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Abstract. For a smooth, projective family of homogeneous vari-
eties defined over a number field, we show that if potential density
holds for the rational points of the base, then it also holds for the
total space. A conjecture of Campana and Peternell, known in di-
mension at most 4 and for certain higher dimensional cases, would
then imply potential density for the rational points of smooth pro-
jective varieties over number fields whose tangent bundle is nef.

Introduction

Let k be a number field. A geometrically integral variety X over the

field k satisfies potential density if there exists a finite field extension

K/k such that the set X(K) of rational points of X is Zariski dense

in XK = X ⊗k K. One hopes that this property only depends on the

geometry of the variety X over an algebraically closed field contain-

ing k, for instance over the complex numbers. It has been known for

some time that Abelian varieties satisfy potential density (see [Has,

Prop. 4.2]). It is an open problem whether potential density holds for

rationally connected varieties, in particular for Fano varieties.

For an overview of problems and results regarding potential density

over number field, as of 2003, including work of Bogomolov, Hasssett,

Tschinkel, we refer the reader to the survey [Has] by B. Hassett. Among

the significant later results, let us mention the paper by E. Amerik and

C. Voisin [Am-Vo].

According to the Hartshorne–Frenkel conjecture, proved by S. Mori,

a smooth, projective, complex variety whose tangent bundle is ample,

is isomorphic to projective space. Over an arbitrary field k of char-

acteristic zero, this implies that a smooth, projective, geometrically
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integral k-variety X whose tangent bundle is ample is a Severi-Brauer

variety. After a finite extension K/k of the ground field, this variety

acquires a rational point and then it k-isomorphic to projective space

over K, hence the set X(K) is Zariski dense in XK . This argument of

course has nothing to do with number fields.

One may wonder whether potential density holds more generally for

a smooth, projective, geometrically integral k-variety X whose tangent

bundle is nef. Such varieties have been studied in particular by Cam-

pana, Demailly, Peternell, Schneider. In this note we give a detailed

proof of a stability property for potential density (Theorem 2.3 and

Corollary 2.5). The result should be more or less obvious to experts.

Combined with a conjecture of Campana and Peternell, it predicts po-

tential density for varieties with nef tangent bundle (known in certain

cases, see section 3).

1. Known results on homogeneous spaces of linear

algebraic groups

The following theorem gathers results of T. A. Springer, J.-C. Douai

and M. Borovoi ([Bv]).

Theorem 1.1. Let k be a field of characteristic zero and let k be an al-

gebraic closure of k. Let G/k be a semisimple simply connected group.

Let X/k be a homogeneous space of G. Assume that a geometric sta-

bilizer H is connected.

(a) The homogeneous space structure on X defines a k-kernel L :=

(H, κ), and a class η(X) in the cohomology set H2(k,L). This class

is neutral if and only if there exists a principal homogeneous space E

under G and a G-equivariant map E→X.

(b) Let H
tor

be the maximal toric quotient of H. The k-kernel L
induces a k-kernel (H

tor
, κtor). To the latter is associated a natural

k-torus T . There is an induced map of sets

H2(k,L)→H2(k, T ).

Let ηtor
X ∈ H2(k, T ) denote the image of η(X).

(c) If L/k is a finite field extension such that X(L) 6= ∅ then

[L : k].ηtor
X = 0 ∈ H2(k, T ).
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(d) If X/k is projective, then H is connected, and the associated

torus T is a quasitrivial torus.

Proof. For (a), (b), (c), see [Bv] and the review in [CTGP, §5, p.

333–335]. For (d), see [CTGP, Lemma 5.6].

The following theorem combines results of Kneser, Bruhat-Tits (for

principal homogeneous spaces of semisimple simply connected groups)

and Springer, Douai, Borovoi.

Theorem 1.2. Let k be a p-adic field. In the situation of Theorem 1.1,

the class η(X) is neutral if and only if ηtor
X = 0 ∈ H2(k, T ). In that

case, X has a k-point.

Proof. [Bv, Thm. 5.5] and [CTGP, Prop. 5.4].

Proposition 1.3. Let k be a field of characteristic zero and let k be an

algebraic closure of k. Let X/k be a smooth, projective, geometrically

connected variety.

(a) If X ×k k is a homogeneous space of a linear algebraic group,

then there exists a semisimple simply connected group G over k such

that X is a homogeneous space of G.

(b)The geometric stabilizers of this action are parabolic groups, in

particular they are connected.

(c) If X(k) 6= ∅, then X is k-birational to projective space.

Proof. Statement (a) is a special case of the following theorem of

Demazure. The idea here is to consider the neutral component G =

Aut0X/k of the automorphism group of X over k, which is an adjoint

group, and then to take the semisimple cover of that group. For (b),

see [Bo, IV.11.6]. For (c), see [Bo, IV.14.21 and V.20.5].

Theorem 1.4. Let k be a field of characteristic zero and let k be an

algebraic closure of k. Let p : X→Y be a smooth, proper k-morphism

of smooth, geometrically connected k-varieties.

(a) (Demazure) If each geometric fibre of p is a homogeneous space

of a connected linear algebraic group then the group G = Aut0X/Y is a

semisimple group over Y and X→Y is a homogeneous space of G. The

fibres of G are adjoint groups. There also exists a semisimple group

Gsc over Y , whose fibres are simply connected semisimple groups, such

that X is a homogeneous space of Gsc.
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(b) In the above situation, there exists a finite Zariski open cover

{Ui}i∈I of Y and quasifinite, surjective, étale maps Vi→Ui which fac-

torize as Vi→X ×Y Ui→Ui.

(c) There exists an integer d such that for any point M ∈ Y the

torus TM over the residue field k(M) associated to the homogeneous

space X ×Y M (see Theorem 1.1 (b)) has rank d.

(d) There exists an integer N > 0 such that for any field L containing

k and any L-point P ∈ Y (L), the class ηtor
XP
∈ H2(L, TP ) is N-torsion.

Here TP denotes the k-torus associated to the k-variety XP (fibre of

X→Y at P ) viewed as a homogeneous space of Gsc
P .

Proof. Statement (a) is [De, Prop. 4]) of Demazure. Statement

(b) is a general fact for a smooth, surjective morphism X→Y . For

any point P ∈ Y (k) there exists an i with P ∈ Ui and a closed point

M ∈ Vi mapping to P . Let k(M) be the residue field of M . Since

the set I is finite and for each i the degrees of the fibres of Vi→Ui

are bounded, there exists a fixed integer N > 0, independent of P ,

such that the degree of the field extension k(M)/k divides N . We

now use Theorem 1.1, which applies to the present situation in view

of Proposition 1.3. The class η ∈ H1(k, TP ) vanishes in H1(k(M), TP ).

Hence its corestriction [k(M) : k].η vanishes in H1(k, TP ). So does N.η.

Theorem 1.5. (Harder) Let k be a number field. Let X/k be a smooth

projective homogeneous variety under the action of a connected linear

algebraic group. Then the Hasse principle holds for X : if X has points

in all completions of k, then it has a point in k.

Proof. In [Ha], Harder reduces the local-global statement to the

Hasse principle for principal homogeneous spaces of semisimple simply

connected groups. In this set-up, the local-global principle is due to

Eichler, Kneser, Harder, and Chernousov.

2. The theorem

To prove the main theorem, we shall use two further results. The

first one is a special case of a standard result in the study of the Hasse

principle.
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Theorem 2.1. Let k be a number field. Let p : X→Y be a smooth, pro-

jective morphism of projective, geometrically integral k-varieties. As-

sume that the fibres of p are homogeneous spaces of connected linear

algebraic groups. Then there exists a finite set S of places of k such

that for any finite field extension L/k and any place w of L not lying

above a place in S the induced map X(Lw)→Y (Lw) is onto.

Proof. By Theorem 1.4, there exists a semisimple group G over

Y such that X is a homogeneous space of G. By a standard limit

argument, which is easy in the present, projective context, (for a more

general set up, see EGA IV 8), the whole situation may be spread

out over an open set B of the spectrum of the ring of integers of k.

Let X→Y and G/Y denote the corresponding objects. Let v be a

place in B. Let Ov ⊂ kv denote the ring of integers in the completion

kv, and let Fv denote the residue field. Let Pv ∈ Y (kv). Since Y/B is

proper, we have Y(Ov) = Y (kv), the point Pv may be viewed as a point

Pv ∈ Y(Ov). By restriction to Pv one gets a homogeneous space of the

Ov-semisimple group G ×Y Pv. One then considers the reduction of

all this over the finite field Fv. Any homogeneous space of a connected

linear algebraic group over a finite field has a rational point (Lang,

Springer, see Serre [S2, Chap. III, §2]). By Hensel’s lemma one then

lifts such a point to an Ov-point of X ×Y Pv. Such a point defines a

kv-point of X whose image is Pv ∈ Y (kv). Thus X(kv)→Y (kv) is onto.

The same argument works over any finite field extension L of k, with

the inverse image of B in the spectrum of the ring of integers of L.

Lemma 2.2. Let k be a p-adic field. Let T be a quasisplit torus of

dimension d. Let N > 0 be an integer. If L/k is a field extension

whose degree is divisible by N.d! then the restriction map on N-torsion

classes

H2(k, T )[N ]→H2(L, T )[N ]

is zero.

Proof. We immediately reduce to the case T = RK/kGm, where K/k

is a field extension of degree r ≤ d. By a lemma of Faddeev and Shapiro

([S2, Chap. I, §2.5]), the restriction map H2(k, T )→H2(L, T ) then

reads Br(K)→⊕iBr(Li), where L⊗k K =
∏

i Li is the decomposition

into a finite product of fields. We have the embeddings k ⊂ K ⊂ Li
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and k ⊂ L ⊂ Li. By assumption, N.d! divides [L : k], which divides

[Li : k] = [K : k][Li : K] = r[Li : K]. It follows that N divides

[Li : K]. But the map of Brauer groups of local fields Br(K)→Br(Li)

reads as multiplication by [Li : K] on Q/Z ([S1, Chap. XIII, §3, Prop.

7 p. 201]. Hence on N -torsion it is zero.

Theorem 2.3. Let k be a number field. Let p : X→Y be a smooth,

proper morphism of geometrically integral varieties. Assume that the

geometric fibres of p are homogeneous spaces of connected linear alge-

braic groups. Then there exists a finite field extension L/k such that

Y (k) ⊂ Y (L) lies in the image of X(L)→Y (L). If Y (k) is Zariski

dense in Y , then for L as above, X(L) is Zariski dense in XL.

Proof. By Theorem 2.1, there exists a finite set S of places of k,

which we assume to contain all archimedean places, such that for any

finite field extension L/k and any place w of L not lying above a place

in S the induced map X(Lw)→Y (Lw) is onto. By Theorem 1.4, there

exists an integer d > 0 and an integer N > 0, which we may choose

even, such that for any field L containing k, and any point M ∈ Y (L),

the torus TM over L associated to the homogeneous space XM defined

by the fibre at M is a quasitrivial torus over field L, of dimension d,

and the class ηtor(XM) ∈ H2(L, TM) is annihilated by N . For each

finite place v ∈ S let us pick a field extension F v/kv of degree N.d!.

For each archimedean place v of k let F v/kv be a separable extension

of kv of degree N.d!, hence even, which breaks up as the product of

copies of the complex field. By weak approximation for the field k and

Krasner’s lemma [S1, Chap. II, §2, Exercice 2, p. 40 ], there exists a

field extension L/k of degree N.d! such that for each v ∈ S, there is an

isomorphism L ⊗k kv ' F v. In particular, for each finite place v of k

in S, there is just one place w of L above v.

Let now P ∈ Y (k) be an arbitrary point, let T = TP be the k-

torus of dimension d associated to the homogeneous space XP and let

η = ηtor(T ) ∈ H2(k, T ) be the associated class. This class is annihilated

by N . At any place v of k not in S, the fibre XP has a kv-point,

hence ηv = 0 ∈ H2(kv, T ). If w is a place of L over a place of S,

Lemma 2.2 and the choice of the extension L/k imply that the image

of η in H2(Lw, T ) vanishes. Thus ηL ∈ H2(L, T ) vanishes over each

completion of L. By theorem 1.2 this implies that XP ⊗k L has points
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in all completions of L. By Theorem 1.5 this implies that the L-variety

XP ⊗k L has an L-point, and then that XP ⊗k L is L-birational to

projective space over L, in particular L-points are Zariski dense on

XL. This completes the proof of the theorem.

Remark 2.4. In the more general context of integral points, a spe-

cial case of the above theorem (family of Severi–Brauer varieties) was

remarked some time ago by the first named author [HT, Thm. 2.8].

One could certainly also write down an integral points version of The-

orem 2.3.

Corollary 2.5. Let k be a number field. Let A be abelian variety over

k. Let p : X→A be a smooth, proper morphism of geometrically integral

varieties. Assume that the geometric fibres of p are homogeneous spaces

of connected linear algebraic groups. Then there exists a finite field

extension K/k such that X(K) is Zariski dense in XK.

Proof. Since potential density holds for abelian varieties ([Has,

Prop. 4.2]), this is an immediate consequence of Theorem 2.3.

3. Varieties with nef tangent bundles : the conjecture

of Campana and Peternell

In this section we discuss potential density of rational points for

smooth, projective, geometrically integral varieties over number field,

under the assumption that their tangent bundle is numerically effective

(nef). By definition, this means that the line bundle L := OPT (X)(1)

on the projectivized tangent bundle PT (X), is numerically effective,

i.e. L.C ≥ 0, for any curve C on PT (X).

Recall that a smooth, projective variety X is a Fano variety if the

anticanonical line bundle −KX is ample. The following theorem was

conjectured by Campana and Peternell and proved by them in dimen-

sion at most 3 [Ca-Pe, Theorem, p.169].

Theorem 3.1. (Demailly–Peternell–Schneider) [DPS, Main Theorem,

p. 296] Let k be an algebraically closed field of characteristic zero. Let

X be a smooth, projective, connected variety with nef tangent bundle.

Then there exists a finite étale connected cover X ′→X such that for

any k-point of X ′ the associated Albanese map X ′→A to the Albanese
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variety of X ′ (which is an abelian variety) is a smooth, projective mor-

phism whose fibres are Fano varieties with nef tangent bundles.

Campana and Peternell put forward the following conjecture.

Conjecture 3.2. [Ca-Pe, Conjecture 11.1, p. 185] Over an algebraically

closed field of characteristic zero, a Fano variety with nef tangent bun-

dle is a projective homogeneous variety of a linear algebraic group, i.e.

it is of the shape G/P for G a connected linear algebraic group and P

a parabolic subgroup.

A variant is formulated by J-M. Hwang [Hw, Conjecture 4.1, p. 622]:

this should be the case as soon as all rational curves on X are free.

The Campana-Peternell conjecture 3.2 was proved by Campana and

Peternell in dimension up to 3 and by J.-M. Hwang in dimension 4. It

has also been proved for higher dimensional Fano, when the Betti num-

bers satisfy b2 = b4 = 1, and the variety of minimal rational tangents

at a general point is one-dimensional [Mk, Main Theorem, p. 2641],

[Hw, Theorem 4.3, p. 623]. See [Hw, section 4] for a discussion and

references. See also a related recent work [Bi-Br]. In these various

cases, the following theorem therefore applies.

Theorem 3.3. Suppose X is a smooth projective variety with a nef

tangent bundle, defined over a number field. Under Conjecture 3.2 on

Fano varieties, potential density holds for X.

Proof. Combine Theorem 3.1 (which descends from an algebraic

closure of k to some finite extension of k), Conjecture 3.2 and Corollary

2.5.

Question 3.4. Let k be an algebraically closed field. Let X→Y be

a smooth, projective family of homogenous spaces of connected linear

algebraic groups. Does there exist a finite étale map Z→Y with Z

connected such that X ×Y Z→Z admits a rational section?

Since potential density is inherited by finite étale covers (Chevalley–

Weil, cf. [Has, Prop. 3.4]), an affirmative answer to the question would

lead to an alternate proof of Theorem 2.3.

Over an algebraically closed field, a connected, finite étale cover of an

abelian variety may be given the structure of an abelian variety. If for



POTENTIAL DENSITY FOR SOME FAMILIES OF HOMOGENEOUS SPACES 9

Y is an abelian variety the above question had an affirmative answer,

this would give an alternate, less arithmetic proof for Corollary 2.5 and

therefore for Theorem 3.3.

In the special case where X→Y is a Severi-Brauer scheme over an

abelian variety Y , the answer to the above question is in the affirmative

(see the proof of [Ca-Pe, Lemma 7.4 (1)]).
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