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Abstract. The generalised Langevin equation (GLE), originally developed in the

context of Brownian motion, yields a convenient representation for the mobility

(generalised susceptibility) in terms of a frequency-dependent friction (memory func-

tion). Kubo has shown how two deep consistency conditions, or fluctuation-dissi-

pation theorems, follow from the GLE. The first relates the mobility to the velocity -
auto-correlation in equilibrium, as is also derivable from linear response theory.

The second is a generalised Nyquist theorem, relating the memory function to the.
auto-correlation of the random force driving the velocity fluctuations. Certain subtle

points in the proofs of these theorems have not been dealt with sufficiently carefully

hitherto. We discuss the input information requ1red to make the GLE description

a complete one, and present concise, systematic proofs starting from the GLE. Care

is taken to settle the points of ambiguity in the original version of these proofs. The

causality condition imposed is clarified, and Felderhof’s recent cntlclsm of Kubo S

derivation is commented upon. Fma]ly, we demonstrate how the ¢ persistence ’ of

equ111br1um can be used to evaluate easily the equilibrium auto-correlation of the

¢ driven ® variable (e.g., the velocity) from the transient solution of the corresponding-

stochastic equation.

Keywords. Generalised Langevin equation; fluctuation-dissipation theorem ; Brownian
motion; correlations; mobility. :

1. Introduction and discussion

The generalised Langevin equation (GLE), originally developed in the context of
Brownian motion, is an archetypal stochastic equation for the study of fluctuations
and the approach to equilibrium in a variety of physical problems, ranging fiom
superionic conductors to mechanical relaxation. Besides being consistent with linear
response theory (LRT) for classical variables (see, e.g., Kubo 1966), the GLE yields
a convenient representation for the generalised susceptibility concerned (e.g., the
mobility in the case of Brownian motion). The effect of the environment or * bath ’
on the system of interest is summarised in a memory function or kernel. This quan-
tity may be estimated or modelled on the basis of physical considerations in a given
situation. Considerzble progress has been made in this direction, particularly in
connection with the study of liquids, and a vast literature exists on the subject.

In a certain sense, the GLE is the most general linear stochastic equation possible
(Mori 1965; Tokuyama and Mori 1976). Such an equation must satisfy a certain
fundamental consistency condition which goes under the general name, * fluctuation-
dissipation (FD) thcorem °. Kubo (1966) has shown explicitly how the FD theorem is
obtained in the case of the GLE for the velocity of a classical Brownian particle. In
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what he terms the first FD theorem, the mobility is related to the velocity auto-correla-
tion function in equilibrium, i.e., in the absence of an applied force. This is, of course,
at the heart of LRT.* A corollary to the above relation, called the second FD
theorem, is also obtained by Kubo. This is a generalisation of the familiar Nyquist
theorem. It relates the memory function to the auto-correlation of the random
force that is responsible for the fluctuations in the velocity of the Brownian particle.

Kubo’s treatment is a exhaustive one, covering a number of other topics (e.g.,
LRT) as well, and the final forms obtained for the FD theorems are certainly correct.
There are, however, a few points in the course of the derivations which need an
improved treatment so as to exhibit the chain of reasoning clearly and to make the
proofs logically consistent. The first such point is an explanation (based on physical
grounds) of the need for, and mode of, constructing an effective non-stationary force
R(t; ty) over and above the true stationary random force L(¢) originally introduced
in the GLE. A closely related matter is the causality condition in terms of R; we
shall comment further on this shortly. The second point occurs in the proof of the
second FD theorem using the relation between the power spectra of the driving force
L and the driven variable », the velocity. We show how the proof may be carried to
completion without lack of rigour by a simple argument based on the analyticity of
certain quantities that occur. Finally, we consider the alternative derivation of the
theorem directly from the GLE. In this route it is necessary at the last stage to estab-
lish, independently, the equality of the auto-correlation functions of L and R. By
doing so, we take care of the lacuna in the original derivation. These are the modest
objectives of the present paper, in which the final results arrived at (the FD theorems)
are already known. Our aim is to present straightforward and logically consistent
derivations of these directly from the GLE. In § 3 we make a brief but pertinent
digression into the LRT version of the FD theorem for the mobility. Sections
4, 5 and 6 concerned with the actual derivation of the FD theorems from the GLE.
Finally, in §7, we draw attention (with examples) to a very simple method of
obtaining the auto-correlation in equilibrium of the driven variable from the
solution of a stochastic equation such as the GLE.

We are concerned here only with the FD theorems associated with the GLE. The
conditional and joint probability distribution functions characterising the statistics of
the velocity variable are not considered. Recently, in a very interesting paper, Fox
(1977) has solved the latter problem for the case of a stationary Gaussian driving
force L(t): the velocity inherits the Gaussian property, and its auto-correlation func-
tion determines all its distribution functions. The FD theorem (in the form expressed
by equation (28) below) is of course built into the GLE right from the start, in equa-
tion (2) of Fox.

Before turning to the derivations proper, it is instructive (for the sake of clarity)
to identify the further input information needed to supplement the GLE and thereby
to make such a stochastic model a complete one.

(i) The GLE is a stochastic equation. The statistical properties of the random or
Langevin force L(z) driving the velocity fluctuations must be specified. The
basic assumption is that L is a stationary process with zero mean.

*A lucid account of the connection between response, relaxation and fluctuations may be
found in Kubo (1973).
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The solution »(z) of the GLE, averaged over the statistics of L, still refers to an
average over a sub-ensemble corresponding to a given initial condition #(¢,)=u1,.
Complete averages must be found by a further integration over the single-
variable or first probability distribution P;(u,, 1), as pointed out long ago by
Uhlenbeck and Ornstein (1930). This distribution must be specified separately.
We are generally concerned with an equilibrium situation. In particular, this
means that P;(z,, o) is a stationary, stable distribution P,(z,). Equilibrium, or
the damping out of spontaneous fluctuations (which is the principle underlying
the FD concept), means that the conditional probability Py(v, ¢| o, ;) appro-
aches precisely the original stable distribution P;(v) as (#—fg)—o00 (Doob 1942).
As Fox (1977) puts it succinctly, ‘ the Maxwellian persists.’* It is this crucial
property that relates the strength of the random force to the friction coefficient
in the Langevin equation (a special case of (28)), or, equivalently, relates the
coefficient of the gradient term §(vPy)/dv to that of the diffusion term §P,/d7?
in the standard Fokker-Planck equation for P,. The powerful nature of this
inner consistency criterion is illustrated in § 7, where we obtain the equilibrium
auto-correlation almost effortlessly.

The velocity response we are interested in is the retarded response. In the langu-

age of LRT, the mobility u(w) is the retarded generalised susceptibility Xf,e; (w).

The evaluation of this quantity naturally requires that the appropriate boundary
condition be put in. In LRT (Kubo 1966), one may do so by choosing the
appropriate solution of the Liouville equation for the density matrix. In the
stochastic GLE model, one must explicitly put in a causality condition that
mathematically expresses the physical statement: ‘ The velocity at time ¢, is
uncorrelated with the driving force (to be properly chosen) at a later time
(to--1)’. This is precisely what has been done by Kubo (1966). We have, in
§ 4, explained the reasoning behind the choice of the force R (t,+1; t,) that is
uncorrelated to v (f). Recently, Felderhof (1978) has criticised Kubo’s
derivation of the FD theorem. According to him, the causality condition
{u(to)R(to+1; 1)) =0is really a corollary of the FD theorem, whereas in Kubo’s
method of derivation it is part of the input information. Felderhof establishes
the FD theorem by appealing to the Nyquist theorem (actually, a generalised
Onsager relation): to be specific, by putting in a certain analyticity property of
the response of a ¢ passive linear system ’. The vanishing of {u(t)R(t-1; to))
is then shown to follow as an incidental corollary. We do not feel that Felder-
hof’s criticism is justified. After all, where does the crucial analyticity property
referred to above come from, if not from (macro-) causality? As used in
Felderhof, this property is a general one that obtains in LRT. If we use this
information in the GLE, we are directly assuming that the GLE and LRT are
compatible (which of course they are). But the whole point of using the GLE is
to have an explicit, stochastic model for the study of fluctuations and related
dynamics on a footing that is more or less independent of LRT. We should
like to answer questions regarding correlations, the approach to stable

*The GLE (or even the LE) can be consistent with stable equilibrium dg'stributlpns_other than the
Maxwellian (i.e., a Gaussian); see Doob (1942). We do not go into this technicality here. Nor
are we concerned with the possibility that the asymptotic solution of a Eokker-P{an_ck type equa-
tion for a Markov process may in some cases be different from a Gaussian. This issue has been
beautifully clarified by Van Kampen (1977).
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equilibrium distributions, the response to external stimuli, etc. without borrowing
from the results of LRT as and when needed. True, the FD theorem (a genera-
lised Onsager relation) is basic (as Felderhof states). Before using the GLE
for other purposes, it is therefore necessary to check that it is compatible with
the FD theorem. Deriving the FD theorem from the GLE is just a convenient,
direct method of establishing this compatibility. And the causality condition
is a piece of supplementary information needed for this purpose.* The last four
sentences summarise, in our opinion, the motivation behind Kubo’s derivation.
Such a derivation should not be misconstrued as a claim that the causality
condition is more basic than the FD theorem, as Felderhof has interpreted it, so
that one proceeds to assume the latter to  derive > the former as a corollary!

2. Generalised Langévin equation and the mobility

We consider a Brownian particle subjected to the action of an external force F(z)

that is switched on at z=—oc0. The GLE for the velocity of the particle is, in standard
notation, : '

t |
mi(t)-+m f dt'y(t—t)o(t)=L()+F(E), | (1)

— Q0

where L(t) is the random force and y(z—¢') is the memory function or kernel re-
presenting the friction due to the medium. The statistical properties of L(t) are
supposed to be independent of the applied force F(¢). In particular, it is assumed
that (z) is a stationary random process, and {(L(z))=0.

~ The (velocity) response of the particle is described by its frequency-dependent
mobility p(w), defined as follows. A. * monochromatic’ force

F(t) = Re [F, exp (—iwt)] . )
is turned on at t= —co. At any finite value of ¢, the transient effects would have dis-
appeared. The average velocity response is then given by

(1)) = Re [u(w) Fy oxp (—iwt)]. ®

As already stated, the GLE provides a convenient representation for w(w) in terms

of the memory function: it follows from (1) that

m () = [7(w) —io] @

where  y(w) = f dt y(t) ekp (iwt), ®
0

is the Pourier-Laplace transform** of the kernel w(t).

*The ‘ necessary and sufficient’® nature of this condition in the case‘of the ordinary Langevin

~equation has already been discussed with full mathematical rigour by Doob (1942).

**If the integral in (5) does not exist, we mean by 7(w) the analytic continuation to p=—lw of

‘the Laplace transform of y(f). This goes for all Fourier-Laplace transforms in this paper.
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3. The (first) fluctuation-dissipation theorem from response theory

The mobility u(w) is of course just the generalised susceptibility y,.(w) in the sense
of Kubo (1966), for the applied force F(t) corresponds to a perturbation —xF(t)
added to the unperturbed Hamiltonian H, of the system. LRT for classical varlables
yields the expression

() = Xox@) = B [ df (o(0)olt))oq exp (G1), ©)
0

where 8 = 1/kgT. {v(0) u(2)),, is the velocity auto-correlation in equilibrium, in
the absence of F(t). The velocity is a stationary rtandom process in this situation.
Equation (6) is the first FD theorem. (Strictly speaking, the term ¢ FD theorem ’
should be reserved for (10) below, relating the Fourier transforms of the ¢ symmetris-
ed ’ and ‘ antisymmetrised ’ correlations.)

We may recapitulate briefly some further propertles that are obtamable from
LRT (Kubo 1966). It follows from the definition of the velocity that

B {o(®) o(t))eq = {{x (1), (1)} Ve (7
where {, } stands for the Poisson bracket. We thus have the equipartition theorem
(e =kp TIm. 8)

Further, the stationarity of »(z) in equlhbrlum implies the symmetry property for
the response function

<ZJ(0) v(t)>eq = d’ux (t) : ‘f’vx (_t) ’ (9)

This in turn means that the weight function in the spectral representation of the
generalised susceptibility y,.(w) is equal to (1/7) times the real part of y,, (w). The
relation between the symmetrised correlation and the response function then reads
(again in the classical limit)

B, AD)Yan = Qfin) [ d w7 e @) exp [0 (-—1)], (10)

where [, ].- is the anti-commutator and ' is the real part of y. Differentiating both
sides with respect to ¢’ then setting ¢t'=¢, and using (4) and (8), we finally find that

Rejdw (@) — iw]= = | 11)

This might appear to be a constraint on the memory function. However, it is merely
a direct consequence of the analyticity of the generalised, susceptibility. Equation
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(11) is trivially verified in the case of the ordinary Langevin equation, which corres-
ponds to a white noise assumption for L(t)—and hence also to the form

A(£) = 78 (1), F(w) =y (= const), (12)

for the kernel. It is not difficult to establish that (11) is true in general. Macro-
causality says that the retarded susceptibility pu(w) is analytic in the upper half-plane.
Therefore

f dw p(w) + j dw p(w) =0, (13)
—0 T ,

where T is a semicircle in the upper half plane with radius— co. Now the memory
function y() can at best be instantaneous, as in (12), so that y(w) must either tend
to a constant as w - oo, or else vanish. Using this fact in the representation (4) for
p(w), the contribution from the integral over I' is equal to — . Equation (11) follows
at once. We remark once again that the crucial ingredient in the above is causality
in the macroscopic sense.

4, Direct proof of the FD theorem from the GLE

We wish to emphasise that, once the GLE is written down as a stochastic equation
based on physical considerations (mentioned earlier), it is a self-contained microscopic
model in a certain sense. There should be no further need to borrow results from
LRT. We have already discussed the auxiliary input information required to supple-
ment the GLE model, and argued that causality is a boundary condition that is no
more intrinsic to one formalism than to another. We shall now show clearly how
the FD theorem follows from the GLE.
Our aim is to compute the equilibrium auto-correlation function

Colte) 2 (b + 1) Dews

where ¢ > 0 and ¢, is some fiducial instant of time. In the absence of an applied
force, the GLE at time (t, -+ 1) is

-t : 1
mb(z0+r)+mj At y(ty+t—t)o(t)y =L(tg+1) —m j dt’
1, : —

y(ty+t—1)o(t) = R(ty+t; 1) | 14

The purpose of splitting up the frictional force in the above manner (Kubo 1966) is
as follows. The friction is merely the ¢ systematic * part of the total random, internal
(medium-originated) force, and is in fact responsible for the correlation or memory
effects. When causality is expressed by the statement that the velocity at time £, is
uncorrelated to the force at subsequent instants of time, we must take care to ensure
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that this force includes* the correct systematic component. We are concerned with
the values of the relevant variable (here, velocity) from time 7, onwards. The syste-
matic part of the internal force on the Brownian particle at time #, is equal to

fo
—m j dt' v (te—t") v (). (15)

— 0

At time (f, -+ t), the systematic part of the internal force that depends on the (velo-
city) history of the particle upto time ¢, is precisely the second term on the right in
(14). For the purpose of evaluating the velocity auto-correlation (in which the
earlier time label is #,), we must thus define the effective force at time (f, + 7) as

t
Rty t; tg) =L (to + 1) — mja’t’y(t0 +t—tYo () @ (16)

It is zhis force with which v (,) is uncorrelated for ¢ > 0. We have already said that
there is nothing artificial or extraneous about this expression of causality: the physical
requirement of causality has to be imposed just as axiomatically in any other for-
malism, no more or less. '

Macrocausality in the GLE approach is thus expressed by the condition

(olte) R (to + 17 10) peqg = 0 (20). | a”n .

This immediately shows that the truly random part L(z) of the internal force is
correlated with the velocity; after some manipulations using the stationarity property
in equilibrium, this correlation may be written in the compact form

(o) L (to1)Ygq = m [ dr (2 + 7CAOU(T) g, (1>0). (18)
0

Returning to (14), we multiply both sides by v (¢,) and take the equilibrium ensemble
average. The right hand side vanishes because of (17). Multiply by exp (iwt) and
integrate over ¢ from 0 to co. Using the stationarity property of the velocity in
equilibrium, we obtain after some algebra

fodt olto) v (t+1)) ex;ﬁ (iwt) = %, (19
3 7o se Yw) — iw

where 7 () is the Fourier-Laplace transform of y (¢), already defined in (5). We
now need a statement on the single variable equilibrium distribution Py (s) to
supplement the GLE for the evolution of the velocity from a given initial value:
namely, that P, (v) is a Maxwellian.** = Then <22(Z,)D,, is fixed by the equipartition
theorem to be equal to kzT/m, and (19) coincides with the LRT result, (6).

*The minus sign on the right in (14) is an addition, not a subtraction, of the friction component.

**Recall the remarks in § 1. We may add the following technical points. The ordinary Langevin
equation for » is equivalent to a Fokker-Planck equation (for P.) of the second type in the sense of
Van Kampen (1977), and the asymptotic solution of the latter is a Gaussian (the Maxwell distribu-
tion). The GLE with a stationary Gaussian L(z) leads to a Fokker-Planck-like equation for P,
{Fox 1977) whose asymptotic solution is again a Gaussian, ~
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5. The second FD theoreni: proof using the power spectra

The second FD theorem is a generalisation of the very familiar Nyquist relation
between the thermal noise voltage in a resistor and its resistance. The theorem
connects the auto-correlation of the random force L (¢) to the memory function y (f).
The proof involves certain subtleties that appear to have been overlooked in the
literature. We shall therefore present a careful derivation of the theorem. In § 6, we
have thought it worthwhile to present once again a rigorous version of an alternate
proof; here, too, a certain crucial point appears to have been slurred over in previous
work.
As before, we begin with the GLE in the absence of an external force:

t
¥ mi(t)+m J' dt'y (t —t") o (") = L (2). (20)

—00

Fourier analysing L (¢) according to

L(z): J’ do L (o) exp (—iwt), . @1

—0

and similarly » (¢) too, it is seen easily that the retarded form of the memory function
in (20) leads directly to the solution

7 () = L ()fm [7 (w) — iv] = p ()L (). (22)

Given this, one can assert that the power spectra of » and L are related (Rice 1944,
1945; Wang and Uhlenbeck 1945) according to

o0

f dt {(0) (1) )eq €xp (i) = | p(w) |2 f dt{L(O)L(2) Yy xp (icit). (23)

- 00

Equation (23) is best proved by direct substitution of (22) in the left hand side, after
writing each velocity variable in terms of its Fourier transform 7(w). When simpli-
fication is carried out, one obtains the factor u(w) u(—w) in the penultimate step.
At this stage, one invokes the first FD theorem, already established, and observes
that w (w) is the one-sided Fouiier transform of a real function of ¢ (namely, the
equilibrium auto-correlation of the velocity). Hence p* (w) = pu (—w) for real o,
and (23) is obtained.*

Now (v (0) v(2)),, is an even functlon of ¢ (stationarity; commuting variables),
so that

f dt (L(0) L (1))eq exp (iwt) = 2 Re f dt (v (0) v (£))q €XP (iwt)
Zoo 5

= (2/B) Re u(w), o (24)

*This is of course a special case of the symmetry property x%p (w*) = ¥ 45 (—w) provable in
LRT for a generalised susceptibility.
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where the fnal step follows from the first FD theorem. Therefore (23) becomes

o0

[ dt <L) L (8)yeq oxp (iet) = (2/8) Re [1/p ()]

—0o0

— @m/B) Re 7 (o). | ‘ | ©5)

Using the symmetry of the correlation function of L, we get

Re j dt (L.(0) L (£)¢, xp (iwt) = (m/B) Re 7 (). (26)
0 .

Here is where we have to be careful. We cannot naively delete * Re’ on both sides
of (26) without a further observation. Now ¥ (w) is the Fourier-Laplace transform
of a real function ¥(t), and it is evident from the very representation (5) that it is
analytic in the upper half-plane in , in addition to the real axis (the latter following
from the presumed existence of the integral in (5) as it stands). Exactly the same
remarks apply to the integral on the left hand side in (26). Since the real parts of
the two analytic functions concerned are equal, so are their imaginary parts, and
hence the functions themselves.* Thus

[oe]

my (@) ky T = j dt {L (0) L (£)Yeq €Xp (icw?). Q7
0

This is the second FD theorem. In the case of the ordinary LE the left-hand side
reduces to myky, T, and the random force must be 8-correlated for consistency.
The usual relation between its ¢ strength * and the friction constant y is thus recovered.
We note in passing that for w = ip (p real), (27) becomes a relation between Laplace
transforms. = As these have unique inversions, it follows that :

my () ky T = <LO) L()eq> @

almost everywhere in 0 < ¢ < co (the region in which the memory function is
defined.) ' ‘ :

6. Alternate proof directly from the GLE

The theorem embodied in (27) may also be derived from the GLE in a manner similar
to that of § 4 for the first FD theorem, as follows. This routeisa bit more involved,
though, and one must proceed in two main steps. We first establish the theorem for
the random force R, and then demonstrate its equivalence with (27) which involves
the ‘ true ’ random force L.

*The possibility of the two functions of w differing by a pure imaginary constant is precluded,
because when o is on the positive imaginary axis (which is within the region of analyticity), both
functions must be real and equal to each other. : . :

T R —|
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Writing down the GLE (again in the absence of an applied force) at time #,, we have

- mao(ty) = R (y; to). (29)
t
Here R(to;t) =L(to) —m [ dt'y (to—1") 2 (2", (30)

as in the definition of R given in (16). Multiplying both sides by R (t,+¢; to),
mo(l)R(ty+1; 1) =R(ty; 1R (tg~+1; 1,) (+>0). (31)
On the left hand side, we substitute for R(t+1; 1) from the GLE at time (£,+2)

(namely, (14)), and average over the equilibrium ensemble. Multiply both sides by

exp (iwt), and integrate over ¢ from 0 to oo, as before. Simplification of the left-hand
side is carried out using the properties

<l}(to)”(to+t)>eq = - (v(to)z}(to+t)>eq’ (32)
and {o(tg)o(tg)eq = O, (33)

which follow from stationarity. After some algebra (Balakrishnan 1976), we finally
arrive at

J dt(Rts; t)R(to+8; 10)yeq exp (iwt)=m? [F(w)—i].
0 !

: [ (B¥(t0) Yoq +ieo f dt Cot))oltyt1) g Xp (icot) . (34)
o 0

The integral on the right, however, has already been evaluated, in (19), while estab-
lishing the first FD theorem. Putting this in and using also the equipartition theorem
for {v?),,, We get

my(w)kpT= f dt{R(ty; to)R(to+1; 10) e, €xp (iowt). 35
0

As already pointed out in Kubo (1966), R(ty; o) is not a stationary random variable

(in contrast to L(z,)), because of the dependence on the fiducial instant of time #,.
However, it can be shown that

CR{to; 10)R (to+1; 1) aq = (LUDL(tg+H1) Do (36)

as we shall demonstrate. It is clearly necessary to do so in order to complete the
proof of the theorem. In Kubo (1966), on the other hand, one encounters a circular
argument at this stage: it is argued that (36) is true because (27) and (35) hold good,
and that, putting this back in (27), one obtains (35)!
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Equation (36) is proved as follows, The definition of R yields

Lo Iy

{R(to; t)R(to+1; 10))eq = (L(t)L (to+1))eq + mzf dty f dty
Y(to—1t1)y (fott—13) {(o(t)o(t2))e,

t .
—m f dty y(to—1,) {o(ty) L(te+1)),,

I
—m [ dty Htott—1;) (o(t) L(t0) eg- @37

-0

But the causality condition (17) has already shown that » and L are correlated as in
(18). The original form of this relation follows at once from (17), and is

t
Golto) Lttt =m [ dt’ yltg+t—1) {ot) o(t)yeqs (10).  (39)

This result (with appropriately altered variables) is applied to the last two terms on
the right hand side in (37). These terms then add up to

t, t,
—m* [ dty [ dty (o (8) v (1))eq [y (tg—1) ¥ (fg-1—1)
+y(tot+t—1y) v(ty—1ta)] (39

With the re-labelling f;«—>1?, in the second part of this expression, the above
cancels exactly against the second term on the right in (37). The identity(36) is thus
proved. Equation (35) then reduces to

mi(lesT = [ dt CLU)L(tor+1))eq exp (i), (40)
0 B

in terms of the true random force L(z). This coincides with (27), the second FD
theorem. '

7. Equilibrium autocorrelations from stochastic equations

In this final section, we should like to draw attention to a very simple property of
consistent stochastic equations that enables the equilibrium autocorrelation of the
‘ output ’ or driven variable to be obtained practically without effort.
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The method is just this. The solution to a stochastic equation such as the GLE has
two terms. The first involves the initial condition, while the second is the particular
integral involving the random force L(¢). For instance, (20) has the solution

T . t
(1) = mo(o)u(t) + [ di'p(t—t (1", | ay
0 S :

where p(?) is the inverse (Fourier-Laplace) transform of the quantity p(w) defined in
(4), and 2(0) is the (given) initial value of the velocity. To find the autocorrelation
in equilibrium, one must write down the expressions for u(t,) and v(fy-+1), multiply
the two, take averages over the distribution of the force L (in which process the terms
linear in L vanish, because L has zero mean); and then average over the distribution
Py(v(0)) of the initial velocity—or else, equivalently, simply let f;~co. In the latter
case, only the autocorrelation of L survives. This must be put in, the second FD
theorem for its normalisation must be incorporated, and finally the result for the
velocity autocorrelation emerges. Our observation is that as long as we know that
the equation is consistent with the FD theorem, this lengthy process can be short-
circuited—because much of it is a redundant verification all over again of the FD
theorem! In (41), let us directly average over the random force (i.e., over a sub-
ensemble corresponding to the given initial condition »(0)). The second term vanishes
because L has zero mean. Denoting this partial average by an overhead bar, we
have, on multiplying both sides by 2(0), ’ .

2(0) o(f) = v0)u(z) = mat Q) (1). @)
The autocorrelation in equilibrium is now obtained by averaging over all values of (0}

with the help of the stationary distribution P,»(0). For a Maxwellian, the equi-parti-
tion theorem {2%(0),, =k T /m directly yields

CUto)olta+1))eq = (o(0)0(1)Deq = M{PX0) g plt) = kpTu(2), (43)
without further ado*. It is to be noted that we have obviated the need for an elaborate
calculation; in the case of the GLE, for instance, one must expend much labour in
proving that

ty H . " o

J dt's [ at'y plte—t' (e —1) LGy

0 0 .

=k3T [u(ty—t)—p(t)pt)], B

for #,>¢, which Fox (1977) has done. Similar comments apply to the ordinary
Langevin equation ‘ o S : ~ :

mi()+myo()=L(s), . | @)

*This is, of course, the idea underlying Mori’s equation for the correlation function.
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where y is a constant (and L of course has different statistical propertles than in the
case of the GLE); as also fo the stochastic equation

mo(t)+my(t)o(t) =L(t), _ (46)

that describes a non-stationary, Gauésian, Markov process (Fox 1977). In each case,
the transient (i.e., the solution of the homogeneous equation) that is given by

2(1)=2(0) exp (—y1) (47)

in the case of (45), or by
‘ t
o(t)=0(0) exp [~ di' y(t")] - NCL)
0

in the case of (46), is sufficient to deduce the velocity autocorrelation in equilibrium
(This quantity is dependent on both time arguments in the second instance.) Ulti-
mately, this is because the systematic part of the random force embodied in the fric-
tion term has already been tailored to be consistent with the FD theorem. (This is
what we meant by a ‘ consistent * stochastic equation.) As a final, striking illustration
of the point, let us consider the (ordinary) Langevin equation for an oscillator (Uhlen-
beck and Ornstein 1930; Chandrasekhar 1943), :

mi(t)-Fmya(t)+me?x(t)=L(1), ' (49)
where the random force must be stationary, Gaussian and 8- correlated according to
UL tat1)y = 2myksT 8 (1), (50)

exactly as for the Langevin equation (45). The solution of (49) corresponding to
the initial conditions x=x, and v=y, at #=0 is given by

t

x(t)= [M sin w;t + X COS w; +_~.._ dt’L(t')
- 20, maw,
sin wy(t—t) exp (yz"/z)] exp (—1/2), NG
and o(t) = [ M sin wt-+v, cos wlz‘-{~ 1 fdt'L(t') {w; cos w; (t—1')
vy maw, : .
— by sin w— 10} exp (7'}2) | exp (—y12) (52)

where wi=(w?—y?/4) (underdamped case). It is evident that a brute force calculation
of the velocity autocorrelation in equilibrium, psing (50) for that of the force, is a
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tedious task in terms of the algebra involved. Our method, on the other hand,
immediately yields

Col0)(1) Do = [ (02> COS wrf— 2_1. Qu? Cxotodeg
Wy
+ v {hyey) sin wlt} exp (—yt/2). | (53)

The averages (2§, etc. can themselves be determined from (51) and (52) once
again, for instance, by using the property

(RDeg = lim (1) (54)

t—> 0

together with (50) for the autocorrelation of L. It is, however, simpler to use the
equipartition theorem which yields

{03Yeq = kg TImy {Xg)eq = kp T/mes?. (55)

Further, {xo ), must vanish because of the stationarity that obtains in equili-
brium. Hence

{o(0)o(1)Deq = (kp T/m) (cos wyt — 2l sin wlt) exp (—yt/2) (56)

Wy
and similarly

<x(0) X(t))eq = (kp T/me?) (cos wyt-- 2L sin wlt) exp (—y1/2). 57
w3

We have verified that the method works in more complicated cases as well. One
such is a linear reactive-diffusive stochastic equation occurring in the study of fluctua-
tions in chemical reactions (e.g., see Gardiner 1976; Grossmann 1976), that has re-
cently been used also in the analysis of resistance fluctuations (Balakrishnan and
Bansal 1978). The real power of the method, however, would seem to lie in the regime
of non-linear stochastic equations. Once we are satisfied that such an equation is
“ consistent * (in the sense explained above), it should be much easier to solve the
homogeneous equation (or to find a satisfactory approximate solution) and to
evaluate the equilibrium autocorrelation function using the stratagem described
here with appropriate modifications. We shall report on some work in this
direction elsewhere.
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