PEG to the amine terminal via a succinic acid

linker (Figure 1).

Quantification and characterization of
SWCNT-dispersions

Aqueous suspensions of SWCNT using 1 and 2 were prepared

following the previously reported protocol [52]. Briefly, SWCNT

(1 mg) was taken in 4 mL of amphiphile solution (2.5 mg/mL) and

tip sonicated followed by bath sonication. The suspension was then

centrifuged at 2500 g for 90 min. The supernatant was collected

and the amount of dispersed SWCNT was calculated using the

previously reported calibration plot prepared using commercially

available surfactant sodium dodecyl benzene sulfonate (SDBS)

[53]. Both neutral amphiphiles dispersed SWCNTs with an

efficient of 75% and 78%, respectively for 1 and 2, which indicates

most of the nanotubes remain in the suspension with respect to its

initial weight.

These aqueous SWCNT suspensions (SWCNT-1 and SWCNT-

2) were stable for months and showed no sign of aggregation/

precipitation. In case of positively/negatively charged dispersing

agents, the electrostatic repulsion between the nanotubes hindered

their re-aggregation while in case of dispersion with neutral PEG

based amphiphiles, the steric bulk of the PEG facilitated the

dispersion of the nanotubes. Also the hydrogen-bonded water

molecules with glycol chain further aided dissolution of SWCNT

possibly by preventing the coagulation of nanotubes [61]. These

SWCNT dispersions were characterized by microscopic and

spectroscopic analysis. In accordance to the atomic force

microscopy (AFM) and transmission electron microscopy (TEM)

images the diameter of debundled SWCNT-1 and SWCNT-2 was

found to be , 5 nm (Figure 2). Statistical AFM analysis was

performed in order to compare the dimension of individualized

Figure 1. Structure of the dispersing agents. PEG = -(CH2CH2O)12CH3.
doi:10.1371/journal.pone.0106775.g001
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nanotubes in an aqueous suspension of 1 and 2. From several

AFM images the average bundle diameter and length of the

exfoliated nanotubes were found to between 4–6 nm and 400–

500 nm, respectively (Figure S1, S2).

Zeta (f)-potential is another well established parameter of

assessing the colloidal stability of any dispersion [52,61]. It gives an

idea about the interplay of the different forces operating to inhibit

the aggregation of the nanomaterials. Conventionally, f-potential

values higher and lower than +/215 mV indicate greater stability

of a colloidal dispersion. In the present study, the f-potential

values were found to be 223 mV and 230 mV, respectively for

the aqueous suspension of SWCNT-1 and SWCNT-2 [61].

Considering the neutral nature of dispersing agents, the high f-

potential value clearly indicates substantial stability of these

SWCNT dispersions. The quality of nanotube dispersions was

also studied using Raman spectroscopy. Primarily, the G-band of

SWCNT originates from several tangential C–C stretching

transitions of the SWCNT carbon atoms whereas the D-band is

generally associated with defects in the SWCNT structure [62–

63]. The Raman spectra of SWCNT-1 and SWCNT-2 was

acquired by excitation of 514.5 nm laser and a sharp peak

corresponding to the G-band at 1590 cm21 was observed

(Figure 3). In a control experiment the Raman spectrum of solid

SWCNT was recorded (Figure S3). Importantly no change in the

spectral nature was observed when the nanotubes were dispersed

using amphiphiles 1 and 2. Also the area under the G-band

directly corresponds to the amount of dispersed SWCNT. The

comparable area under the G-band in case of both SWCNT-1
and SWCNT-2 indicated similar quantity of nanotube dispersion,

which was in concurrence with above mentioned quantification.

In situ synthesis of AgNPs and characterization of
nanohybrids

These SWCNT-amphiphile suspensions were subsequently used

for the synthesis of AgNPs [58]. A green technique was adopted

where AgNPs were synthesized in situ under sunlight from AgNO3

at physiological pH. The ratio of AgNO3: capping agent

(dispersing agents 1 and 2) was maintained at 1:10 and the

suspensions were exposed to sunlight for 15 min. This photo

reduction method does not involve the use of any harmful

chemicals [16–17]. The formation of AgNPs was monitored by

UV-vis spectroscopy. In case of SWCNT-1, a surface plasmon

resonance (SPR) peak generation was observed after 15 min of

sunlight exposure at 425 nm, which gets intensified after 30 min

(Figure S4). Similar peak formation due to the synthesis of AgNP

was observed at 410 nm in case of SWCNT-2. The developed

nanoconjugates (SWCNT-1-AgNP and SWCNT-2-AgNP) were

then subjected to microscopic investigations. In the AFM images,

AgNPs of 8–10 nm diameters were found to be decorated on the

surface of SWCNT-1 and SWCNT-2 (Figure 4a,b). Importantly

very little amount of unbound nanoparticle was observed.

Similarly nanoparticles having a diameter of about 8 to 10 nm

were observed on the walls of the nanotubes in the TEM images of

SWCNT-1-AgNP and SWCNT-2-AgNP (Figure 4c,d). Thus the

microscopic studies clearly delineated the formation of the

nanotube-nanoparticle conjugates. The tryptophan and tyrosine

amino acids within the amphiphilic dispersing agents act as

capping and stabilizing agent for the synthesized AgNPs that

facilitated the binding of the nanoparticles to the nanotube surface

[56–60]. Interestingly, no loss in colloidal stability of the conjugate

was observed when it was kept in dark for a week.

Quantification of the SWCNT-AgNP nanohybrids
In order to quantify the amount of amphiphile, SWCNT and

AgNP present in the nanohybrids, the samples were subjected to

thermo gravimetric analysis (TGA). Firstly, SWCNT (30 mg) was

sonicated and dispersed using 1 and 2, respectively, followed by

centrifuged at 2500 g to remove heavier bundles. The supernatant

was collected and half of the obtained supernatant was taken for in

situ synthesis of AgNP. The AgNO3 solution was added to this

supernatant and AgNP was synthesized in a similar way as

described above. Next, all suspensions were centrifuged twice at

45000 rpm to remove excess amphiphiles and unconverted

AgNO3. The obtained pellets were lyophilized for 6 h to remove

trace amount of water. Finally, each conjugate (SWCNT-1,

SWCNT-2, SWCNT-1-AgNP and SWCNT-2-AgNP) was used

for TGA where the samples were heated to 800 uC (Figure 5). As

Figure 2. AFM images of dispersed (a) SWCNT-1 and (b)
SWCNT-2 (the scale bars in the AFM images indicate 200 nm)
and TEM images of dispersed (c) SWCNT-1 (d) SWCNT-2.
doi:10.1371/journal.pone.0106775.g002

Figure 3. Raman Spectra of dispersed SWCNT-1 and SWCNT-2
using 514.5 nm excitation.
doi:10.1371/journal.pone.0106775.g003
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control 10 mg of amphiphiles 1 and 2 were also subjected to the

same TGA process of heating. The thermal decomposition pattern

of the amphiphiles clearly showed its complete decomposition

within 400uC. The TGA plots SWCNT-1, SWCNT-2 indicated

the presence of 41 and 39% nanotubes in their respective

dispersion. Importantly, the comparison of the TGA plots between

the dispersed nanotubes and the AgNP decorated SWCNTs

showed that SWCNT-1-AgNP contains 41% SWCNT and 14%

AgNP while SWCNT-2-AgNP contains 39% SWCNT and 12%

AgNP. Similarly, AgNP was prepared as control using only

amphiphile in the absence of the nanotubes and quantified using

TGA (Figure S5). The nanoconjugates were found to contain 30%

nanoparticle and 70% amphiphile in both the nanohybrids.

Antibacterial activity
Having ensured the formation of the nanotube-nanoparticle

hybrids, the conjugates were taken for antibacterial studies. The

antibacterial activity was tested against two Gram-positive bacteria

Bacillus subtilis (B. subtilis), Micrococcus luteus (M. luteus) and

two Gram-negative bacteria Escherichia coli (E. coli) and

Klebsiella aerogenes (K. aerogenes). The study was carried out

using colony count method. At first the antibacterial activity of the

amphiphilic dispersing agents (1, 2) alone was tested against all the

said bacterial strains. Both dispersing agents 1 and 2 were

inefficient in killing all the four bacterial strains up to 100 mg/mL

after 3 h of incubation under shaking condition followed by spread

plating for 24 h [36]. Next the antibacterial activity of the

SWCNT-dispersing agent was studied against the above men-

tioned bacterial strains under similar experimental conditions.

SWCNT-1 exhibited moderate bacterial killing efficacy having

35% and 45% killing of B. subtilis and M. luteus, respectively at

10 mg/mL of the dispersion (Figure 6a,b). This percent killing

increased to 48% and 60% when the concentration of the

nanotube dispersion was increased to 25 mg/mL. Similarly in case

of SWCNT-2 almost 40% and 45% killing of B. subtilis and M.
luteus, respectively was observed at 25 mg/mL of the dispersion

(Figure 6a,b). However when these nanotube dispersions

(SWCNT-1 and SWCNT-2) were incubated with Gram-negative

bacterial strains E. coli and K. aerogenes under identical

conditions, very poor killing efficacy (,10%) was observed up to

25 mg/mL concentration of both dispersions (Figure 6c,d). The

outer membrane of Gram-positive bacteria is composed of

peptidoglycan layer comprising of polymeric sugar, and amino

acid and phosphoryl substituted teichoic and techuronic acid

residues as well as carboxylate groups. However, in case of Gram-

negative bacteria the cell membrane is composed of an extra layer

of lipopolysaccharide (LPS) and phospholipids in addition to the

peptidoglycan layer [36,64–65] This added shielding of the

peptidoglycan layer by the presence of LPS might have inhibited

the bacteria killing ability of dispersed SWCNTs against Gram-

negative bacteria.

To widen the antibacterial spectrum of the nanotube dispersion,

antibacterial activity of SWCNT-AgNP conjugates was tested

against the above mentioned bacterial strains. AgNPs were

synthesized under sunlight as mentioned above and the multi-

modal bacteria killing efficacy of the nanohybrids was tested

against both types of bacterial strains [56–58]. Encouragingly,

more than 90% of Gram-positive B. subtilis and M. luteus were

killed at 10 mg/mL concentration of SWCNT-1-AgNP and

SWCNT-2-AgNP under similar experimental conditions (Figur-

e 6a,b). Notable improvement in the Gram-positive bacteria

killing efficiency was observed for nanotube-nanoparticle hybrids

in contrast to that of SWCNT-1 and SWCNT-2 dispersions (35–

45%) devoid of any AgNPs. Most promisingly, the Gram-negative

bacteria which were almost resistant to nanotube dispersions, get

efficiently killed by SWCNT-AgNP nanohybrids. SWCNT-1-

AgNP and SWCNT-2-AgNP at 10 mg/mL killed 85–88% E. coli
and more than 90% K. aerogenes under the experimental

condition as mentioned above (Figure 6c,d). Thus these newly

developed SWCNT-AgNP nanohybrids were equally effective in

killing both Gram-positive and Gram-negative bacteria. The

killing efficiency of AgNPs synthesized using 1 and 2 in absence of

SWCNT was also studied. However, up to 50 mg/mL of AgNP-1
and AgNP-2, negligible killing of (,10%) was observed against all

the four bacterial strains after 3 h of incubation and spread plating

Figure 4. AFM images of (a) SWCNT-1-AgNP, (b) SWCNT-2-
AgNP (the scale bars in the AFM images indicate 200 nm) and
TEM images of (c) SWCNT-1-AgNP, (d) SWCNT-2-AgNP.
doi:10.1371/journal.pone.0106775.g004

Figure 5. TGA analysis of (i) 1 (ii) 2 (iii) SWCNT-1 (iv) SWCNT-2
(v) SWCNT-1-AgNP and (vi) SWCNT-2-AgNP.
doi:10.1371/journal.pone.0106775.g005
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for 24 h (Figure S6–S9). Although in previous instances the

antibacterial activity was achieved at a comparable concentration

of AgNPs, which was probably due to the cumulative effect of the

nature of capping agent and the nanoparticle [56]. In the present

case, the neutral capping agents do not contribute to the

antibacterial activity and the nanoparticles fail to exhibit notable

antibacterial activity up to 50 mg/mL. These results clearly

delineate the role of the dispersed SWCNTs in increasing the

local concentration of AgNPs in vicinity of the bacteria membrane

and ultimately facilitating the bacteria killing by the nanoparticles.

The intrinsic cell permeability of the nanotubes possibly further

aided the interactions of AgNPs along with the nanotube with the

bacteria for disintegrating the cell membrane. The presence of

nanotube in the newly fabricated SWCNT-AgNP hybrid indeed

bolsters the bacteria killing efficiency of the nanoparticles

presumably by acting as a cargo transporter. Hence, the

antibacterial activity against both Gram-positive and Gram-

negative bacteria is achieved by these nanohybrids using the

inherent multimodal killing mechanism of AgNPs along with the

killing ability of dispersed SWCNTs. Although exact bacteria

killing mechanism by AgNPs is not yet understood, AgNPs may

act by attacking the phosphorus-containing DNA or interacting

with the mitochondria leading to cell death [16]. It may also

interact with the sulfur-containing proteins that would hinder the

regular cell function. In addition, the release silver ion from AgNPs

inside the bacterial cell may lead to bacterial death due to

oxidative stress. However due to the lack of stability of the

SWCNT in the absence of 1 or 2 it was not possible to study the

effect of SWCNT. Similarly in the absence of the dispersing agents

no AgNP synthesis takes place hence the effect of SWCNT and

AgNP could not be studied separately.

Having studied the antibacterial activity by colony count

method, the bacteria killing process was further investigated using

live/dead bacterial viability kit. This staining kit is composed of

Figure 6. Percentage killing of (a) B. subtilis, (b) M. luteus, (c) E. coli and (d) K. aragneosa after 3 h of incubation spread plating for 24 h
with the hybrids. Percent killing was determined using colony count method.
doi:10.1371/journal.pone.0106775.g006
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two nucleic acid binding stains, known as SYTO 9 and propidium

iodide (PI). Cell membrane permeable SYTO 9 binds to the

nucleic acid of both living and dead cells, while propidium iodide

can only bind to the nucleic acid of dead cells. Consequently,

SYTO 9 labels live bacteria with green fluorescence and PI labels

membrane-compromised bacteria with red fluorescence. Gram

positive B. subtilis and Gram-negative E. coli were suspended in

0.9% NaCl and incubated for 3 h with 50 mg/mL of SWCNT-1
and 10 mg/mL SWCNT-1-AgNP. The suspensions were then

centrifuged and the supernatant was removed. Subsequently the

bacteria were re-suspended in saline containing the live/dead kit

and incubated for 30 min. The suspension was then cast onto a

slide and visualised under fluorescence microscope. The green

fluorescence for untreated B. subtilis and E. coli indicated that

they were alive (Figure S10a,d). Incubation of these bacteria with

SWCNT-1 dispersion exhibited red fluorescence for dead B.
subtilis (Figure S10b) and green fluorescence for live E. coli (Figure

S10e). However, predominant presence of dead bacteria (red

fluorescence) was observed upon incubation of both B. subtilis and

E. coli with SWCNT-1-AgNP (Figure S10c,f). The observed

fluorescence microscopic results corroborated well with the data

obtained using colony count method.

To get an insight into the morphology of the bacteria upon

incubation with the developed nanohybrids, field emission

scanning electron microscopic (FESEM) images of untreated and

nanohybrid treated B. subtilis and E. coli were taken (Figure 7).

Both untreated cells showed the normal shape and size of

prokaryotic cells (Figure 7a,d). However, upon incubation with

50 mg/mL of SWCNT-1 dispersion, the cell membrane of Gram-

positive B. subtilis gets disintegrated (Figure 7b) while cell

membrane integrity was mostly unaffected for E. coli (Figure 7e).

This compromised membrane structure with irregular shape is

more predominant in the presence of SWCNT-1-AgNP (10 mg/

mL) for both B. subtilis as well as E. coli (Figure 7c,f). The

disrupted membrane resulted in the loss of cytoplasmic constitu-

ents leading to cell death. The lethal effect of the SWCNT-AgNP

nanohybrids was evident in comparison to only SWCNT-

amphiphile dispersion. The synergic influence of inherent

multimodal killing mechanism of AgNPs along with cell penetrat-

ing ability of SWCNTs made these newly developed nanohybrids

very efficient in killing both Gram-positive and Gram-negative

bacteria.

Eukaryotic cell viability
The biomedicinal application of these newly developed

antibacterial nanohybrids will become pertinent only if they

exhibit compatibility with eukaryotic cells. The antimicrobial

nanohybrids should be lethal to microbes and safe to mammalian

cells. The biocompatibility of these nanohybrids to normal

eukaryotic cells was studied using MTT based cell viability assay.

Initially nanotube dispersions of SWCNT-1 and SWCNT-2 at a

concentration range of 0-50 mg/mL were incubated with Chinese

Hamster Ovarian cells (CHO cells) for 24 h. Encouragingly, up to

50 mg/mL of the nanotube dispersion, 87% and 88% cells

remained alive upon incubation with SWCNT-1 and SWCNT-2
were used, respectively (Figure 8a). Next the percentage cell

viability of CHO cells in the presence of SWCNT-amphiphile-

AgNP was checked within a concentration range of 0–25 mg/mL.

With varying concentrations of the nanohybrids, promisingly,

80% cells were viable after 24 h of incubation with SWCNT-1-

AgNP and SWCNT-2-AgNP (Figure 8b). Interestingly, within this

range of concentration of the nanohybrids ,90% bacteria

undergoes death while .80% eukaryotic cells remain unaffected.

This selective killing of bacterial cells in contrast to normal cells

probably takes place due to the difference in the constitution of the

cell membrane. The bacterial membranes are rich in the thiol (–

SH) containing protein present that facilitates its interaction with

AgNP of the nanohybrid due to the affinity of silver toward

sulphur leading to its death [56–58].

Antibacterial biocompatible film
The antibacterial materials which are also viable to eukaryotic

cells are finding surging significance in biomedicine and tissue

engineering. In fact, because of the materials induced nosocomial

infections in living systems, designing antimicrobial biomaterials

for tissue engineering is on the rise. To this end it would be

interesting if the present antibacterial nanohybrids could be

integrated with known tissue engineering scaffolds to develop

superior soft nanocomposites. Agar-gelatin (2:1) hydrogel cross-

Figure 7. FESEM images of B. subtilis incubated with (a) control (b) SWCNT-1 (c) SWCNT-1-AgNP and E. coli incubated with (d)
control (e) SWCNT-1 and (f) SWCNT-1-AgNP.
doi:10.1371/journal.pone.0106775.g007
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linked with glutaraldehyde is well-known matrix that has been

used for the proliferation of mice fibroblast cells (NIH3T3)

[56,66]. However, such materials need to have the antibacterial

property to be utilized as ideal tissue engineering scaffold. To this

objective, the newly developed SWCNT-amphiphile dispersion

(50 mg/mL) and SWCNT-amphiphile-AgNP nanohybrids (10 mg/

mL) were infused into the agar-gelatin matrices (2:1). As expected

in the absence of either of the dispersion or nanohybrids, normal

growth of both B. subtilis and E. coli was observed. However in

the presence of nanohybrid doped material, formation of a clear

zone of inhibition was noted (Figure 9, Table S1). This zone of

inhibition was less in case of SWCNT-1 doped polymeric films in

both bacterial strains (Figure 9a,c). In fact in case of the Gram-

negative strain almost no zone of inhibition could be determined.

Importantly, the zone of inhibition increased in the presence of

SWCNT-1-AgNP nanohybrids (Figure 9b,d, Table S1). Hence,

the inclusion of these soft nanohybrids made the tissue engineering

scaffold agar-gelatin intrinsically antibacterial.

Now it has become necessary to investigate whether the infusion

of the antibacterial soft nanohybrids with the agar-gelatin film

affected the cell growth feature on its surface. In this regard we

studied the growth and proliferation of normal CHO cells on the

surface of these antibacterial polymeric films containing SWCNT-

amphiphile (50 mg/mL) and SWCNT-amphiphile-AgNP (10 mg/

mL). Cells grown in DMEM were seeded into 24 well plates

containing the films and the viability of the cells was studied 24 h

post incubation using live/dead viability assay kit (Figure S11).

Encouragingly in all the instances bright green spindle shaped cells

were observed and almost no red cell was seen, which indicates the

healthy nature and growth eukaryotic cells on the agar-gelatin

film.

Conclusion

In summary, biocompatible SWCNT dispersing was prepared

and characterized. The SWCNT-dispersion was only lethal

towards Gram-positive bacteria. However no bactericidal activity

was observed against the Gram-negative bacteria. The dispersions

were subsequently used for the synthesis and capping of AgNPs

under sunlight. The newly developed AgNP based SWCNT

included self assemblies had potent (,90%) antibacterial activity

against both Gram-positive and Gram-negative bacteria. Interest-

ingly the new hybrids showed substantial cell viability towards

normal eukaryotic CHO cells after 24 h of incubation. Finally,

inclusion of these nanotube-nanoparticle hybrids into well known

tissue engineering scaffold agar-gelatin films, made the tissue

engineering scaffold intrinsically antibacterial to both Gram-

positive and Gram-negative bacteria despite being non-toxic

toward mammalian cells. Therefore, the designed soft nanocom-

posite promises to have immense implications in biomedicine

including tissue engineering.

Materials and Methods

Materials
Silica gel of 60–120 mesh, L-tryptophan, L-tyrosine, cetyl

alcohol, N, N’-dicyclohexylcarbodiimide (DCC), 4-N, N-(dimethy-

Figure 8. Percentage viability of CHO cells treated with (a)
SWCNT-1 and SWCNT-2, (b) SWCNT-1-AgNP and SWCNT-2-
AgNP for 24 h.
doi:10.1371/journal.pone.0106775.g008

Figure 9. Antibacterial activity of agar-gelatin films against B.
subtilis (a) SWCNT-1 (b) SWCNT-1-AgNP and E. coli (c) SWCNT-1
(d) SWCNT-1-AgNP composites.
doi:10.1371/journal.pone.0106775.g009
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lamino) pyridine (DMAP), 1-hydroxybenzotriazole (HOBT),

succinic anhydride, solvents and all other reagents were procured

from SRL, India. Milli-Q water was used throughout the study.

Thin layer chromatography was performed on precoated silica gel

60-F254 plates of Merck. CDCl3, Amberlite Ira-400 chloride ion

exchange resins were obtained from Aldrich Chemical Company.

Ethylene diaminetetraacetic acid (EDTA) and reagents required to

prepare the nutrient broth culture medium like peptone, yeast

extract, and agar powder were purchased from Himedia Chemical

Company, India. The live/dead baclight bacterial viability kit,

live/dead viability/cytotoxicity kit for mammalian cells were

purchased from Molecular Probes, Invitrogen Chemical Compa-

ny. All materials used in the cell culture study such as gelatin,

DMEM, heat inactivated FBS, trypsin from porcine pancreas and

3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide

(MTT), PEG (Mn = 550) were obtained from Sigma Aldrich

Chemical Company. 1H NMR spectra were recorded on

AVANCE 300 MHz (BRUKER) spectrometer. The UV-visible

absorption spectra were recorded on a Perkin Elmer Lambda 25

spectrophotometer. Mass Spectrometric (MS) data were acquired

by Electron Spray Ionization (ESI) technique on a Q-tof-Micro

Quadruple mass spectrophotometer, Micromass. Raman spectra

was recorded using laser light (514.5 nm, scattering angle: 908,

integration time: 10 s, 20 scans, 75 mW) on a Horiba Jobin Yvon

instrument (Model T64000). TEM experiments were performed

on a JEOL JEM 2010 high-resolution microscope operated at an

accelerating voltage 200 kV. AFM was performed on Veeco,

model AP0100 microscope in non-contact mode. Field emission

scanning electron microscopy (FESEM) was performed on JEOL-

6700F microscope.

Synthesis of amphiphiles 1 and 2
Briefly, Boc-protected L-amino acids were coupled with n-

hexadecanol using DCC (1 equivalent) and catalytic amount of

DMAP in presence of 1 equivalent of HOBT in dry dichloro-

methane (DCM). Boc-protected ester was then purified through

column chromatography using 60–120 mesh silica gel and

acetone/hexane as the eluent. Column purified materials were

then subjected to deprotection by trifluoroacetic acid in dry DCM.

A drop of anisole was added during the preparation of compound

1 and this was not required for compound 2. After 2 h of stirring,

solvents were removed on a rotary evaporator and the mixture was

taken in ethyl acetate. The organic part was washed with 10%

aqueous sodium carbonate solution followed by brine to neutrality.

The organic part was concentrated to get the corresponding

amines. The obtained amine was then refluxed with succinic

anhydride in dry DCM for 6 h. It was then washed with brine to

remove the unreacted acid anhydride. The acid thus obtained was

coupled with PEG unit (having Mn = 550) using DCC coupling

reaction as mentioned. The coupled product was then purified

through column chromatography using 60–120 mesh silica gel and

CHCl3/MeOH as the eluent. Overall yield was ,70–80%.

Characterization of 1 and 2
1H NMR of 1 (500 MHz, CDCl3, Me4Si, 25 uC) d= 0.82–0.85

(m, 3H), 1.22–1.73 (m, 28H), 2.49–2.70 (m, 4H), 3.25–3.29 (m,

2H), 3.34 (s, 3H), 3.50–3.69 (m, 46H), 3.70–4.10 (m, 2H), 4.23–

4.24 (m, 2H), 4.29–4.31 (m, 1H), 7.02–7.52 (m, 5H). MS (ESI): m/

z calculated for C56H98O17N2: 1070.69; found: 1071.3874 [M +
H+].

1H NMR of 2 (500 MHz, CDCl3, Me4Si, 25 uC) d= 0.85–0.88

(m, 3H), 1.25–1.63 (m, 28H), 2.43–2.64 (m, 4H), 2.93–3.18 (m,

2H), 3.37 (s, 3H), 3.45–3.81 (m, 46H), 4.09–4.24 (m, 4H), 4.76–

4.78 (m, 1H), 6.29–7.26 (d, 4H). MS (ESI): m/z calculated for

C54H97O18N: 1047.67; found: 1048.3489 [M + H+].

Preparation of SWCNT-amphiphile dispersion
To an aqueous solution (4 mL) of the amphiphiles 1 and 2

(2.5 mg/mL) SWCNT (1 mg) was added. The solution was tip-

sonicated and bath sonicated for 30 min. The suspension was

centrifuged at 2500 g for 90 min to remove the heavy bundles.

The amount of the dispersed SWCNTs in the supernatant was

calculated from the observed absorbance value at 550 nm that was

derived from the previously reported calibration plot of absor-

bance versus concentration using sodium dodecylbenzene sulfo-

nate (SDBS). The percentage dispersion was calculated as the ratio

of the amount of SWCNTs in the dispersion to the amount of

SWCNTs initially added.

Sample preparation for TEM, AFM, Zeta (f)-potential and
Raman spectroscopy

The SWCNT suspension obtained after centrifugation at

2500 g was ultracentrifuged at 375000 g to remove excess

amphiphile and the pellet was re-dispersed in water (SWCNT-1
and SWCNT-2). The aqueous dispersion obtained was used for f-

potential, TEM, AFM and Raman spectroscopy experiments. A

drop of the SWCNT suspension was placed on a 300-mesh Cu-

coated TEM grid and dried under vacuum for 4 h before taking

the image. Similarly in case of AFM studies, a drop of the

dispersion was cast on a freshly cleaved mica surface and the

samples were air-dried overnight before imaging. The bundle

diameter was calculated from the height profile of the nanotubes.

From 20 AFM images of a statistical analysis of the bundle

diameter and nanotue length were calculated by plotting

histogram [49]. Similarly Raman was recorded by excitation of

the sample using 514.5 nm laser.

In situ synthesis of silver nanoparticle (AgNP)
SWCNT (1 mg) was dispersed by sonication in 2.5 mg/mL

amphiphile solution as mentioned above. The solution was

centrifuged to remove the heavier bundles. To the supernatant

AgNO3 was added in the ratio 1:10 (AgNO3: amphiphile). The

solution was exposed to sunlight for 15 min and the spectra of the

samples were taken. A clear peak generation was observed having

maxima at 425 nm and 410 nm in case of SWCNT-1 and

SWCNT-2, respectively. The peaks intensified upon exposure of

the hybrid for 30 min. The prepared samples were centrifuged at

375000 g twice and the supernatant was discarded to remove

excess unbound amphiphile and unconverted AgNO3.

TEM and AFM sample preparation of the SWCNT-
amphiphile-AgNP nanohybrids

SWCNT-1-AgNP (5 mL) of and SWCNT-2-AgNP (5 mL)

composites were placed on 300-mesh carbon coated copper grid

and freshly cleaved mica and dried under vacuum for 4 h before

taking TEM and AFM images.

Quantification of the SWCNT-amphiphile-AgNP
nanohybrids

The samples were then subjected to thermo gravimetric analysis

(TGA). SWCNT (30 mg) was dispersed using 1 and 2 as described

above. The supernatant was collected and half of the obtained

supernatant was taken for the synthesis of AgNP and AgNO3 was

added in the ratio as mentioned above. Next, all suspensions were

centrifuged twice at 375000 g to remove excess surfactant and

unconverted AgNO3. The obtained pellet was then lyophilized.
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TGA of each conjugate (SWCNT-1, SWCNT-2, SWCNT-1-

AgNP and SWCNT-2-AgNP) was done where the samples were

heated to 800 uC. The thermal decomposition pattern was

monitored. Amphiphiles 1 and 2 as well as AgNP-1 and AgNP-2
were also subjected to the same process of heating as control

experiments.

Microorganisms and culture conditions
The antibacterial activity of the nanohybrids was tested against

Gram-positive and Gram-negative bacteria. The nutrient broth

medium was prepared using peptone (5 g), yeast extract (3 g) in

1 L sterile water. Solid medium for all antibacterial experiments

was done by addition of 15 g agar was added in 1 L of the above

prepared nutrient broth medium. All the bacteria were purchased

from Institute of Microbial Technology, Chandigarh, India. For

the experiments, a representative single colony of bacteria was

picked up with a wire loop and that loopful was spread on nutrient

agar slant to give single colonies and incubated at 37 uC for 24 h.

These cultures were diluted as per requirement to give a working

concentration in the range of 106–109 colony forming units (cfu)/

mL.

Measurements of antibacterial activity
Antimicrobial activities of SWCNT samples were studied

against Bacillus subtilis (B. subtilis), Micrococcus luteus (M. luteus),
Escherichia coli (E. coli) and Klebsiella aerogenes (K. aerogenes).
Purified SWCNT solid samples were first dispersed in solution of 1
and 2 (2.5 mg/mL) by sonication and centrifugation. The AgNP

was synthesized as described above and the excess AgNO3 and

surfactant was removed by ultra centrifugation at 37500 g. A

10 mL portion of dispersion was incubated with 1 mL of bacterial

suspensions (106–107 cfu/mL) for 2 h under shaking at 37 uC. The

antimicrobial evaluations were carried out by a colony forming

count method. For the colony forming count method, 100 mL

serial 10-fold dilutions with saline solution was spread onto agar

plates and left to grow overnight at 37 uC. Colonies were counted

and compared with control plates to calculate percentage killing.

All treatments were prepared in duplicate and repeated on at least

three separate occasions.

FESEM of nanocomposite treated bacteria
The morphological changes of B. subtilis and E. coli were

investigated by field emission scanning electron microscopy

(FESEM). Treated bacterial suspensions were concentrated by

centrifugation at 5000 rpm and then the cells were dropped on a

glass slide to dry at room temperature. The dried samples were

sputter coated with gold for FESEM imaging.

Fluorescence microscopic study for bacteria
To examine bacterial cell viability live/dead bacterial kit was

used. The kit consists of a mixture of SYTO 9 and propidium

iodide which are two nucleic-acid binding stains. B. subtilis
(56106–7.56106 cfu/mL) and E. coli (3.756107–7.56107 cfu/

mL) cells (1 mL) were treated with SWCNT-1 (50 mg/mL) and

SWCNT-1-AgNP (10 mg/mL) and also untreated cells were taken

in centrifuge tube as control. The mixtures were centrifuged at

5,000 rpm for 5 min. Then, media was removed and the cells

were re-dispersed in 0.9 wt% saline. Finally, the dye mixture was

added and incubated in dark at room temperature for 15–20 min.

After incubation, 5 mL of the solution mixture was mounted over

microscope slides, air-dried and viewed under the microscope

(BX61, Olympus) (ex/em ,495 nm/515 nm for SYTO 9 and ex/

em , 495 nm/635 nm for propidium iodide).

Cell cultures
Mouse fibroblast NIH3T3 cells were obtained from National

Center for Cell Science (NCCS), Pune (India), and cultured in

DMEM medium containing 10% FBS, 100 mg/L streptomycin

and 100 IU/mL penicillin. Cells were grown in 25 mL cell culture

flask and incubated at 37 uC in a humidified atmosphere of 5%

CO2 to approximately 70–80% confluence. Fresh media was

added after every 2–3 days and subculture was performed every 7

days. Next, the adherent cells were detached from the surface of

the culture flask by trypsinization and seeded into plates for

cytotoxicity assay and imaging experiments.

Cytotoxicity assay
Cytotoxicity of nanocomposites SWCNT-1, SWCNT-2,

SWCNT-1-AgNP and SWCNT-2-AgNP were assessed by the

microculture MTT reduction assay [67]. This assay is based on

the reduction of a soluble tetrazolium salt by mitochondrial

dehydrogenase of the viable cells to water insoluble coloured

product, formazan. The amount of formazan formed can be

measured spectrophotometrically after dissolution of the dye in

DMSO. The activity of the enzyme and the amount of the

formazan produced is proportional to the number of cells alive.

Cells were seeded at a density 15,000 cells per well in a 96-well

microtiter plate for 18–24 h before the assay. Stock solutions of all

the composites were prepared in water. Sequential dilutions of

these stock solutions were done during the experiment to vary the

concentrations of SWCNT-amphiphile (5–50 mg/mL) and

SWCNT-amphiphile-AgNP (5–25 mg/mL) in the microtiter plate.

The cells were incubated for 4 h at 37 uC under 5% CO2. Then,

15 mL MTT stock solution (5 mg/mL) in phosphate buffer saline

was added to the above mixture and further incubated for 4 h.

The precipitated formazan was dissolved thoroughly in DMSO

and absorbance at 570 nm was measured using BioTek Elisa

Reader. The number of surviving cells were expressed as percent

viability = (A570(treated cells)-background/A570(untreated cells)-

background) 6100.

Preparation of agar-gelatin gel film
The mixture (1 wt%) of agar and gelatin in the weight ratio 2:1

was taken in PBS (pH 7.4) and dissolved by heating. In case of

SWCNT and SWCNT-amphiphile-AgNP containing film prepa-

ration, nanocomposite solution was added to this homogeneous

mixture of agar-gelatin so that 50 mg/mL of SWCNT-1 and

10 mg/mL of SWCNT-1-AgNP could be attained. The compo-

nents were crosslinked by the addition of glutaraldehyde

(0.15 wt%) to the hot solution. Each solution (1 mL) was poured

into 24-wells tissue culture flask and left at room temperature.

Then the plates containing gels were dried in the oven for 12 h at

50 uC to form thin films. These prepared films were treated with

0.1 mM glycine for 1 h to block the remaining aldehyde group.

The films were then washed several times with Milli-Q water to

remove excess glycine and then with PBS to neutralize the surface.

These films were then again dried and UV sterilized overnight and

kept in sterile vacuum desiccators for further experiment.

Antibacterial activity of agar-gelatin films
The antibacterial activity of agar-gelatin films against B. Subtilis

and E. coli was followed in nutrient agar plates. The agar-gelatin

films with and without the nanohybrids was placed on the middle

of the freshly prepared agar plates. For this, each bacterium was

cultured on nutrient agar slant at 37 uC for 24 h. These overnight

cultures of bacteria were diluted as required to get a concentration

of ,105 cfu/mL. This bacteria containing solution (1 mL) was
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added to nutrient agar plate. The plates were then incubated for

24 hours at 37 uC. The bacteria killing ability of the films was

followed by measuring the zone of inhibition in the agar plate.

Biocompatibility of agar-gelatin films
The NIH3T3 cell attachment studies were done on control well

(24 well plate) without any film and on agar-gelatin films with

SWCNT-1, SWCNT-2, SWCNT-1-AgNP and SWCNT-2-

AgNP. Films were soaked with cell culture media for 3 h. After

3 h the media was removed and 56105 cells were seeded in each

well with 1 mL media. The cells were incubated for 24 h in a 5%

CO2 atmosphere. After 24 h the adherent cells were washed with

PBS and cell viability was examined under a fluorescence

microscope using the live/dead viability/cytotoxicity kit for

mammalian cells. The kit contains Calcein AM and Ethidium

homodimer-1(EthD-1). The supplied 2 mM EthD-1 stock solution

(4 mL) and 4 mM calcein AM stock solution (1 mL) was added to

2 mL of sterile, tissue culture-grade PBS and the mixture was

vortexed to ensure thorough mixing. The final stock solution

(500 mL) of calcein AM (2 mM) and EthD-1 (4 mM) was then

added directly to each well containing NIH3T3 cells. After 30 min

incubation in darkness, the cells were viewed under Olympus

IX51 inverted microscope (ex/em ,495 nm/515 nm for calcein

AM and ex/em , 495 nm/635 nm) for EthD-1.

Supporting Information

Figure S1 Histogram for the determination of average
bundle diameter of the nanotubes.
(TIF)

Figure S2 Histogram for the determination of average
length of the nanotubes.
(TIF)

Figure S3 Raman spectra of pristine SWCNT.
(TIF)

Figure S4 Time dependent UV-vis spectra of synthe-
sized AgNP by (a) SWCNT-1 and (b) SWCNT-2 after (i)
15 min and (ii) 30 min.
(TIF)

Figure S5 TGA analysis of AgNP-1 and AgNP-2.
(TIF)

Figure S6 Percentage killing of B. subtillis after 3 h of
incubation and spread plating for 24 h with the varying
concentration of AgNP capped with 1 and 2. Percent killing

was determined using colony count method.

(TIF)

Figure S7 Percentage killing of M. leuteus after 3 h of
incubation and spread plating for 24 h with the varying
concentration of AgNP capped with 1 and 2. Percent killing

was determined using colony count method.

(TIF)

Figure S8 Percentage killing of E. coli after 3 h of
incubation and spread plating for 24 h with the varying
concentration of AgNP capped with 1 and 2. Percent killing

was determined using colony count method.

(TIF)

Figure S9 Percentage killing of K. aragneosa after 3 h of
incubation and spread plating for 24 h with the varying
concentration of AgNP capped with 1 and 2. Percent killing

was determined using colony count method.

(TIF)

Figure S10 Fluorescence micrographs of B. subtilis
incubated with (a) control (b) SWCNT-1 (c) SWCNT-1-
AgNP and E. coli incubated with (d) control (e) SWCNT-1
and (f) SWCNT-1-AgNP followed by incubation with live/
dead kit.

(TIF)

Figure S11 Live dead images of CHO cells grown on
agar gelatin films containing (a,b) SWCNT-1 (c,d)
SWCNT-1-AgNP (e,f) SWCNT-2 and (g,h) SWCNT-2-
AgNP.

(TIF)

Table S1 Zone of Inhibition (mm) for Agar-Gelatin
Films Containing Soft Nanohybrids.

(DOC)
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