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Abstract. Let M, M ′ be smooth, real analytic hypersurfaces of finite type in C
n and f̂

a holomorphic correspondence (not necessarily proper) that is defined on one side of M ,
extends continuously up to M and maps M to M ′. It is shown that f̂ must extend across M
as a locally proper holomorphic correspondence. This is a version for correspondences
of the Diederich–Pinchuk extension result for CR maps.
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1. Introduction and statement of results

1.1 Boundary regularity

Let U, U ′ be domains in C
n and let M ⊂ U, M ′ ⊂ U ′ be relatively closed, connected,

smooth, real analytic hypersurfaces of finite type (in the sense of D’Angelo). A recent
result of Diederich and Pinchuk [DP3] shows that a continuous CR mapping f : M → M ′
is holomorphic in a neighbourhood of M . The purpose of this note is to show that their
methods can be adapted to prove the following version of their result for correspondences.
We assume additionally that M (resp. M ′) divides the domain U (resp. U ′) into two
connected components U+ and U− (resp. U ′±).

Theorem 1.1. Let f̂ : U− → U ′ be a holomorphic correspondence that extends continu-
ously up to M and maps M to M ′, i.e., f̂ (M) ⊂ M ′. Then f̂ extends as a locally proper
holomorphic correspondence across M .

We recall that if D ⊂ C
p and D′ ⊂ C

m are bounded domains, a holomorphic correspon-
dence f̂ : D → D′ is a complex analytic set A ⊂ D × D′ of pure dimension p such that
A∩ (D × ∂D′) = ∅, where ∂D′ is the boundary of D′. In this situation, the natural projec-
tion π : A → D is proper, surjective and a finite-to-one branched covering. If in addition the
other projection π ′: A → D′ is proper, the correspondence is called proper. The analytic
set A can be regarded as the graph of the multiple valued mapping f̂ := π ′ ◦π−1: D → D′.
We also use the notation A = Graph(f̂ ).

The branching locus σ of the projection π is a codimension one analytic set in D. Near
each point in D \ σ , there are finitely many well-defined holomorphic inverses of π . The
symmetric functions of these inverses are globally well-defined holomorphic functions on
D. To say that f̂ is continuous up to ∂D simply means that the symmetric functions extend
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continuously up to ∂D. Thus in Theorem 1.1 the various branches of f̂ are continuous up
to M and each branch maps points on M to those on M ′.

We say that f̂ in Theorem 1.1 extends as a holomorphic correspondence across M if
there exist open neighbourhoods Ũ of M and Ũ ′ of M ′, and an analytic set Ã ⊂ Ũ × Ũ ′
of pure dimension n such that (i) Graph(f̂ ) intersected with (Ũ ∩ U−) × (Ũ ′ ∩ U ′) is
contained in Ã and (ii) the projection π̃ : Ã → Ũ is proper. Without condition (ii), f̂

is said to extend as an analytic set. Finally, the extension of f̂ is a proper holomorphic
correspondence if in addition to (i) and (ii), π̃ ′: Ã → Ũ ′ is also proper.

COROLLARY 1.1

Let D and D′ be bounded pseudoconvex domains in C
n with smooth real-analytic bound-

ary. Let f̂ : D → D′ be a holomorphic correspondence. Then f̂ extends as a locally proper
holomorphic correspondence to a neighbourhood of the closure of D.

The corollary follows immediately from Theorem 1.1 and [BS] where the continuity of f̂

is proved. This generalizes a well-known result of [BR] and [DF] where the extension past
the boundary of D is proved for holomorphic mappings.

1.2 Preservation of strata

Let M+
s (resp. M−

s ) be the set of strongly pseudoconvex (resp. pseudoconcave) points on
M . The set of points where the Levi form Lρ has eigenvalues of both signs on T C(M) and
no zero eigenvalue will be denoted by M± and finally M0 will denote those points where
Lρ has at least one zero eigenvalue on T C(M). M0 is a closed real analytic subset of M

of real dimension at most 2n − 2. Then

M = M+
s ∪ M−

s ∪ M± ∪ M0.

Further, let M+ (resp. M−) be the pseudoconvex (resp. pseudoconcave) part of M , which

equals the relative interior of M+
s (resp. M−

s ). For non-negative integers i, j such that
i + j = n − 1, let Mi,j denote those points at which Lρ has exactly i positive and j

negative eigenvalues on T C(M). Each (non-empty) Mi,j is relatively open in M and semi-
analytic whose relative boundary is contained in M0. With this notation, M0,n−1 = M−

s

and Mn−1,0 = M+
s . Moreover, M± is the union of all (non-empty) Mi,j where both i, j

are at least 1 and i + j = n − 1. Note that points in M−
s , M± are in the envelope of

holomorphy of U−. Following [B], there is a semi-analytic stratification for M0 given by

M0 = �1 ∪ �2 ∪ �3 ∪ �4, (1.1)

where �4 is a closed, real analytic set of dimension at most 2n − 4 and �2 ∪ �3 ∪ �4
is also a closed, real analytic set of dimension at most 2n − 3. Further, �1, �2, �3 are
either empty or smooth, real analytic manifolds; �2, �3 have dimension 2n − 3, and �1
has dimension 2n − 2. Finally, �2 and �3 are CR manifolds of complex dimension n − 2
and n − 3 respectively. The set of points, denoted by �1

h in �1 where the complex tangent
space to �1 has dimension n − 1 is semi-analytic and has real dimension at most 2n − 3,
as otherwise there would exist a germ of a complex manifold in M contradicting the finite
type hypothesis. Then �1\�1

h is a real analytic manifold of dimension 2n − 2 and has CR
dimension n − 2. Using the same letters to denote the various strata of M0, there exists a
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refinement of (1.1), so that �1, �2, �3 are all smooth, real analytic manifolds of dimensions
2n−2, 2n−3, 2n−3 respectively, while the corresponding CR dimensions are n−2, n−2,
and n − 3. Finally, �4 is a closed, real analytic set of dimension at most 2n − 4.

Theorem 1.2. With the hypothesis of Theorem 1.1, the extended correspondence f̂ : M →
M ′ satisfies the additional properties: f̂ (M+) ⊂ M ′+, f̂ (M+ ∩ M0) ⊂ M ′+ ∩ M ′0 and
f̂ (M−) ⊂ M ′−, f̂ (M− ∩ M0) ⊂ M ′− ∩ M ′0. Moreover, f̂ (M+ ∩ �j ) ⊂ M ′+ ∩ �′

j and

f̂ (M− ∩ �j ) ⊂ M ′− ∩ �′
j for j = 1, 3, 4. Finally, f̂ maps the relative interior of M

±
to

the relative interior of M
′±

.

Preservation of �2 is not always possible even for holomorphic mappings as the following
example shows: the domain � = {(z1, z2): |z1|2 + |z2|4 < 1} is mapped to the unit
ball in C

2 by the proper holomorphic mapping f (z1, z2) = (z1, z
2
2). Points of the form

{(eiθ , 0)} ⊂ ∂� are weakly pseudoconvex and in fact form �2 ⊂ ∂�, and f maps them
to strongly pseudoconvex points.

2. Segre varieties

We will write z = (′z, zn) ∈ C
n−1 × C for a point z ∈ C

n. The word ‘analytic’ will
always mean complex analytic unless stated otherwise. The techniques of Segre varieties
will be used and here is a synopsis of the main properties that will be needed. The proofs
of these can be found in [DF] and [DW]. As described above, let M be a smooth, real
analytic hypersurface of finite type in C

n that contains the origin. If U is small enough, the
complexification ρ(z, w) of ρ is well-defined by means of a convergent power series in
U ×U . Note that ρ(z, w) is holomorphic in z and anti-holomorphic in w. For any w ∈ U ,
the associated Segre variety is defined as

Qw = {z ∈ U : ρ(z, w) = 0}.
By the implicit function theorem, it is possible to choose neighbourhoods U1 ⊂⊂ U2 of
the origin such that for any w ∈ U1, Qw is a closed, complex hypersurface in U2 and

Qw = {z = (′z, zn) ∈ U2: zn = h(′z, w)},
where h(′z, w) is holomorphic in ′z and anti-holomorphic in w. Such neighbourhoods
will be called a standard pair of neighbourhoods and they can be chosen to be polydiscs
centered at the origin. It can be shown that Qw is independent of the choice of ρ. For
ζ ∈ Qw, the germ Qw at ζ will be denoted by ζ Qw. Let S := {Qw: w ∈ U1} be
the set of all Segre varieties, and let λ: w 	→ Qw be the so-called Segre map. Then S
admits the structure of a finite dimensional analytic set. It can be shown that the analytic
set

Iw := λ−1(λ(w)) = {z: Qz = Qw}
is contained in M if w ∈ M . Consequently, the finite type assumption on M forces Iw to
be a discrete set of points. Thus λ is proper in a small neighbourhood of each point of M .
For w ∈ U+

1 , the symmetric point sw is defined to be the unique point of intersection of
the complex normal to M through w and Qw. The component of Qw ∩ U−

2 that contains
the symmetric point is denoted by Qc

w.
Finally, for all objects and notions considered above, we simply add a prime to define

their corresponding analogs in the target space.



62 Rasul Shafikov and Kaushal Verma

3. Localization and extension across an open dense subset of MMM

In the proof of Theorem 1.1 in order to show extension of f̂ as a holomorphic correspon-
dence, it is enough to consider the problem in an arbitrarily small neighbourhood of any
point p ∈ M . The reason is the following. Firstly, since the projection π : Graph(f̂ ) → U−
is proper, the closure of Graph(f̂ ) has empty intersection with U− × ∂U ′. Therefore, by
[C] § 20.1, to prove the continuation of f̂ across M as an analytic set, it is enough to do that
in a neighbourhood of any point in M . Secondly, once the extension of f̂ as a holomorphic
correspondence in a neighbourhood of any point p ∈ M is established, then globally there
exists a holomorphic correspondence defined in a neighbourhood Ũ of M which extends
f̂ . To see that simply observe that if F ⊂ Ũ × Ũ ′ is an analytic set extending f̂ , then by
choosing smaller Ũ we may ensure that the projection to the first component is proper, as
otherwise there would exist a point z on M such that F̂ (z) has positive dimension (here F̂

is the map associated with the set F ). This however contradicts local extension of f̂ near
z as a holomorphic correspondence.

Since the projection π : Graph(f̂ ) → U− is proper, Graph(f̂ ) is contained in
the analytic set A ⊂ U− × U ′, defined by the zero locus of holomorphic functions
P1(z, z

′
1), P2(z, z

′
2), . . . , Pn(z, z

′
n) given by

Pj (z, z
′
j ) = z′

j
l + aj1(z)z

′
j
l−1 + · · · + ajl(z), (3.1)

where l is the generic number of images in f̂ (z), and 1 ≤ j ≤ n (for details, see [C]). The
coefficients aµν(z) are holomorphic in U− and extend continuously up to M . This is the
definition of continuity of the correspondence f̂ up to M which is equivalent to that given
in §1.1.

The discriminant locus is {Rj (z) = 0}, 1 ≤ j ≤ n, where Rj (z) is a universal polyno-
mial function of ajµ(z) (1 ≤ µ ≤ l) and hence by the uniqueness theorem, it follows that
{Rj (z) = 0} ∩ M is nowhere dense in M , for all j . The set of points S on M which do not
belong to {Rj (z) = 0} ∩ M for any j is therefore open and dense in M . Near each point p

on S, f̂ splits into well-defined holomorphic maps f1(z), f2(z), . . . , fl(z) each of which
is continuous up to M .

If p ∈ S∩(M−∪M±), the functions aµν(z) extend holomorphically to a neighbourhood
of p and hence f̂ extends as a holomorphic correspondence across p. It is therefore
sufficient to show that f̂ extends across an open dense subset of S ∩ M+. But this follows
from Lemma 3.2 and Corollary 3.3 in [DP3]. We denote by � ⊂ M the non-empty open
dense subset of M across which f̂ extends as a holomorphic correspondence.

4. Extension as an analytic set

Fix 0 ∈ M and let p′
1, p

′
2, . . . , p

′
k ∈ f̂ (0) ∩ M ′. The continuity of f̂ allows us to choose

neighbourhoods 0 ∈ U1 and p′
i ∈ U ′

i and local correspondences f̂i : U−
1 → U ′

i that are

irreducible and extend continuously up to M . Moreover, f̂i (0) = p′
i for all 1 ≤ i ≤ k. It

will suffice to focus on one of the f̂ ′
i ’s, say f̂ ′

1 and to show that it extends holomorphically

across the origin. Abusing notation, we will write f̂ ′
1 = f̂ , U ′

1 = U ′ and p′
1 = 0′ . Thus

f̂ : U−
1 → U ′ is an irreducible holomorphic correspondence and f̂ (0) = 0′. Define

V + = {(w, w′) ∈ U+
1 × U ′: f̂ (Qc

w) ⊂ Q′
w′ }.
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Then V + is non-empty. Indeed, f̂ extends across an open dense set near the origin and
[V] shows that the invariance property of Segre varieties then holds. Moreover, a similar
argument as in [S2] shows that V + ⊂ U+

1 × U ′ is an analytic set of dimension n and
exactly the same arguments as in Lemmas 4.2 – 4.4 of [DP3] show that: first, the projection
π : V + → U+ := π(V +) ⊂ U+

1 is proper (and hence that U+ ⊂ U+
1 is open) and second,

the projection π ′: V + → U ′ is locally proper. Thus, to V + is associated a correspondence
F+: U+ → U ′ whose branches are F̂+ = π ′ ◦ π−1.

Let a ∈ M be a point close to the origin, across which f̂ extends as a holomorphic
correspondence. If f̂ is well-defined in the ball B(a, r), r > 0 and w ∈ B(a, r)−, it follows
from Theorem 4.1 in [V] that all points in f̂ (w) have the same Segre variety. By analytic
continuation, the same holds for all w ∈ U−

1 . Using this observation, it is possible to define
another correspondence F−: U−

1 → U ′ whose branches are F̂−(w) = (λ′)−1 ◦λ′ ◦ f̂ (w).
Let U := U−

1 ∪ U+ ∪ (� ∩ U1). The invariance property of Segre varieties shows that the
correspondences F̂+, F̂− can be glued together near points on � ∩ U1. Hence, there is a
well-defined correspondence F̂ : U → U ′ whose values over U+ and U−

1 are F̂+ and F̂−
respectively. Note that

F := Graph(F̂ ) = {(w, w′) ∈ U × U ′: w′ ∈ F̂ (w)}
is an analytic set in U ×U ′ of pure dimension n, with proper projection π : F → U . Once
again, the invariance property shows that all points in F̂ (w), w ∈ U , have the same Segre
variety.

Lemma 4.1. The correspondence F̂ satisfies the following properties:

(i) For w0 ∈ ∂U ∩ U+
1 , cl

F̂
(w0) ⊂ ∂U ′.

(ii) cl
F̂
(0) ⊂ Q′

0′ .
(iii) If cl

F̂
(0) = {0′}, then 0 ∈ �.

(iv) F ⊂ (U1\(M\�)) × U ′ is a closed analytic set.

Proof.

(i) Choose (wj , w
′
j ) ∈ F converging to (w0, w

′
0) ∈ (∂U ∩ U+

1 ) × U
′
. Then f̂ (Qc

wj
) ⊂

Q′
w′

j

for all j . If w′
0 ∈ U ′, then passing to the limit, we get f̂ (Qc

w0
) ⊂ Q′

w′
0

which

shows that (w0, w
′
0) ∈ F and hence w0 ∈ U , which is a contradiction. This also

proves (iv).
(ii) Choose wj ∈ U converging to 0. There are two cases to consider. First, if wj ∈

U−
1 ∪ (� ∩U1) for all j , it follows that f̂ (wj ) → 0′. Moreover, for any w′

j ∈ F̂ (wj ),
Q′

w′
j

= Q′
f̂ (wj )

. If U ′ is small enough, the equality Q′
w′ = Q′

0′ implies that w′ = 0′

and thus we conclude that w′
j → 0′ ∈ Q′

0′ . Second, if wj ∈ U+ for all j , then

f̂ (Qc
wj

) ⊂ Q′
w′

j

for any w′
j ∈ F̂ (wj ). Let w′

j → w′
0 ∈ U ′. If ζ ∈ Qc

wj
, then

f̂ (ζ ) ∈ Q′
w′

j

→ Q′
w′

0
. But wj → 0 implies that dist(Qc

wj
, 0) → 0 and hence

f̂ (ζ ) → 0′. Thus 0′ ∈ Q′
w′

0
which shows that w′

0 ∈ Q′
0′ .

(iii) If cl
F̂
(0) = {0′}, then (i) shows that 0 /∈ ∂U ∩U+

1 . Let B(0, r) be a small ball around

the origin such that B(0, r) ∩ ∂U = ∅. The correspondence F̂ over B(0, r)+ is the
union of some components of the zero locus of a system of monic pseudo-polynomials
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whose coefficients are bounded holomorphic functions on B(0, r)+. By Trepreau’s
theorem, all these coefficients extend holomorphically to B(0, r), and the extended
zero locus contains the graph of f̂ near the origin since � is dense. It follows that
0 ∈ �. �

Following [S1], for any w0 ∈ U , it is possible to find a neighbourhood � of w0, relatively
compact in U and a neighbourhood V ⊂ U1 of Qw0 ∩ U1 such that for z ∈ V , Qz ∩ � is
non-empty and connected. Associated with the pair (�, V ) is

F̃ := F̃ (w0, �, V ) = {(z, z′) ∈ V × U ′ : F̂ (Qz ∩ �) ⊂ Q′
z′ } (4.1)

which (see [DP4]) is an analytic set of dimension at most n. If w0 ∈ �, then Corollary 5.3
of [DP3], shows that F ∩(V ×U ′) is the union of irreducible components of F̃ of dimension
n. As in [DP3] we call (w0, z0) ∈ U×Qw0 a pair of reflection if there exist neighbourhoods
�(w0) � w0 and �(z0) � z0 such that for all w ∈ �(w0), F̂ (Qw ∩ �(z0)) ⊂ Q′

F̂ (w)
.

It follows from the invariance property of Segre varieties that the definition of the pair of
reflection is symmetric. As an example we note that if the set F̃ defined in (4.1) contains
F ∩(V ×U ′), then (w0, z) is a point of reflection for any point z in a connected component
of Qw0 ∩ U containing w0.

Let w0 ∈ U , z0 ∈ Qw0 ∩ � be a pair of reflection. Fix B(z0, r), a small ball around z0

where f̂ is well-defined and let S(w0, z0) ⊂ F̃ ∩ ((Qw0 ∩U1)×U ′) be the union of those
irreducible components that contain Graph(f̂ ) over Qw0 ∩ B(z0, r). Note that S(w0, z0)

is an analytic set of dimension n − 1 and is contained in (Qw0 ∩ U1) × U ′ and moreover,
the invariance property shows that

S(w0, z0) ⊂ ((Qw0 ∩ U1) × (Q′
F̂ (w0)

∩ U ′)).

Furthermore, from the above considerations it follows that for any z ∈ π(S(w0, z0)) the
point (w0, z) is a pair of reflection. Finally, let the cluster set of a sequence of closed sets
{Cj } ⊂ D, where D is some domain, be the set of all possible accumulation points in D
of all possible sequences {cj } where cj ∈ Cj .

PROPOSITION 4.1

Let {zν} ∈ � converge to 0. Suppose that the cluster set of the sequence {S(zν, zν)} contains
a point (ζ0, ζ

′
0) ∈ U × U ′. Then f̂ extends as an analytic set across the origin.

Proof. First, the pair (zν, zν) is an example of a pair of reflection and hence S(zν, zν)

is well-defined. Also, note that (zν, f̂ (zν)) → (0, 0′). Choose (ζν, ζ
′
ν) ∈ S(zν, zν) that

converges to (ζ0, ζ
′
0) ∈ U × U ′. It follows that (ζν, zν) is a pair of reflection. Let �, V

be neighbourhoods of ζ0 and Qζ0 as in the definition of F̃ (ζ0, �, V ). Since ζ0 ∈ U , it
follows that F̃ (ζ0, �, V ) is a non-empty, analytic set in V × U ′. Shrinking U1 if needed,
Qζν ∩U1 ⊂ V and ζν ∈ � for all large ν. This shows that F̃ (ζν, �, V ) = F̃ (ζ0, �, V ) for
all large ν. Lemma 5.2 of [DP3] shows that F̃ (ζν, �, V ) contains the graph of all branches
of f̂ near zν and hence F̃ (ζ0, �, V ) contains the graph of f̂ near (0, 0′). Therefore,
F̃ (ζ0, �, V ) extends the graph of f̂ across the origin. �

Remarks. First, as in [DP3] this proposition will be valid if the pair (zν, zν) were replaced
by a pair of reflection (wν, zν) ∈ U × � that converges to (0, 0′) and F̂ (wν) clusters at
some point in U ′. Second, this proposition shows the relevance of studying the cluster
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set of a sequence of analytic sets (see [SV] also). In general, the hypothesis that the
cluster set of {S(zν, zν)} (or S(wν, zν) in case (wν, zν) is a pair of reflection) con-
tains a point in U × U ′ cannot be guaranteed since the projection π : S(zν, zν) → U

is not known to be proper. However, the following version of Lemma 5.9 in [DP3]
holds.

Lemma 4.2. There are sequences (wν, zν) ∈ U × �, w′
ν ∈ F̂ (wν) and analytic sets

σν ⊂ U of pure dimension p ≥ 1 (p independent of ν) such that:

(i) (wν, zν) → (0, 0) and (wν, zν) is a pair of reflection for all ν.
(ii) w′

ν → w′
0 ∈ U ′ and zν ∈ σν ⊂ π(S(wν, zν)).

Proof. Choose a sequence zν ∈ � that converges to the origin. If the projections
π : S(zν, zν) → U were proper for all ν, then for some fixed r > 0 and ν large enough,
let σν := Qzν ∩ B(zν, r), wν = zν and w′

ν ∈ f̂ (zν). It can be seen that the lemma
holds with these choices. On the other hand, if π is not known to be proper on S(zν, zν),
no fixed value of r , as described above, exists. Hence, for arbitrarily small values of
r ′ > 0, there exist (wν, w

′
ν) ∈ S(zν, zν) ∩ (U+ × U ′) such that wν → 0 and w′

ν → w′
0

with |w′
0| = r ′. Since M ′ is of finite type, we may assume that Q′

w′
0


= Q′
0′ . More-

over, note that w′
0 ∈ Q′

0′ ∩ U ′ (which shows that 0′ ∈ Q′
w′

0
) and (wν, zν) is a pair of

reflection for all ν. By making a small holomorphic perturbation of coordinates in the
target space, if needed, it follows that 0′ ∈ Q′

w′
0

∩ {z′ ∈ U ′: z′
2 = · · · = z′

n = 0} is an

isolated point. Therefore, there exists an ε > 0 such that after shrinking U ′, if needed,
q ′

0 := Q′
w′

0
∩{z′ ∈ U ′: z′

2 = · · · = z′
n−1 = 0, |z′

n| < ε} (which is an analytic set of dimen-

sion 1 in U ′ ∩ {|z′
n| < ε} containing the origin) has no limit points on ∂U ′ ∩ {|z′

n| < ε}.
Let l be the multiplicity of f̂ : U−

1 → U ′. Let f̂ (zν) = {ζ j
ν }, 1 ≤ j ≤ l counted with

multiplicity. For large ν, the l sets

q ′
ν,j = Q′

w′
ν
∩ {z′ ∈ U ′: z′

k = (ζ j
ν )k, 2 ≤ k ≤ n − 1, |z′

n| < ε}

are analytic, of dimension 1, in U ′ ∩ {|z′
n| < ε} without limit points on ∂U ′ ∩ {|z′

n| < ε}
and clearly contain (zν, ζ

j
ν ). Since π ′(S(wν, zν)) ⊂ Q′

w′
ν
,

sν,j := S(wν, zν) ∩ {(z, z′): z′
k = (ζ j

ν )k, 2 ≤ k ≤ n − 1}
are analytic sets of dimension at least 1 in U1 × (U ′ ∩ {|z′

n| < ε}) for all 1 ≤ j ≤ l.
By construction, the analytic sets q ′

ν,j do not have limit points on ∂U ′ ∩ {|z′
n| < ε}

and hence sν,j do not have limit points on U1 × (∂U ′ ∩ {|z′
n| < ε}). By Lemma 4.1,

cl
F̂
(0) ⊂ Q′

0′ = {z′
n = 0} and by shrinking U1 if needed, this shows that sν,j have no limit

points on U1 × (U ′ ∩ {|z′
n| = ε}). Thus for large ν and all j , the projections π : sν,j → U1

are proper and their images σν,j := π(sν,j ) are analytic sets in U1 of dimension at least 1
and zν ∈ σν,j for all ν, j . It remains to pass to subsequences if necessary to choose σν,j

with constant dimension. �

One conclusion that follows now is: if f̂ does not extend as an analytic set across the
origin, then cl(σν) ⊂ M \�. Indeed, if there exists ζ0 ∈ cl(σν) ∩ (U1 \ (M \�)), let
(ζν, ζ

′
ν) ∈ S(wν, zν) converge to (ζ0, ζ

′
0) ∈ U1 × U ′. Proposition 4.1 now shows that

ζ0 ∈ ∂U ∩ U1. But since ζ0 /∈ M\�, it follows from Lemma 4.1 that ζ ′
0 ∈ ∂U ′ which is a

contradiction.



66 Rasul Shafikov and Kaushal Verma

The goal will now be to show that f̂ extends as an analytic set across the origin. For
this, choose {zν} ∈ � converging to the origin and consider the analytic sets S(zν, zν). By
Proposition 4.1, it suffices to show that π(cl(S(zν, zν)) ∩ U 
= ∅. Let

S′ := π ′(cl(S(zν, zν)) ∩ ({0} × U ′)) ⊂ Q′
0′

and let m be the dimension of Ŝ′ – the smallest closed analytic set containing S′ (the so-
called Segre completion of [DP3]). If m = 0, then 0′ is an isolated point in S′ and after
shrinking U1, U

′ suitably, it follows that cl(S(zν, zν)) has no limit points on U1 × ∂U ′.
Thus π : S(zν, zν) → U1 are proper projections and therefore π(S(zν, zν)) = Qzν ∩ U1

for all large ν. Hence π(cl(S(zν, zν))) = Q0 ∩ U1. If f̂ did not extend as an analytic set
across the origin, the aforementioned remark shows that with σ := Qzν ∩ U1, Q0 ∩ U1 =
cl(σν) ⊂ M \� ⊂ M . This cannot happen as M is of finite type. Hence f̂ extends as an
analytic set across the origin in case m = 0. We may therefore suppose that m > 0. We
recall the following lemma proved by Diederich and Pinchuk:

Lemma 4.3 ([DP3], Lemma 9.8). Let S′ be a subset of Q′
0′ , 0′ ∈ S′ and m = dim Ŝ′. Then

after possibly shrinking U1, there are points w′1, . . . , w′k ∈ S′ (k ≤ n − 1) such that one
of the following holds:

(1) k = m and dim(Ŝ′ ∩ Q′
w′1 ∩ · · · ∩ Q′

w′k ) = 0;

(2) k ≥ 2m − n + 1 and dim(Ŝ′ ∩ Q′
w′1 ∩ · · · ∩ Q′

w′k ) = m − k.

Thus there are two cases to consider.

Case 1. Choose (w1ν, w
′
1ν), (w2ν, w

′
2ν), . . . , (wmν, w

′
mν) ∈ S(zν, zν) so that wµν → 0

and w′
µν → w′

µ for all 1 ≤ µ ≤ m. A generic choice of wµν (see p. 136 in [DP3]) ensures
that qmν := Qw1ν

∩ Qw2ν
∩ · · · ∩ Qwmν has dimension n − m. Each (wµν, zν) is a pair of

reflection and hence the analytic set

Sm
ν :=

⋂

1≤µ≤m

S(wµν, zν) ⊂ (qmν × q ′mν) ∩ (U1 × U ′)

is well-defined. If m = n − 1, then Lemma 9.7 of [DP3] shows that the germ of q ′(n−1) at
the origin has dimension 1. Moreover, Ŝ′ = Q′

0′ and Lemma 4.3 implies that q ′(n−1) ∩Q′
0′

contains 0′ as an isolated point. Since cl
F̂
(0) ⊂ Q′

0′ , it follows that 0′ is an isolated point of

π ′(cl(Sn−1
ν ) ∩ ({0} × U ′)) ⊂ q ′(n−1) ∩ Q′

0′ = {0′}.

Shrinking U1, the projection π : Sn−1
ν → U1 becomes proper and π(Sn−1

ν ) = qn−1,ν ∩U1.
By Theorem 7.4 of [DP3], there is a subsequence of qn−1,ν ∩ U1 that converges to an
analytic set A ⊂ U1 of pure dimension 1 and contains the origin. A contains points ζ0
that do not belong to M because of the finite type assumption and ζ0 ∈ π(cl(Sn−1

ν )) ⊂
π(cl(S(wµν, zν))). By Proposition 4.1, f̂ extends as an analytic set across the origin.

If m < n − 1, the dimension of Sm
ν ∩ S(zν, zν) is at least n − m − 1 > 0. Now

π ′(cl(Sm
ν ∩ S(zν, zν)) ∩ ({0} × U ′)) ⊂ q ′m ∩ Ŝ′ = {0′},

the last equality following from Lemma 4.3. The projection π : Sm
ν ∩ S(zν, zν) → U1 is

therefore proper for small U1 and that π(Sm
ν ∩ S(zν, zν)) = qmν ∩ Qzν ∩ U1. Again, by
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Theorem 7.4 of [DP3], there is a subsequence of qmν ∩ Qzν ∩ U1 that converges to an
analytic set A ⊂ U1 of positive dimension and as before this shows that f̂ extends as an
analytic set across the origin.

Case 2. As before, choose (w1ν, w
′
1ν), (w2ν, w

′
2ν), . . . , (wkν, w

′
kν) ∈ S(zν, zν) such that

wµν → 0 and w′
µν → w′

µ for all 1 ≤ µ ≤ k and qkν = Qw1ν
∩ Qw2ν

∩ · · · ∩ Qwkν
,

q̃kν := Qzν ∩ qkν have dimension n − k and n − k − 1 respectively. Now note that
dim(Sk

ν ∩S(zν, zν)) ≥ n− k − 1 > 1. Indeed, the inequalities 2m−n+ 1 ≤ k < m show
that m ≤ n − 2 and hence k < n − 2. Since the dimension of Ŝ′ ∩ q ′k is m − k, choose
coordinates so that

Ŝ′ ∩ q ′k ∩ {z′ ∈ U ′: z′
1 = z′

2 = · · · = z′
m−k = 0} = {0′}.

Let f̂ (zν) = {ζ j
ν }, 1 ≤ j ≤ l, l being the multiplicity of f̂ . The l sets

Tν,j = {(z, z′) ∈ Sk
ν ∩ S(zν, zν): z′

1 = (ζ j
ν )1,

z′
2 = (ζ j

ν )2, . . . , z
′
m−k = (ζ j

ν )m−k},

where 1 ≤ j ≤ l are analytic sets inU1×U ′ and have dimension at leastn−k−1−(m−k) =
n − m − 1 > 0. By construction,

π ′(cl(Tν,j ) ∩ ({0} × U ′)) ⊂ Ŝ′ ∩ q ′k

∩ {z′ ∈ U ′: z′
1 = z′

2 = · · · = z′
m−k = 0} = {0′}

and hence by shrinking U1, U
′, the projections π : Tν,j → U1 are proper and the images

σν,j := π(Tν,j ) ⊂ U1 are analytic and have dimension n − m − 1. Moreover σν,j ⊂ q̃kν ,
and since q̃kν depend anti-holomorphically on the k-tuple defining it, Theorem 7.4 of
[DP3] shows that q̃kν converges to an analytic set Ã ⊂ U1 of dimension n − k − 1, after
passing to a subsequence. Working with this subsequence, we see that cl(σν,j ) ⊂ Ã. On
the other hand, since 2m − n + 1 ≤ k, it follows, as in [DP3], that

dim Ã = n − k − 1 ≤ 2(n − m − 1) = 2 dim σν,j .

Proposition 8.3 of [DP3] shows that cl(σν,j ) 
⊂ M and hence by Proposition 4.1, it follows
that f̂ extends as an analytic set across the origin.

To complete the proof, it suffices to show that extension as an analytic set implies
extension as a locally proper holomorphic correspondence. This is achieved in the next
lemma.

Lemma 4.4. There exist neighbourhoods U of 0 and U ′ of 0′ such that F ⊂ U × U ′ is a
proper holomorphic correspondence which extends f̂ .

Proof. Extension as a holomorphic correspondence essentially follows from [DP4]. All
nuances in the proof of Proposition 2.4 in [DP4] work in this situation as well provided the
following two modifications are made. Let U, U ′ be neighbourhoods of 0, 0′ respectively
and suppose that F ⊂ U × U ′ extends f̂ as an analytic set in U × U ′. Then it needs to be
checked that F ∩ (U+ × U ′) 
= ∅ and that there exists a sequence {zν} ∈ M converging
to 0 such that f̂ extends as a correspondence across each zν .
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Suppose that F ∩ (U+ × U ′) = ∅. In this case, the proof of Proposition 3.1 (or even
Proposition 4.1 in [SV]) shows that (0, 0′) is in the envelope of holomorphy of U− × U ′.
The coefficients aµν(z) in (3.1) can be regarded as holomorphic functions on U− × U ′
(i.e., independent of the z′ variables) and thus each aµν(z) extends holomorphically across
(0, 0′). This extension must be independent of the z′ variables by the uniqueness theorem
and hence aµν(z) extends holomorphically across the origin. This shows that f̂ extends as
a holomorphic correspondence across the origin. To show the existence of the sequence
{zν} claimed above, let π : F → U be the natural projection and define

A = {(z, z′) ∈ F : dim (π−1(z))(z,z′) ≥ 1},

where (π−1(z))(z,z′) denotes the germ of the fiber over z at (z, z′). Then A is an analytic
subset of F , and since F contains the graph of f̂ over U−, it follows that the dimension of
A is at most n − 1. Since Lipschitz maps do not increase Hausdorff dimension, it follows
that the Hausdorff dimension of π(A) is at most 2n − 2. Pick p ∈ M \ π(A). The fiber
F ∩ π−1(p) is discrete and this shows that f̂ extends as a holomorphic correspondence
across p.

Finally, we show that U ′ can be chosen so small that the projection π ′: F → U ′ is
also proper. Indeed, for z′ ∈ M ′, π ′−1(z′) is an analytic subset of F . Since π is proper,
it follows by Remmert’s theorem that F̂−1(z′) = π ◦ π ′−1(z′) is an analytic set. The
invariance property of Segre varieties yields F̂ (Qz ∩ U) ⊂ Q′

z′ for any z ∈ F̂−1(z′).
Since M is of finite type, the set ∪

z∈F̂−1(z′)Qz has Hausdorff dimension n, and therefore

cannot be mapped by F̂ into Q′
z′ which has dimension n−1. This shows that projection π ′

has discrete fibers on M ′. It follows from the Cartan–Remmert theorem that there exists a
neighbourhood U ′ of M ′ such that π ′ has only discrete fibers, and therefore the projection
π ′ from F to U ′ will be proper.

This completes the proof of Theorem 1.1. �

5. Preservation of strata

Fix p ∈ M and let p′
1, p

′
2, . . . , p

′
k ∈ f̂ (p) ⊂ M ′. Choose neighbourhoods U, U ′ of p, p′

1

respectively and let f̂1: U− → U ′ be a component of f̂ such that f̂1(p) = p′
1. Then

f̂1 extends as a holomorphic correspondence F ⊂ U × U ′ and to prove Theorem 1.2,
it suffices to focus on f̂1, which will henceforth be denoted by f̂ . The following two
general observations can be made in this situation. First, the branching locus σ̂ of F̂ is
an analytic set in U and the finite-type assumption on M shows that the real dimension
of σ̂ ∩ M is at most 2n − 3. The branching locus of f̂ denoted by σ , is contained in
σ̂ ∩ U−. Second, the invariance property of Segre varieties in [DP1], [V] shows that F̂ ,
the extended correspondence, preserves the two components U±. That is, after possibly
re-labelling U ′±, it follows that F̂ (U±) ⊂ U ′± and F̂ (M) ⊂ M ′. The same holds for
Ĝ := F̂−1: U ′ → U .

Proof of Theorem 1.2. Let p ∈ M+ and suppose that {ζ ′
j } ∈ M ′ is a sequence converging

to p′
1 with the property that the Levi form Lρ restricted to the complex tangent space to M

at ζ ′
j has at least one negative eigenvalue. Fix ζ ′

j0
∈ U ′ for some large j0. By shifting ζ ′

j0

slightly, we may assume that ζ ′
j0

/∈ σ̂ ′ ∪ F̂ (M0 ∩U), where σ̂ ′ is the branching locus of Ĝ,
and at the same time retain the property of having at least one negative eigenvalue. Let g1
be a locally biholomorphic branch of Ĝ near ζ ′

j0
. Then g1(ζ

′
j0

) is clearly a pseudoconvex
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point and this contradicts the invariance of the Levi form. This shows that f̂ (M+) ⊂ M ′+.
The same arguments show that f̂ (M−) ⊂ M ′−.

Let p ∈ M+ ∩M0 and suppose that p′
1 ∈ M ′+

s . The extending correspondence F̂ : U →
U ′ satisfies the invariance property, namely F̂ (Qw) ⊂ Q′

w′ for all (w, w′) ∈ (U × U ′) ∩
Graph(F̂ ). But near p′

1, the Segre map λ is injective and this shows that F̂ , and hence f̂ ,
is a single valued, proper holomorphic mapping, say f : U → U ′ with f (p) = p′

1. Two
observations can be made at this stage: first, f cannot be locally biholomorphic near p due
to the invariance of the Levi form. Second, if Vf ⊂ U is the branching locus of f defined by
the vanishing of the Jacobian determinant off , thenVf intersects bothU±. Indeed, suppose
that Vf ∩U− = ∅. Choose a branch of f −1 near some fixed point a′ ∈ U ′− and analytically
continue it along all paths in U ′− to get a well-defined mapping, say g: U ′− → U−. The
analytic set F ⊂ U×U ′ extends g as a correspondence and hence [DP2] g is a well-defined
holomorphic mapping in U ′ and this must be the single valued inverse of f . Thus f is
locally biholomorphic near p and this is a contradiction. The same argument works to show
that Vf must intersect U+ as well. Note that Vf ∩ M has real dimension at most 2n − 3.
If p ∈ �1, choose U so small that M0 ∩ U ⊂ �1. Then there exists q ∈ �1\(Vf ∩ M)

near p, where f is locally biholomorphic. Thus q is mapped locally biholomorphically to
f (q) which is a strongly pseudoconvex point and this is a contradiction. If p ∈ �3, then
again we shrink U so that M0 ∩ U ⊂ �3 and (M ∩ U)\�3 ⊂ M+

s . Then f is locally
biholomorphic near all points in (M ∩ U)\�3 and therefore Vf ∩ U− must cluster only
along �3. Since the CR dimension of �3 = n− 3 < (n− 1)− 1 which is one less than the
dimension of Vf , it follows (Theorem 18.5 in [C]) that Vf ∩ U− is a closed, analytic set in
U . Thus Vf ∩ U− has two analytic continuations, namely Vf and Vf ∩ U− and therefore
they must be the same. This shows that Vf cannot intersect U+ which is a contradiction.
The same argument works if p ∈ �4, the only difference being that V f ⊂ U− is analytic
because of Shiffman’s theorem. Thus if p ∈ M+ ∩ M0, then p′

1 ∈ M ′+ ∩ M ′0.
To study this further, suppose that p ∈ M+ ∩ �1 and p′

1 ∈ M ′+ ∩ �′
2. Choose U, U ′

small enough so that M0 ∩ U ⊂ �1 and M ′0 ∩ U ′ ⊂ �′
2. Pick q ∈ �1\(σ̂ ∩ M). Then

f̂ splits near q into finitely many well-defined holomorphic mappings each of which
extends across q. Moving q slightly, if needed, on �1\(σ̂ ∩ M), each of these holomorphic
mappings are even locally biholomorphic near q. Working with one of these mappings,
say f1, it follows that f1(q) /∈ M ′+

s due to the invariance of the Levi form. This means that
f1(q) ∈ �′

2. In the same way, all points in �1 that are sufficiently near q are mapped locally
biholomorphically by f1 to �′

2. This cannot happen as �′
2 has strictly smaller dimension

than �1. The same argument shows that p′
1 /∈ �′

3 ∪ �′
4. Hence p′

1 ∈ M ′+ ∩ �′
1.

Suppose that p ∈ M+ ∩ �2 and p′
1 ∈ M ′+ ∩ �′

1. Considering f̂ −1: U ′ → U , the
arguments used in the preceding lines show that this cannot happen. The case when p′

1 ∈ �′
4

can be dealt with similarly. Now suppose that p′
1 ∈ �′

3. As always, U, U ′ will be small
enough so that M0 ∩ U ⊂ �2 and M ′0 ∩ U ′ ⊂ �′

3. The arguments used above show that

the cluster set of points in M+
s ∩U is contained in M ′+

s ∩U ′ and hence f̂ splits into finitely
well-defined mappings each of which is locally biholomorphic near points in M+

s ∩ U .
This shows that the branching locus σ ⊂ U− of f̂ clusters only along �2. Then F̂ (σ ) is
an analytic set of dimension n − 1 in U ′−. There are two cases to consider: first, if F̂ (σ )

clusters only along �′
3, then arguing as above, F̂ (σ ) ⊂ U ′− is a closed, analytic set in U ′.

The strong disk theorem shows that p′
1 is in the envelope of holomorphy of U ′− and this is a

contradiction. Second, if there are points in F̂ (σ )∩M ′+
s , this means that (F̂ (σ̂ )∩M ′)∩�′

3
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has real dimension at most 2n− 4. Pick q ′ ∈ �′
3\(F̂ (σ̂ )∩M ′) and note that the continuity

of f̂ implies that f̂ −1(q ′) ∈ M+
s . As seen above, this cannot happen. Thus p′

1 ∈ �′
2 or

M ′+
s . Similar arguments show that if p ∈ M+ ∩ �3 or M+ ∩ �4, then p′

1 ∈ M ′+ ∩ �′
3 or

M ′+ ∩ �′
4 respectively.

By reversing the roles of U±, the same arguments used in the preceding paragraphs can
be applied to show that f̂ (M− ∩ M0) ⊂ M ′− ∩ M ′0 with the preservation of M− ∩ �j

for j = 1, 3, 4.
Finally, fix integers i, j both at least 1 such that i+j = n−1 and suppose that p ∈ Mi,j .

Then there exists a point p0, in U (chosen so small that M∩U ⊂ Mi,j ) and arbitrarily close
to p, where all branches of f̂ are well-defined and locally biholomorphic. The invariance
of the Levi form shows that the images of p0 under any of the branches of f̂ should all
be in Mi,j . Note that each of these images is close to p′

1. This cannot happen if p′
1 is in

M ′+, M ′− or in M ′
i′,j ′ for i 
= i′ and j 
= j ′. The only possibility is that p′

1 is in the relative

interior of M
′
i,j . The same argument works if p is in the relative interior of Mi,j . �
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