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Abstract. Entanglement is one of the key features of quantum world that has no classical
counterpart. This arises due to the linear superposition principle and the tensor product
structure of the Hilbert space when we deal with multiparticle systems. In this paper, we
will introduce the notion of entanglement for quantum systems that are governed by non-
Hermitian yet PT -symmetric Hamiltonians. We will show that maximally entangled states
in usual quantum theory behave like non-maximally entangled states in PT -symmetric
quantum theory. Furthermore, we will show how to create entanglement between two
PT qubits using non-Hermitian Hamiltonians and discuss the entangling capability of such
interaction Hamiltonians that are non-Hermitian in nature.
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1. Introduction

Entanglement is one of the weirdest features of quantum mechanics. In quantum
world, entanglement arises naturally when we have more than one particle at our
disposal. There is no classical analog of quantum entanglement and that makes
it more fascinating than anything else in physics. Though, there is a burst of
activity in understanding the nature of entanglement, the concept by itself is not
new. It was introduced by Schrödinger way back in 1935 and he has realized
that “entanglement is the characteristic trait of quantum mechanics, the one that
enforces its entire departure from classical lines of thought ” [1]. In the emerging
field of quantum information theory, entanglement plays a major role. This is also a
very useful resource in the sense that using entanglement one can do many things in
the quantum world which are usually impossible in ordinary classical world. Some
of these tasks are quantum computing [2], quantum teleportation [3], quantum
cryptography [4], remote state preparation [5], quantum communication [6], and so
on. The fundamental carrier of information in the quantum world is a quantum
bit or qubit. A qubit is any two-state quantum mechanical system that can exist
simultaneously in both 0 and 1. It differs from a classical bit in many ways. Some
important differences are that we can neither copy a qubit [7,8] nor can we delete
a qubit from two identical copies [9].
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In standard quantum mechanics the observables are represented by Hermitian
operators and the evolution of a closed system is governed by unitary evolution.
In recent years there is a considerable interest in quantum systems governed by
non-Hermitian Hamiltonians [10–15]. In this context it was discovered that there
exist a class of non-Hermitian Hamiltonians that possess real eigenvalues provided
they respect PT symmetry and the symmetry is unbroken. In PT -symmetric
quantum mechanics the usual condition of Hermiticity of operators is replaced by
the condition of CPT invariance, where C stands for charge conjugation, P for
parity and T for time reversal [10]. In standard quantum theory, CPT symmetry
and Hermiticity conditions are the same. The CPT invariance condition is a natural
extension of Hermiticity condition that allows reality of observables and unitary
dynamics. Using the operator C, Bender et al [11] have introduced an inner product
structure associated with CPT which can have positive definite norms for quantum
states.

In this paper we would like to introduce the notion of entanglement for quantum
systems described by non-Hermitian Hamiltonians. Usually, with non-Hermitian
Hamiltonians one may think that there will be dissipation in the system and one
may not be able to create entanglement. Nevertheless, we will show how to create
entanglement with interaction Hamiltonians that are non-Hermitian in nature. To-
wards the end, we will address what is the entangling capability of non-Hermitian
interaction Hamiltonians. Before doing so, first we will give basic definitions of
entanglement in standard quantum theory. Then we will introduce the notion of
PT -symmetric quantum bit (PT qubit) and the notion of quantum entanglement
in this theory. Because of the CPT inner product, orthogonal quantum states in
ordinary quantum theory become non-orthogonal quantum states in non-Hermitian
quantum theory. This has several consequences which will be explored in detail.
Also, we will show that if we take an Einstein–Podolsky–Rosen (EPR) entangled
state (which is known to be a maximally entangled state) in ordinary theory, that
becomes a non-maximally entangled state in non-Hermitian quantum theory. We
hope that the entanglement in PT -symmetric quantum theory may provide new
ways of processing information in the quantum world. We conclude our paper with
some implications and open questions.

2. Entanglement in usual quantum theory

Let us consider a composite system that consists of two or more subsystems. The
Hilbert space of a composite system is the tensor product of the individual Hilbert
spaces. In the case of bipartite quantum system we have the joint Hilbert space
H = H1 ⊗ H2. If the state of a composite system cannot be written as |Ψ〉12 =
|ψ〉1⊗ |φ〉2, then it is an entangled state. Suppose {|ψn〉} ∈ HN

1 and {|φm〉} ∈ HM
2

are the basis in the respective Hilbert spaces, then {|ψn〉1 ⊗ |φm〉2} ∈ HN
1 ⊗HM

2 is
a basis in the joint Hilbert space. A general pure bipartite state can be expressed
as

|Ψ〉12 =
NM∑

nm=1

Cnm|ψn〉1 ⊗ |φm〉2. (1)
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The above state cannot be written in product form for general amplitudes, hence it
is an entangled state. Thus, a generic pure bipartite state is actually an entangled
state. There is a beautiful theorem called the Schmidt decomposition theorem
which tells that any pure bipartite entangled state can be written as

|Ψ〉12 =
min(N,M)∑

i=1

√
pi|ai〉1 ⊗ |bi〉2, (2)

where pi ≥ o are the Schmidt coefficients, |ai〉, |bi〉 are the Schmidt vectors, and∑
i p1 = 1. It can be seen that if we have more than one non-zero Schmidt coeffi-

cients in the bipartite state then it is an entangled state. The Schmidt coefficients
are invariant under local unitary transformations.

Now, if we want to define the state of the individual systems, then they are given
by partial traces, i.e.,

ρ1 = tr2(|Ψ〉1212〈Ψ|) =
∑

i

pi|ai〉〈ai|

and

ρ2 = tr1(|Ψ〉1212〈Ψ|) =
∑

i

pi|bi〉〈bi|. (3)

Note that ρ1 and ρ2 are no longer pure, i.e., ρ2
i 6= ρi (i = 1, 2). This is another

indication that the original state of the composite system is an entangled state. If it
is not, then after performing partial trace the reduced density matrices will be still
pure. The existence of the Schmidt decomposition for bipartite states guarantees
that the reduced density matrices have equal spectrum, though the eigenvectors can
be different. It may be stated that if we have an entangled state of three or more
particles then there does not exist a Schmidt decomposition. The necessary and
sufficient conditions for the existence of Schmidt decomposition was found in ref.
[16]. If A is a linear Hermitian operator acting on H1 and if B is a linear Hermitian
operator acting on H2, then the expectation values of these local observables are
given by

12〈Ψ|A⊗ I|Ψ〉12 = tr1(ρ1A)

and

12〈Ψ|I ⊗B|Ψ〉12 = tr2(ρ2B). (4)

This suggests that the expectation values of the local observables are completely
determined by local (reduced) density matrices.

For any pure bipartite state one can quantify how much entanglement is there in
a given state. The entropy of any one of the reduced density matrix is a very good
measure of entanglement for any bipartite state |Ψ〉 [17]. It is given by

E(Ψ) = −tr1(ρ1 log ρ1) = −tr2(ρ2 log ρ2) = −
∑

i

pi log pi. (5)

This measure of entanglement satisfies the following properties:
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(i) E(Ψ) = 0 iff |Ψ〉 is separable.
(ii) E(Ψ) is invariant under local unitary transformations, i.e., E(Ψ) = E(U1 ⊗

V2Ψ).
(iii) E(Ψ) cannot increase under local operation and classical communications

(LOCC).
(iv) The entanglement content of n copies of |Ψ〉 is additive, i.e., E(Ψ⊗n) =

nE(Ψ).

The above ideas can be illustrated with two-qubits and two-qudits (qudit is a
d-dimensional Hilbert space system) entangled states. One famous entangled state
which has been extensively used in quantum information theory is the Einstein–
Podolsky–Rosen (EPR) [18] state |Ψ−〉 which is given by

|Ψ−〉 =
1√
2
(|0〉|1〉 − |1〉|0〉). (6)

This has one unit of entanglement or one (entangled bit) ebit (because ρ1 = ρ2 =
I/2). This is also a maximally entangled state for two-qubits. In fact, any state
which is locally equivalent to |Ψ−〉 will have one unit of entanglement. Similarly,
in a higher-dimensional Hilbert space (d× d) a maximally entangled state for two-
qudits can be written as

|Φ〉 =
1√
d

d−1∑

i=0

|i〉 ⊗ |i〉 (7)

which has E(Φ) = log d ebits. Here also any other state such as (U1 ⊗ V2)|Φ〉 will
have log d ebits of entanglement, where U1 and V2 are local unitary operators acting
on H1 and H2, respectively.

In information theory (both classical and quantum) there is a famous slogan due
to Landauer: “Information is physical”. In the same spirit, I would like to say that
Entanglement is Physical. This is justified for the following reasons: Entanglement
can be created, stored and consumed using physical systems and physical opera-
tions. Entanglement is independent of any particular representation. For example,
one ebit can be stored in two photons, two electrons or two atoms. As said before,
entanglement is a resource. One can do informational work like quantum comput-
ing, quantum teleportation, remote state preparation, quantum cryptography and
many more.

Since I am not going to review all the details of entanglement here, let me mention
some recent trends in entanglement theory. For the last several years, character-
ization and quantification of entanglement of multiparticle system is a vigorous
area of research [19]. Understanding how well one can generate entanglement is
another direction scientists are exploring. Also, there is an upsurge of interest in
understanding the dynamics of entanglement. In this context many authors have
investigated entanglement rate and entangling capabilities of non-local Hamiltoni-
ans [20], entangling power of quantum evolutions [21], various entangling operations
[22], and simulation of one Hamiltonian by another using only local operations [23]
and so on.
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3. Non-Hermitian quantum theory

In this section we will give the basic formalism that is necessary to develop the
notion of entanglement in non-Hermitian quantum theory. Recently, there has been
a great deal of interest in studying PT -symmetric quantum theory [10–15]. The
operator P transforms x → −x and p → −p. The operator T is anti-unitary and
its effect is to transform x → x, p → −p and i → −i. In the earlier formulation of
PT -symmetric quantum theory, it turned out that PT -symmetric quantum theory
introduced states which have negative norms. This had no clear interpretation.
This was cured by introducing another operator C called conjugation operator
[10,11]. This operator commutes with the Hamiltonian and the operator PT . Also
C2 = I, which implies that it has eigenvalues ±1.

Bender et al [10,11] have shown that non-Hermitian Hamiltonians can have real
eigenvalues if they possess PT symmetry, i.e., [H,PT ] = 0 and the symmetry is
unbroken (if all of the eigenfunctions of H are simultaneous eigenfunctions of the
operator PT ). Hamiltonians having unbroken PT symmetry can define a unitary
quantum theory. Unitarity can be shown by the fact that such Hamiltonians possess
a new symmetry called conjugation C with [C, H] = 0 and [C,PT ] = 0.

Quantum theory that deals with non-Hermitian Hamiltonians and respects CPT
symmetry may be called non-Hermitian quantum theory. One can formalize this
by stating the following postulates:

(i) A quantum system is a three-tuple (H,H, 〈·|·〉CPT ), where H is a physical
Hilbert space with the CPT inner product 〈·|·〉CPT having a positive norm,
and H is the non-Hermitian Hamiltonian.

(ii) The state of a system is a vector |ψ〉 in H. For any two vectors the CPT
inner product is defined as 〈ψ|φ〉CPT =

∫
dx[CPT ψ(x)]φ(x).

(iii) The time evolution of state vector is unitary with respect to CPT inner
product.

(iv) An observable can be a linear operator O, provided it is Hermitian with
respect to the CPT inner product, i.e., 〈·|O·〉CPT = 〈O · |·〉CPT .

(v) If we measure an observable O, then the eigenvalues are the possible outcomes.
(vi) If measurement gives an eigenvalue On, the states make a transition to the

eigenstate |ψn〉 and the probability of obtaining the eigenvalues On (say) in
a state |ψ〉 is given by

pn =
|〈ψ|ψn〉CPT |2

||ψ||CPT ||ψn||CPT , (8)

where ||ψ||CPT =
√
〈ψ|ψ〉CPT .

(vii) If we have two quantum systems (H1,H1, 〈·|·〉CPT ) and (H2,H2, 〈·|·〉CPT ),
then the state of the combined system will live in a tensor product Hilbert
space H1 ⊗H2.

Some remarks are in the order. In our effort to introduce entanglement we are
using CPT inner product and the above postulates. However, one can also use the
pseudo-Hermiticity approach [13,14] and do similar thing. Incidentally, the physical
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observable was defined as the one that is invariant under CPT operation [11]. It
was shown to be inconsistent with the dynamics of the theory [15]. Then, it was
modified and suggested that an observable should satisfy OT = (CPT )O(CPT ),
where OT is the transposition of O. This guarantees that the expectation value of
O in any state is real. However, this definition restricts that Hamiltonian be not
only PT -symmetric but also symmetric [24].

4. PT -symmetric quantum bit

In standard quantum mechanics, we say that any two-state system is a quantum
bit or a qubit. For example, an arbitrary state of a spin- 1

2 particle like |Ψ〉 = α| ↑
〉 + β| ↓〉 can represent a qubit. Here, |↑〉 and |↓〉 are the eigenstates of the Pauli
matrix σz. Similarly, if we have a two-level atom, then an arbitrary superposition
of the ground state and the first excited state will be a qubit. In fact, any arbitrary
superposition of two orthogonal states can represent a qubit. In the same vein, in
PT -symmetric quantum mechanics if we store information in any two-state system,
then we call it a PT -symmetric quantum bit or in short PT qubit. In general, a
PT qubit is different from a qubit.

In non-Hermitian quantum theory a general two-state system will be described
by a 2 × 2 Hamiltonian which respects CPT symmetry. Following ref. [10], this
Hamiltonian is given by

H =
(

reiθ s
t re−iθ

)
, (9)

with r, s, t and θ all are real numbers. This Hamiltonian is non-Hermitian yet it
has real eigenvalues whenever we have st > r2 sin2 θ. Also, this Hamiltonian is
invariant under CPT . Two distinct eigenstates of this Hamiltonian are given by

|ψ+〉 =
1√

2 cos α

(
eiα/2

e−iα/2

)
and |ψ−〉 =

1√
2 cos α

(
e−iα/2

−eiα/2

)
, (10)

where α is defined through sin α = (r/
√

st) sin θ. With respect to the CPT inner
product (which gives a positive definite inner product) we have 〈ψ±|ψ±〉CPT = 1
and 〈ψ±|ψ∓〉CPT = 0. The CPT inner product for any two states of a PT qubit is
given by

〈ψ|φ〉 = [(CPT )|ψ〉] · φ, (11)

where 〈ψ| is the CPT conjugate of |ψ〉. In the two-dimensional Hilbert space, the
operator C is given by

C =
1√

2 cos α

(
i sin α 1

1 −i sin α

)
. (12)

The operator P is unitary and is given by

P =
(

0 1
1 0

)
. (13)
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Since the eigenstates |ψ±〉 of the non-Hermitian Hamiltonian H span the two-
dimensional Hilbert space, one can encode one bit of information in these orthog-
onal states. An arbitrary state can be represented as the superposition of these
orthogonal states

|Ψ〉 = α|ψ+〉+ β|ψ−〉 = α|0CPT 〉+ β|1CPT 〉. (14)

Thus, any arbitrary superposition of two orthogonal states of PT -invariant Hamil-
tonian will be called PT -quantum bit or PT qubit. In fact, any linear superposition
of two orthogonal states of an observable O in PT -symmetric quantum theory can
represent a PT qubit.

5. Entanglement in non-Hermitian theory

Entanglement is one of the most important feature of quantum world [18]. As
noted earlier, when we have more than one qubit then the state of the composite
system may be found in an entangled state that has no classical analog. Now, in
PT -symmetric quantum theory we will have similar feature whenever we have more
than one PT qubit. In this section, we introduce these basic notions.

Suppose we have two quantum systems with non-Hermitian Hamiltonians H1

and H2, where

H1 =
(

reiθ s
s re−iθ

)
and H2 =

(
r′eiθ′ s′

s′ r′e−iθ′

)
. (15)

Let {|ψ±〉} ∈ H1 and {|ψ′±〉} ∈ H2 are the eigenfunctions of the Hamiltonians H1

and H2, respectively. Now, the state of the combined system will live in H1 ⊗H2

which is spanned by {|ψ+〉 ⊗ |ψ′+〉, |ψ+〉 ⊗ |ψ′−〉, |ψ−〉 ⊗ |ψ′+〉, |ψ−〉 ⊗ |ψ′−〉}. If the
combined state cannot be written as |Ψ〉 = |ψ〉 ⊗ |φ〉 = |ψ〉|φ〉, then it is entangled.
A general state of two PT qubit can be expanded using the joint basis in H1 ⊗H2

as

|Ψ〉 = a|ψ+〉 ⊗ |ψ′+〉+ b|ψ+〉 ⊗ |ψ′−〉+ c|ψ−〉 ⊗ |ψ′+〉+ d|ψ−〉 ⊗ |ψ′−〉.
(16)

For general values of the complex amplitudes a, b, c and d this is an entangled
state. However, if a

b = c
d = k, then |Ψ〉 is not entangled. Now, we can quantify the

entanglement content in |Ψ〉. It is given by the entropy of the reduced state of any
one of the subsystem, i.e.,

E(Ψ) = −λ+ log λ+ − λ− log λ−, (17)

where λ± = 1
2 (1±√X) and X = 1− 4[(|a|2 + |b|2)(|c|2 + |d|2)− |(ac∗+ bd∗)|2]. For

a
b = c

d = k, E(Ψ) = 0, as expected.
Now, the CPT inner product on the Hilbert spaces H1 and H1 can be used to

define the inner product on H1 ⊗ H1. For any two arbitrary vectors |Ψ〉, |Φ〉 ∈
H1 ⊗H2, we define the inner product between them as
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〈Ψ|Φ〉CPT = [(CPT )⊗ (CPT )|Ψ〉] · |Φ〉. (18)

Using this inner product we can calculate relevant physical quantities for the com-
posite system under consideration.

One can generalize the notion of entanglement for more than two PT qubits.
If we have n-PT qubits with individual Hamiltonians as Hi(i = 1, 2, . . . , n) with
respective eigenbasis {|ψ±i〉}, then the joint Hilbert spaces will be H1⊗H2 · · ·⊗Hn.
If a joint state cannot be written as |ψ〉1⊗|φ〉2 · · ·⊗|χ〉n, then it will be an entangled
state. A general n-PT qubit state can be written as

|Ψ〉 =
2n−1∑

k=0

αk|Xk〉, (19)

where |Xk〉 is an n-bit string of all possible combinations of |ψ±〉. Such a state will
be generically an entangled state. However, in this paper we are not going to dwell
upon multi-PT qubit systems.

In general, if we have two subsystems with non-Hermitian Hamiltonians in higher
dimension (Hd ⊗ Hd), then we can also introduce the notion of entanglement. A
general state of two PT -symmetric quantum systems can be written as (note that
for non-Hermitian quantum systems also we can write a Schmidt decomposition
theorem)

|Ψ〉 =
∑

i

√
λi|ψi〉 ⊗ |φi〉. (20)

Now the reduced states of the PT -symmetric particles 1 and 2 will be different if we
calculate the partial traces in usual quantum theory and in non-Hermitian quantum
theory. Because the inner products in ordinary and PT -symmetric quantum theory
are different, the partial traces will also be different. For example, the reduced
density matrix for particle 1 calculated in non-Hermitian quantum theory will be

ρ1 =
∑

ij

√
λiλj |ψi〉〈ψj |tr2(|φi〉〈φj |)

=
∑

ij

√
λiλj |ψi〉〈ψj |[(CPT )|φj〉] · |φi〉

=
∑

i

λi|ψi〉〈ψi|. (21)

But if we calculate the reduced density matrix of particle 1 in the usual quantum
theory, then we will have

ρ1 =
∑

ij

√
λiλj |ψi〉〈ψj |tr2(|φi〉〈φj |) =

∑

ij

√
λiλj |ψi〉〈ψj |〈φj |φi〉. (22)

This is no more in diagonal form because 〈φj |φi〉 6= δij in the usual sense. Similarly,
one can check that the reduced density matrix of particle 2 will be different in two
theories. The density for particle 2 in non-Hermitian theory will be
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ρ2 =
∑

ij

√
λiλj |φi〉〈φj |tr1(|ψi〉〈ψj |)

=
∑

ij

√
λiλj |φi〉〈φj | [(CPT )|ψj〉] · |ψi〉

=
∑

i

λi|φi〉〈φi|. (23)

But in the usual quantum theory, we will have

ρ2 =
∑

ij

√
λiλj |φi〉〈φj |tr1(|ψi〉〈ψj |) =

∑

ij

√
λiλj |φi〉〈φj |〈ψj |ψi〉. (24)

As a consequence, the entanglement content of a bipartite state depends on the
inner product being used to calculate the partial traces. In other words, E(Ψ) =
S(ρi) (i = 1, 2) in usual quantum theory is not equal to E(Ψ) = S(ρi) (i = 1, 2) in
the non-Hermitian quantum theory.

To illustrate the above idea, we can define a singlet state for two PT qubits as

|Ψ−CPT 〉 =
1√
2
(|ψ+〉|ψ−〉 − |ψ−〉|ψ+〉. (25)

In PT -symmetric quantum theory, the entanglement content of |Ψ−CPT 〉 is given by
E(Ψ−CPT ) = 1. Note that this is not the usual spin singlet |Ψ−〉. This is because the
entanglement content of |Ψ−〉 in non-Hermitian quantum theory will be different.

This is one interesting aspect here. The singlet state in ordinary quantum theory
has entanglement equal to one whereas in PT -symmetric quantum theory it will be
less than one. Similarly, a singlet state in PT -symmetric quantum theory will have
entanglement equal to one whereas in ordinary theory it will be less than one. This
is because of the different nature of inner products in ordinary and non-Hermitian
quantum theories. To see this clearly, let us consider the entangled state of spin-
singlet in ordinary quantum theory. If we want to know the entanglement content in
PT -symmetric quantum theory then we have to calculate the von Neumann entropy
of the reduced density matrix in PT -symmetric theory. The reduced density matrix
for particle 1 in non-Hermitian quantum theory is given by

ρ1 = tr2(|Ψ−〉〈Ψ−|) =
1
2
[|0〉〈0|〈1|1〉CPT − |0〉〈1|〈0|1〉CPT

−|1〉〈0|〈1|0〉CPT + |1〉〈1|〈0|0〉CPT ], (26)

where the CPT inner products are given by 〈0|0〉CPT = 〈1|1〉CPT = 1/ cos α,
〈0|1〉CPT = i tan α and 〈1|0〉CPT = −i tanα. Using this, the reduced density
matrix for particle 1 is given by

ρ1 = tr2(|Ψ−〉〈Ψ−|) =
1

2 cos2 α

(
1 + sin2 α −2i sinα
2i sin α 1 + sin2 α

)
. (27)

Note that ρ1 is not normalized. In general, the reduced density matrices that come
out of different inner product definitions are not normalized automatically. This is
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because a normalized state in the sense of usual inner product is not normalized in
the sense of CPT inner product. But, we can define a normalized density matrix
ρ̃1 = ρ1/Tr ρ1, so that

ρ̃1 =
1
2

(
1 −2i sin α

2i sin α 1

)
. (28)

The eigenvalues of the density matrix ρ̃1 are given by λ± = 1
2 (1± 2 sin α). Now,

the entanglement content of the usual singlet in PT -symmetric quantum theory is
given by

E(Ψ−) = −λ1 log λ1 − λ2 log λ2

= −1
2
(1 + 2 sin α) log

1
2
(1 + 2 sin α)

−1
2
(1− 2 sin α) log

1
2
(1− 2 sin α) 6= 1. (29)

This shows that if an entangled state in ordinary theory has one unit of en-
tanglement, in non-Hermitian quantum theory it will have less than one unit of
entanglement. This is the effect of non-Hermiticity on the quantum entanglement.
In the Hermitian limit (α = 0), E(Ψ−) = 1. Similarly, one can check that the
maximally entangled state |Ψ−CPT 〉 = 1

2 (|ψ+〉|ψ−〉 − |ψ−〉|ψ+〉) of non-Hermitian
quantum theory will have less than one unit of entanglement in ordinary quantum
theory. One implication of such an effect is that if Alice and Bob share an EPR
entangled state generated by PT -symmetric quantum world, then they cannot use
that for quantum teleportation in ordinary world, because, perfect quantum tele-
portation requires one ebit of entanglement.

6. Generation of entanglement with non-Hermitian Hamiltonian

We know that entanglement can be created between two systems via some in-
teraction. In standard quantum theory, interactions are described by Hermitian
Hamiltonians. One might think that with non-Hermitian Hamiltonians, one may
tend to destroy entanglement. However, here we show how to create entanglement
with such non-Hermitian Hamiltonians.

A general Hamiltonian for two particles in PT -symmetric quantum theory is
given by H = H1⊗I2+I1⊗H2+H12, where H1,H2 and H12 could be non-Hermitian
but respect PT symmetry. Total Hamiltonian must satisfy [H,PT ⊗ PT ] = 0.
If |Ψ(0)〉 = |ψ(0)〉 ⊗ |φ(0)〉 evolves to |Ψ(t)〉 under the action of this non-local
Hamiltonian, then the state at a later time could be entangled, i.e.,

|Ψ(t)〉 = e−iHt|ψ(0)〉 ⊗ |φ(0)〉 6= |ψ(t)〉 ⊗ |φ(t)〉. (30)

An important question is what is the best way to exploit the interaction to
produce entanglement? First we will give a simple non-local Hamiltonian that is
capable of creating entanglement. Consider an interacting Hamiltonian given by
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H =
(

reiθ s
s re−iθ

)
⊗

(
r′eiθ′ s′

s′ r′e−iθ′

)
(31)

which satisfies [H,PT ⊗ PT ] = 0. Using the Pauli matrices we can write H as

H =
[
r cos θI +

ω

2
σ · n

]
⊗

[
r′ cos θ′I +

ω′

2
σ · n′

]
, (32)

where n = (2/ω)(s, 0, ir sin θ), ω = 2s cos α, similarly for n′ and ω′. This interaction
Hamiltonian consists of local and non-local terms. To see this we write it explicitly
as

H = rr′ cos θ cos θ′(I ⊗ I) + r cos θ
ω′

2
(I ⊗ σ · n′)

+r′ cos θ′
ω

2
(σ · n⊗ I) +

ωω′

4
(σ · n⊗ σ · n′). (33)

In the above expression, first, second and third terms are local terms. We know that
the local terms cannot create entanglement, and so they can be transformed away.
The only term which is capable of creating entanglement is (ωω′/4)(σ · n⊗ σ · n′).
Therefore, the entangling evolution operator is given by

U(t) = exp
[
−i

ωω′t
4

(σ · n⊗ σ · n′)
]

= cos
ωω′t

4
I − i sin

ωω′t
4

(σ · n⊗ σ · n′). (34)

If the initial state of two PT qubit |Ψ(0)〉 = |0〉 ⊗ |0〉, then at a later time t the
state is given by

|Ψ(t)〉 = e−i ωω′t
4 (σ·n⊗σ·n′)|0〉 ⊗ |0〉

= α(t)|0〉|0〉+ β(t)|0〉|1〉+ γ(t)|1〉|0〉+ δ(t)|1〉|1〉, (35)

where

α(t) = cos
(

ωω′t
4

)
+ i sin

(
ωω′t

4

)
4

ωω′
rr′ sin θ sin θ′,

β(t) =
4

ωω′
sin

(
ωω′t

4

)
s′r sin θ,

γ(t) =
4

ωω′
sin

(
ωω′t

4

)
sr′ sin θ′,

and

δ(t) = −i
4ss′

ωω′
sin

(
ωω′t

4

)
.

It is clear that for the above values of the amplitudes |Ψ(t)〉 is indeed an entangled
state. Note that |Ψ(t)〉 is not normalized as the initial state that we have chosen is
also not normalized (under CPT inner product).
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7. Entangling capability of non-Hermitian Hamiltonians

Given an interaction Hamiltonian, what is the most efficient way of entangling par-
ticles? For Hermitian interaction Hamiltonians it is known that [20] (i) it is better
to start with initial entangled state, (ii) the best initial entanglement is indepen-
dent of the physical process, (iii) one can improve the capability if we allow fast
local operations and (iv) in some cases, the capability improves by using ancillas.
Now the question is whether similar facts hold for non-Hermitian Hamiltonians
that respect PT symmetry? In this section, we will define the entanglement rate
for non-Hermitian Hamiltonians. But we do not yet know if all these hold for
non-Hermitian case. It is plausible that the above facts may still hold.

Let an initial state |Ψ(0)〉 evolves to |Ψ(t)〉 via an interaction Hamiltonian H
which is non-Hermitian. Now, |Ψ(t)〉 can be entangled and the ability to create en-
tanglement depends on the nature of interaction and on the initial state. To quan-
tify the entanglement production, define the entanglement rate Γ(t) = dE(t)/dt,
where E(t) = E(Ψ) is the entanglement measure for the state |Ψ(t)〉. For example,
the entanglement measure can be the von Neumann entropy of the reduced density
matrix.

Let the state of two PT qubits at time t is

|Ψ(t)〉 =
√

λ1(t)|a1(t)〉|b1(t)〉+
√

λ2(t)|a2(t)〉|b2(t)〉 (36)

with 〈a1(t)|a2(t)〉CPT = 〈b1(t)|b2(t)〉CPT = 0 and λ1 + λ2 = 1. The amount of
entanglement at time t is given by the entropy of the reduced density matrix (with
λ = λ1)

E(Ψ(t)) = −λ(t) log λ(t)− (1− λ(t)) log(1− λ(t)). (37)

The entanglement rate is given by

Γ(t) =
dE(Ψ)

dλ

dλ

dt
. (38)

Using the Schrödinger equation we have

dλ

dt
= 2

√
λ(1− λ) Im〈a1(t)|〈b1(t)|H|a2(t)〉|b2(t)〉CPT . (39)

Therefore, the entanglement rate is

Γ(t) = f(λ)|h(H, a1, b1)|, (40)

where f(λ) = 2
√

λ(1− λ)(dE/dλ) and h(H, a1, b1) = 〈a1(t)|〈b1(t)|H|a2(t)〉
|b2(t)〉CPT . Let hmax is the maximum value of |h(H, a1, b1)|. Then hmax =
max||a1||,||b1||=1|〈a1(t)|〈b1(t)|H|a2(t)〉|b2(t)〉CPT |. As in the Hermitian case, if we
solve for dλ/dt we have λ(t) = sin2(hmaxt + φ0),with λ0 = sin2(φ0). The evolution
of entanglement is characterized by hmax which depends on the interaction Hamil-
tonian. Thus, for a given H, hmax measures the capability of creating entanglement.
The entanglement rate satisfies
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Γ(t) ≤ log[(1− λ)/λ]hmax, (41)

showing that the bound is proportional to the entangling capability for a given
Schmidt number.

In future, we will investigate the entanglement rate for two entangled PT -
symmetric quantum systems in higher dimension and see if all known results for
Hermitian case also hold for non-Hermitian case.

8. Conclusions

In this paper we have introduced the notion of entanglement for quantum sys-
tems described by non-Hermitian Hamiltonians. We have introduced the notion of
PT qubit in the non-Hermitian quantum theory. States of qubit which are orthogo-
nal in ordinary quantum theory become non-orthogonal in PT -symmetric quantum
theory and vice versa. More interestingly, the entanglement property of quantum
states also change if we go from one theory to another. We have shown that a
maximally entangled state that has von Neumann entropy equal to unity in the
ordinary theory will have less entropy in PT -symmetric quantum theory and vice
versa. One implication is that if there is a source that emits maximally entangled
state in the sense of ordinary theory and two observers are now in non-Hermitian
quantum world then they cannot use the entangled state for quantum teleportation.
This is so, because quantum teleportation requires one unit of entanglement and in
the non-Hermitian quantum world the entanglement content is not equal to unity.
We have illustrated how to create entanglement between two PT qubits using non-
Hermitian Hamiltonians. Furthermore, we have discussed the entangling capability
of interaction Hamiltonians that are non-Hermitian in nature. In future, we would
like to apply these ideas in the context of entangled brachistocrone problem in PT -
symmetric quantum theory. We hope that the fascinating field of entanglement
will take a new turn in the non-Hermitian quantum world. In particular, it will
be interesting to see if PT -symmetric entanglement can offer something new for
quantum information processing and in sharpening our understanding of quantum
channels.

Before ending, the following remarks are in order. Early formulation of PT -
symmetric quantum theory aimed to offer a genuine extension of usual quantum
theory. Later, mathematical unitary equivalence has been shown between pseudo-
Hermitian quantum theory and the usual quantum theory for single quantum sys-
tems [13]. However, entangled quantum systems may offer new insights into the
nature of this equivalence. Because of the fact that the equivalence property of
entangled states are different under joint unitary and under local unitary trans-
formations, it is conjectured that under local unitary transformations (or more
generally under LOCC paradigm) equivalence between pseudo-Hermitian and the
usual quantum theory may not exist. One hopes to discover something new in such
situations.
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Note added

After the completion of this work, A Mostafazadeh informed the author in Mumbai
during the International Conference on Non-Hermitian Hamiltonians in Quantum
Physics (Jan. 13–16, 2009) about ref. [25], where compound systems have been
described using pseudo-Hermitian quantum theory.
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