
Behaviour of Lagrangian triangular mixed fluid
finite elements

S GOPALAKRISHNAN* and G DEVIy

Department of Aerospace Engineering, Indian Institute of Science, Bangalore
560 012, India
y Present address: CADS Software Inc., Chennai 600 033, India
e-mail: krishnan@aero.iisc.ernet.in

MS received 26 November 1999; revised 6 December 1999

Abstract. The behaviour of mixed fluid finite elements, formulated based on
the Lagrangian frame of reference, is investigated to understand the effects of
locking due to incompressibility and irrotational constraints. For this purpose,
both linear and quadratic mixed triangular fluid elements are formulated.
It is found that there exists a close relationship between the penalty finite
element approach that uses reduced/selective numerical integration to alleviate
locking, and the mixed finite element approach. That is, performing
reduced=selective integration in the penalty approach amounts to reducing
the order of pressure interpolation in the mixed finite element approach for
obtaining similar results. A number of numerical experiments are performed
to determine the optimum degree of interpolation of both the mean pressure
and the rotational pressure in order that the twin constraints are satisfied
exactly. For this purpose, the benchmark solution of the rigid rectangular
tank is used. It is found that, irrespective of the degree of mean and the
rotational pressure interpolation, the linear triangle mesh, with or without
central bubble function (incompatible mode), locks when both the constraints
are enforced simultaneously. However, for quadratic triangle, linear interpola-
tion of the mean pressure and constant rotational pressure ensures exact
satisfaction of the constraints and the mesh does not lock. Based on the results
obtained from the numerical experiments, a number of important conclusions
are arrived at.

Keywords. Mixed finite elements; penalty approach; field consistency;
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1. Introduction

Fluid finite elements are normally required to analyse problems involving dynamic
interaction between flexible structures and the surrounding fluid medium, that is, the fluid±
structure interaction problems. Most of the current fluid-structure analysis is based on the
Eulerian±Lagrangian or the u-p approach. In this approach, fluids are modelled based on
the Eulerian frame of reference. As a result, pressures (or velocity potentials) become the
nodal variables. The structures as usual are modelled based on the Lagrangian frame of
reference and hence have displacements as nodal degrees of freedom. At the fluid±solid
interface, the coupling is enforced by matching the normal velocities in fluid and solid
domains. This results in matrices being unsymmetric and having large bandwidth, and
hence special type of solvers are required to solve the coupled systems at the cost of extra
computational effort. Hence, the method cannot be readily incorporated into any existing
finite element software. The reader can refer to Zienkiewicz & Taylor (1991) for more
details on the approach.

Alternatively, both the fluid and the structure can be modelled with the Lagrangian frame
of reference. This results in having displacements as degrees of freedom for both fluid and
solid domains. Since the variables are identical in both the domains, no special coupling
schemes are required and the compatibility and the equilibrium conditions are auto-
matically satisfied at the fluid±solid interface through a matrix assembly procedure. These
fluid elements, formulated based on the Lagrangian frame of reference, are also called
`̀ Mock Fluid Elements''. They can be readily incorporated into any existing finite element
software without much modification. Details of the approach are given in Cook et al
(1989).

One of the problems associated with Lagrangian fluid elements is the presence of mesh
locking due to incompressibility constraints (Wilson & Khalvati 1983). That is, in the limit
as the fluid becomes incompressible (Poisson's ratio � ! 0:5), the bulk modulus becomes
infinite. This leads to zero volumetric strain. Hence, the fluid is constrained to exhibit zero
volume change in the penalty limit. This causes the mesh to lock, giving displacements
(velocities) that are several orders of magnitude less than their true values. Such behaviour
is also seen in displacement-based structural elements for incompressible problems (Pian &
Lee 1976; Satish Chandra & Prathap 1989).

Lagrangian fluid elements also have a tendency to exhibit zero energy modes and
spurious acoustic or pressure modes. While the presence of the zero energy modes are
inherent to the Lagrangian fluid element formulation due to circulation of the fluids, the
spurious pressure modes are essentially due to higher order integration of the stiffness
matrix (Wilson & Khalvati 1983). Therefore, in order to eliminate the unwanted zero
energy modes and identify the true pressure modes, Hamdi et al (1978) introduced
rotational constraints, that is, assumed the fluid irrotational. Enforcing fluid irrotationality
would mean introduction of additional constraints to an already volumetrically constrained
fluid. Hence, Lagrangian fluid finite elements can be considered a constrained media
problem having two naturally occurring constraints ± the incompressibility constraints and
the irrotational constraints.

The common methods available to alleviate locking are the penalty finite element
approach, the field consistent approach and the mixed finite element approach. In the
penalty approach, the stiffness matrix of a constrained system can be split into two parts ±
the first due to constrained strain field and the second due to unconstrained strain field. The
characteristic feature of a constrained system is that it gives rise to a part of the stiffness
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matrix, whose entries are very large compared to the other parts of the stiffness matrix
derived from the unconstrained strain field. We call this matrix the penalty matrix. Such a
system results in mesh locking unless the penalty matrix is singular. This singularity can be
attained if the rank of the penalty matrix is lower than the order of the matrix, which can be
ensured if the penalty matrix is under integrated. Hughes et al (1977) have shown that by
using one-point integration of the shear energy terms of a linear shear flexible beam
element, shear locking can be removed and the element can give superior performance.

However, fluid elements formulated based on Lagrangian frame of reference, has to
not only satisfy the incompressibility constraints, but also the irrotational constraints
simultaneously. In the discretized sense, it requires that the matrix obtained by summing of
the volumetric stiffness matrix and the rotational stiffness matrix is singular. Previous
papers by the authors (Gopalakrishnan & Devi 1999) have shown that for fully integrated
volumetric and rotational stiffness matrices for both linear and quadratic fluid triangular
elements, the above condition is too difficult to achieve. This behaviour is attributed to the
insufficient degrees of freedom available in these elements to satisfy the twin constraints.
Note that the number of constraints an element has to satisfy is proportional to the number
of integration points used to numerically evaluate the stiffness matrix. However, in the
case of quadratic triangular fluid elements, it was shown that by performing selective
integration (full 3-point integration on the volumetric stiffness matrix and reduced one-
point integration on the rotational stiffness matrix), the twin constraints were satisfied
simultaneously and the element gave superior performance. Hence, it was shown that in
cases where there are two or more naturally occurring constraints, locking has to be viewed
in the global sense and hence constraint ratio (ratio of the number of active degrees of
freedom in the model to the total number of constraints in the model) used as a measure
to determine the presence of locking in the system. According to Cook et al (1989), the
constraint ratio should always be greater than one and preferably two for two-dimensional
elements.

The field consistency paradigm, propounded by Prathap (1993), requires that the
interpolation function chosen to initiate the discretization process must also ensure that
any special constraints that are anticipated be allowed for in a consistent way. Failure to
do so causes solutions to lock. That is, the origin of the locking is linked to the
interpolating functions of field displacement variables. If the interpolation function for
the field variables contains some terms in excess (or missing) of that dictated by the
consistency paradigm of the constrained strain field, the element will lock. Using this
approach, Prathap & Bhashyam (1982) were able to isolate those constants associated
with the linear displacement field of a fully integrated Timoshenko beam element
that caused locking. They also showed that the stiffness terms of the same element
that introduce locking in the fully integrated case are not sensed when reduced integrated,
thus giving superior performance. In the discretized sense, ignoring certain constants
in the field variable(s) that are associated with the locking yields a penalty matrix
that is rank deficient (or singular). This process enables satisfactory enforcement of the
constraint. In other words, the consistency paradigm gives a more rational explanation
on the success of reduced/selective integration procedures for constraint media problems.
Prathap (1993), using the same approach, has explained the success of using incompatible
modes (bubble function) in certain locking situations. In addition, it is also possible
to quantify these errors associated with locking (Prathap 1999). Some of the elements
formulated based on the consistency paradigm are given by Prathap & Ramesh Babu
(1986a) for higher order shear flexible beams, Prathap & Ramesh Babu (1986b) for
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thick curved beams with shear and membrane locking, and Satish Chandra & Prathap
(1989) for locking in 3-D solids due to incompressibility.

One of the drawbacks of the penalty approach to fluids is that the mean pressure is not
characterized properly. As a result, the pressure estimates, which are obtained through the
differentiation of displacement field, are highly in error especially when the fluid is nearly
incompressible. Hence, it is necessary that, for accurate solutions, not only the constraints
be satisfied, but also the mean pressures be predicted accurately. This can be accomplished
by the mixed finite element approach.

In the mixed finite element approach, the constraints are enforced by Lagrange multi-
pliers. These multipliers, which have physical significance, are related to actual physical
quantities appearing in the formulation of the problem. It can be seen later that for the case
of fluids, the multiplier turns out to be pressure, which we try to characterize accurately.
Hence, this method, due to introduction of Lagrange multipliers, increases the overall
system size.

In this approach the original virtual work statement is augmented by the constraint
equations, multiplied by Lagrange parameters. Minimization is done not only with respect
to the primary displacement variables, but also the Lagrange multipliers. This process
yields a variational statement followed by a set of constraint equations involving the
multipliers. The number of constraint equations is equal to the number of Lagrange
multipliers used (or number of constraints enforced). This variational procedure of
enforcing constraints through Lagrange multipliers constitutes the Hu±Washizu principle
(Hu 1955). The main aim of this paper is to formulate both linear and quadratic mixed
triangular fluid elements based on the Hu±Washizu principle and closely study its
relationship with the penalty finite element approach. Since two constraints are required to
be enforced simultaneously, three-field mixed elements involving the displacement and the
two Lagrange multipliers, are formulated. The study also includes the effect of bubble
functions (or incompatible modes) on the behaviour of the mixed elements. Based on the
various numerical experiments conducted on these elements, a number of conclusions are
drawn.

2. Hu±Washizu variational statement

The strain energy functional for a vibrating fluid is augmented by two constraint equations
through two Lagrange multipliers �1 and �2 as follows:
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Here p, pz and �xy are the mean pressure, rotational pressure and shear stress, u and v are the
displacement components in the x and y directions and {u} is the nodal displacement
vector, with {b} and {t} being the body force and surface traction vectors respectively. The
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above functional is similar to the famous Hu±Washizu variational statement for fluids
satisfying twin constraints.

If we look at the functional we see that there are three independent variables, namely
{u}, p and pz. Minimizing with respect to these three variables we getZ
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From the last two conditions we get �1 � p, the mean pressure and �2 � pz the rotational
pressure. It is to be noted that these conditions can now be written asZ
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The slosh energy and kinetic energy functionals are given by
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where {us} is the surface displacement vector on the surface S, R is the density of the fluid,
g is the acceleration due to gravity and fVg � f _u _vg is the velocity vector.

3. Mixed finite element formulation

Both 3-noded linear triangular and 6-noded isoparametric quadratic triangular fluid
elements are formulated. Each node has two degrees of freedom and the displacement field
in each of these can be expressed in matrix form as

u

v

� �
� �N�T �0�T
�0�T �N�T

� �
fdg; �8�

where u(x,y) and v(x,y) are the displacement fields in x and y directions, {d} is nodal
displacement vector and [N] is shape function matrix. For the linear triangle, it is given by

�N�T � �L1 L2 L3�: �9�
For the quadratic triangle, the shape function matrix is given by

�N�T � �L1�2L1 ÿ 1� 4L1L2 � � �L3�2L3 ÿ 1� 4L3L1�: �10�
Here, Li is the area coordinate. In this approach, in addition to the displacements, both
mean pressure and rotational pressure need to be interpolated. Pressure variation can be
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symbolically written as

p�x; y� � �NP�Tfpg; pz�x; y� � �Npz�Tfpzg;
where [Np] and [Npz] are shape functions for mean and rotational pressures and {p} and {pz}
are nodal mean and rotational pressures respectively. In this study, constant, linear and quad-
ratic pressure interpolations are considered. The shape function matrices for linear and quad-
ratic variation are similar to the displacement shape function matrices given in (9) and (10)
respectively. For constant pressure interpolation, the shape function matrices take the form

�Np�T � �Npz�T � �1�: �11�
Using the displacement field given by (8), the volumetric, rotational and shear strains
become
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Substituting the above strain fields and the discretized pressures in the Hu±Washizu
variational statement, we get the following matrix equilibrium equations

�M� �0� �0�
�0� �0� �0�
�0� �0� �0�

24 35 f�ug
fpg
fpzg

8<:
9=;�

�Kuu� �Kup� �Kupz�
�Kup�T �Kpp� �0�
�Kupz�T �0� �Kpzpz�

24 35 fug
fpg
fpzg

8<:
9=;� ffg1

ffg2

ffg3

8<:
9=;;
�13�

where

�M��
Z

V

��N�T �N� dV ; �14�

�Kuu��
Z

V

G�Bxy�T �Bxy� dV; �Kup��
Z

V

�Bv�T �Np� dV ; �Kpp��
Z

V

1

K
�Np�T �Np� dV ;

�Kupz��
Z

V

�Bz�T �Npz� dV; �Kpzpz��
Z

V

1

R
�Npz�T �Npz� dV ; �15�

f fg1�
Z

V

�N�fugTfbg dV �
Z

S

fNgfugTftg dS; f fg2 � 0 and f fg3 � 0:

�16�
Here G is the shear modulus, � is the density of the fluid, K is the bulk modulus and
R � �K is the rotational modulus. The value of � is taken as 100 as suggested by Wilson &
Khalvati (1983). In addition to the above, the slosh matrix, obtained by the minimization of
the slosh energy functional, is given by

�KS� �
Z

S

�g�NS�T �NS� dS; �17�

and added to the surface terms of the element stiffness matrix. [NS] is the shape function
matrix used for the interpolation of surface displacement. For linear triangles, the fluid
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surface is modelled as a two-noded line element with only vertical degrees of freedom. The
shape function for this surface element is given by

�NS�T � 1ÿ x

b

� � x

b

h i
: �18�

Here, x is the axial coordinate, b is the element length, and g is the acceleration due to
gravity. Using (18) in (17), the slosh stiffness matrix for the linear triangle becomes

�KS� � �gb

6

2 1

1 2

� �
: �19�

In the case of quadratic triangular elements, the fluid surface is modelled as a 3-noded
quadratic line element, whose shape function is given by
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The slosh stiffness matrix in this case becomes

�KS� � �gb
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ÿ1 1 4

24 35: �21�

The above equations give rise to many exciting possibilities. Since the pressures are also
unknown, we have the option of maintaining continuity of pressures or condensing them out
before assembly. In addition, pressure interpolation could be of any order independent of
displacement interpolation. However, there are sets of rules while choosing the interpolation
order for the secondary variables. In this study, the pressure continuity is not maintained at
the nodes and these variables are condensed out at the element level before assembly.

The key to the success of the mixed finite element approach is to choose the appropriate
interpolation for the displacements and pressures. From the literature (Bathe 1997), it is
seen that the choice of the appropriate pressure interpolation is not obvious and is indeed
much more difficult. A lower order pressure interpolation leads to spurious pressure or
acoustic modes. On the other hand, pressures should also not be interpolated at too high a
degree because the element then behaves like displacement-based elements and locks.
Hence the highest degree of pressure interpolation that does not introduce locking into the
element needs to be used. The general condition to be satisfied about the number of degrees
of freedom is nu � np, �Kup�fpg 6� 0 for all p 6� 0 and �Kupz�fpzg 6� 0 for all pz 6� 0 to
prevent instability. Here nu is the number of displacement degrees of freedom, np is the
number of pressure (mean) degrees of freedom and npz is the number of rotational pressure
degrees of freedom.

4. Numerical studies and discussion

The behaviour of both the elements (linear and quadratic) is studied for different combina-
tions of mean and rotational pressure interpolations. For some cases in the penalty
approach, incompatible modes are introduced to alleviate locking. In the global sense, this
procedure increases the constraint ratio. In this study, the effects of incompatible modes on
the performance of the mixed elements will also be investigated for various mean and
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rotational pressure interpolations. Some of the element configurations studied here are
schematically shown in figure 1. All the matrices in (14)±(16) are numerically integrated.
The order of integration of various matrices is given in table 1. All the numerical studies in
this paper are performed on a rigid rectangular tank problem, the tank being full of water.
The exact slosh and acoustic frequencies for this problem are given in Abramson (1966)
and Olson & Bathe (1983) respectively. These are given by

!2
slosh � gk tanh�kh�; k2 � �2 m

b

� �2

� n

h

� �2
� �

; m � n � 0; 1; 2; . . . ;

� � !2 � K

�
�2 m2

b2
� n2

4h2

� �
; m � n � 0; 1; 2 . . .

The following properties of the tank were used for all the examples.

Tank width b � 5:080 m; tank depth h � 1:905 m;
density � � 1000 kg=m3; bulk modulus K � 207 GPa;
acceleration due to gravity g � 9:81 m=s2.

4:1 Linear triangle without bubble function

Constraint equations (5) and (6) dictate the exact order of mean and rotational pressure
interpolations, required for convergence of the solutions. The volumetric strain "V and the

Figure 1. Element configurations for numerical studies.

Table 1. Order of integration for various matrices and pressure interpolations.

Pressure variation

Linear triangle Linear triangle �1 bubble function Quadratic triangle

Matrices Constant Linear Constant Linear Quadratic Constant Linear

[Kup] 1 1 3 4 6 1 3
[Kpp] 1 3 1 3 6 1 3
[Kuu] 1 1 6 6 6 3 3
[M] 3 3 12 12 12 6 6
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rotational strain "z are derived from the displacement field, and the pressure fields p and pz

are interpolated separately. According to Prathap (1999), constraint equations (5) and (6)
represent orthogonality conditions when the pressure variation is represented by some
orthogonal functions. For rectangular elements, p (or pz) can be represented by a set of
Legendre polynomials. When such a variation of the secondary variables is substituted in
the constraint equations, the variation of the displacement field, consistent with the
constraint imposed, is obtained.

In the triangular domain, the above constraint equations can effectively fix the pressure
interpolation required to get good results. For linear triangles without any bubble functions,

"v � @u

@x
� @v

@y
� constant:

Hence, constant pressure is the ideal choice to match the constant "v obtained from
displacement interpolation. By similar argument, constant rotational pressure is required
for balancing constant rotational strain. Any interpolations of pressure greater than the
required degree may lead to locking.

In order to study the difference in behaviour between the penalty finite element approach
(Gopalakrishnan & Devi 1999a) and the formulated mixed linear element, a rigid
rectangular tank modelled by four elements (figure 2) is considered. The boundary
conditions are such that the fluid can slip along both the vertical as well as the horizontal
faces of the tank. Hence, there are only four active degrees of freedom in the finite element
model. Here, both the constant and linear variation of the pressures is considered. All the

Figure 2. Rectangular rigid tank modelled by four elements.

Table 2. Comparison of frequencies for linear triangle.

Mixed approach frequencies (rad=s)

Penalty approach Constant p, Linear p,
frequencies (rad=s) Constant p, constant pz Linear p, linear pz linear pz constant pz

R � 0 R � 100 K R � 0 R � 100 K R � 0 R � 100 K R � 100 K R � 100 K

2.0190 1289.6 2.0190 1289.6 2.0190 1289.6 1289.6 1289.6
1224.6 4256.6 1224.6 4256.6 1224.6 4256.6 4256.6 4256.6
1800.7 7971.3 1800.7 7971.3 1800.7 7971.3 7671.3 7971.3
3950.1 13424 3950.1 13423 3950.1 13423 13424 13423
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matrices appearing in (15) are numerically integrated using the one-point integration
scheme for both the cases.

Table 2 gives the comparison of results obtained from the penalty approach and the
present approach. The exact value of the fundamental slosh and acoustic modes are
2.24 rad=s and 1186 rad=s, respectively. From table 2, it is clear that for R � 0 and
R � 100 K the results for all the cases are exactly similar to the penalty approach results.
That is, higher pressure interpolation has no effect and the presence of twin constraints
locks the mesh. It is also found that for the case with R � 0, the slosh frequency has about
10% error compared to 3% error obtained for fundamental acoustic frequency. This is
expected because, in a linear triangle, there are fewer degrees of freedom and the
displacement interpolation is of very low order.

4:2 Linear triangle with one central bubble function

In this case, one cubic bubble of shape function 27L1L2L3 is added to increase the degree of
displacement interpolation. This would require both the pressure variations to be quadratic.
Here, a number of possibilities exist as before. As in the previous case, a rigid rectangular
tank is modelled by four mixed linear triangular elements (figure 2). The integration orders
for various matrices are given in table 1. Table 3 gives the comparisons of the frequencies
obtained for few critical pressure interpolations. The bubble functions here are dynamically
condensed out before assembly. From the table it is found that the element locks when twin
constraints are enforced simultaneously. That is, the introduction of bubble function does
not alleviate locking. In addition, only linear mean pressure variation is able to give the
solutions predicted by the penalty approach. The point worthy of note is that this happens
even when the rotational pressure is interpolated quadratically. Additionally, it is found that
the results predicted by the quadratic mean and rotational pressure variation and the
quadratic mean pressure and linear rotational pressure variation produce exactly the same
results, which are different from the penalty approach results. Hence, the accuracy of
the result mainly hinges on how well the mean pressure is interpolated. Errors in the
frequencies obtained are of similar order as obtained in the linear triangle case without any
bubble function.

4:3 Quadratic triangular element

A quadratic triangular element based on penalty approach was formulated by
Gopalakrishnan & Devi (1999b). They showed that in presence of the twin constraints

Table 3. Comparison of frequencies for linear triangle with one bubble function

Mixed approach frequencies (rad=s)

Penalty approach Quadratic p, Linear p,
frequencies (rad=s) Quadratic p, quadratic pz linear pz quadratic pz

R � 0 R � 100 K R � 0 R � 100 K R � 100 K R � 100 K

2.0190 1289.6 2.0155 1268.2 1268.2 1289.6
1224.6 4256.6 1202.1 4226.0 4226.0 4256.6
1800.7 7971.3 1790.3 8314.9 8314.9 7971.3
3950.1 13424 4126.5 13380 13380 13424
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of incompressibility and irrotationality, the element behaved very well when selective
integration procedure (full 3-point integration on the volumetric stiffness and reduced
1-point integration on the rotational stiffness) was performed. In the global sense, this
scheme gave high constraint ratio. In the present context, it would be interesting to
establish the relationship between the penalty approach using selective integration, reduced
integration etc. and the mixed approach with appropriate pressure interpolation (both p
and pz).

By looking at the constraint equations, (5) and (6), it is obvious that the appropriate order
of mean pressure and rotational pressure is linear. The objective of the whole exercise is to
obtain good estimates of slosh and acoustic modes when twin constraints are enforced
simultaneously. In order to meet this objective, one has to perform studies on various
pressure interpolations and determine what orders of mean and rotational pressures are
required for satisfaction of both constraints. For this study the same four-element mesh
shown in figure 2 is used. This mesh has 17 active degrees of freedom. The integration
orders for various matrices are given in table 1. Table 4 gives the results for constant mean
pressure and constant rotational pressure interpolation.

The answers are compared with those of the penalty approach with reduced integration
of both volumetric and rotational stiffness terms. We find that the results of these two
approaches are similar and the results are greatly in error due to the presence of spurious
zero energy modes arising due to very low pressure interpolation. The curious thing is that
most of the acoustic modes are not spurious.

Table 5 shows the comparison of results between penalty approach with full integration
(both volumetric and rotational stiffness terms) and mixed approach with linear variation of
both mean and rotational pressures. Note that the pressure variation considered in this case
is same as what is dictated by the constraint equations (5) and (6), respectively. From the
table it is clear that the penalty approach results are the same as the mixed approach with
linear variations of pressure. With compressibility constraint alone, the mesh does not lock
and slosh and acoustic mode estimates are quite good. When rotational constraint is
enforced, all zero energy modes vanish and the mesh locks. However, only two acoustic
modes (second and fourth) are identified as the true ones.

Table 4. Comparison of frequencies for quadratic triangle with constant mean and rotational
pressures.

Penalty approach frequencies (rad=s) Mixed approach frequencies (rad=s)
(reduced integration) (constant p, constant pz)

R � 0 R � 100 K R � 0 R � 100 K

11 zero-energy modes 7 zero-energy modes 11 zero-energy modes 7 zero-energy modes
4.1868 4.1793 4.1869 4.1793
7.1778 7.0833 7.1778 7.0833

1779.3 1776.5� 1779.3 1776.5�
3373.6 3373.4� 3373.6 3373.4�
3535.4 3534.7� 3535.4 3534.7�
7313.4 7265.4� 7313.4 7265.4�
± 14778 ± 14778
± 20944 ± 20944
± 32791 ± 32791
± 39017 ± 39017

� True acoustic modes
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From table 4, it is clear that by use of constant p and constant pz instead of the required
linear variation, the results are similar to the reduced integrated penalty approach results.
Again from table 5, the use of linear p and linear pz variation is similar to using fully

Table 5. Comparison of frequencies for quadratic triangle with linear mean and rotational pressures.

Penalty approach frequencies (rad=s) Mixed approach frequencies (rad=s)
(full integration) (Linear p, linear pz)

R � 0 R � 100 K R � 0 R � 100 K

4 zero-energy modes 481.00 4 zero-energy modes 481.0
2.2493 1188.5� 2.2493 1188.5�
3.1809 1593.6 3.1809 1593.5

1186.9 3920.4 1186.9 3920.4
1487.1 4019.8� 1487.1 4019.8�
2335.2 5622.1 2335.2 5622.1
2460.9 8664.5 2460.9 8664.5
3689.4 10141 3689.4 10141
4004.9 12031 4004.9 12031
4416.8 12750 4416.8 12750
5055.1 16153 5055.1 16153
6370.5 17907 6370.5 17907
7332.6 19057 7332.6 19057
9644.2 27656 9644.2 27656

± 30618 ± 30618
± 42445 ± 42445
± 46488 ± 46488

� True acoustic modes

Table 6. Comparison of frequencies for quadratic triangle with linear mean and constant rotational
pressures.

Penalty approach frequencies (rad=s) Mixed approach frequencies (rad=s)
(selective integration I) (linear p, constant pz)

R � 0 R � 100 K R � 0 R � 100 K

4 zero-energy modes 2.2425 4 zero-energy modes 2.2425
2.2493 3.1809 2.2493 3.1809
3.1809 1186.9� 3.1809 1186.9�

1186.9 1479.2� 1186.9 1479.2�
1487.1 2247.4 1487.1 2247.4
2335.2 2335.1� 2335.2 2335.1�
2460.9 2832.8 2460.9 2832.8
3689.4 3688.0� 3689.4 3688.0�
4004.9 4011.9� 4004.9 4011.9�
4416.8 5041.5� 4416.8 5041.5�
5055.1 6273.6� 5055.1 6273.6�
6370.5 7290.3� 6370.5 7290.3�
7332.6 9383.1 7332.6 9383.1
9644.2 15167 9644.2 15167

± 21078 ± 21078
± 32808 ± 32808
± 39021 ± 39021

� True acoustic modes
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integrated volumetric and rotational stiffness as the penalty approach. Hence it is necessary
to study the use of constant pz and linear p variation, and constant p and linear pz variation
and see what these correspond to in terms of the penalty approach. Tables 6 and 7 give the
results for these two cases.

From the above it is clear that, when linear p and constant pz are used, the results
correspond to the selective integration I result of the penalty approach (i.e. when
volumetric stiffness is fully integrated (3-point integration) and rotational stiffness is
reduced integrated (1-point integration)). This is expected and is in trend with the previous
two cases. The slosh and acoustic mode estimates are very good. It is also found that there
are very few spurious acoustic modes. Again from table 7, when the mean pressure
interpolation is constant and rotational pressure is linear, as expected the results match the
selective integration II (volumetric stiffness is reduced integrated and rotational stiffness is
fully integrated) results. These results are not accurate. In addition, all the acoustic modes
are spurious.

Hence, from this study it is clear that reducing the pressure interpolation in mixed
formulation amounts to reducing the number of integration points in the penalty approach.
The pressure interpolation dictated by the constraint equations yields a stiffness matrix that
is similar to fully integrated volumetric and rotational stiffness in the penalty finite element
approach. The above observation was by Zienkiewicz & Taylor (1991b) when only one
constraint was present.

5. Concluding remarks

The study on the mixed triangular elements has shown that there exists a close relationship
between the mixed finite element approach and the penalty approach. It is found that

Table 7. Comparison of frequencies for quadratic triangle with constant mean and linear rotational
pressures.

Penalty approach frequencies (rad=s) Mixed approach frequencies (rad=s)
(selective integration II) (constant p, linear pz)

R � 0 R � 100 K R � 0 R � 100 K

11 zero-energy modes 1 zero-energy mode 11 zero-energy modes 1 zero-energy mode
4.1868 1.6310 4.1869 1.6310
7.1778 1023.2 7.1778 1023.2

1779.3 2291.4 1779.3 2291.4
3373.6 2293.1 3373.6 2293.1
3535.4 5000.3 3535.4 5000.3
7313.4 7940.9 7313.4 7940.9

± 8831.1 ± 8831.1
± 10045.0 ± 10045
± 12750 ± 12750
± 16074 ± 16074
± 17365 ± 17365
± 17566 ± 17566
± 27627 ± 27627
± 30610 ± 30610
± 42383 ± 42383
± 46472 ± 46472
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reduced integration in the penalty approach means reduction in the pressure order of
interpolation in the mixed finite element approach to get similar results. The degree of
mean pressure interpolation is very critical for obtaining good frequency estimates. The
study has shown that lower order pressure interpolation does not introduce spurious
pressure modes. It is also found that the degree of rotational pressure interpolation is not so
critical for obtaining good frequency estimates. For triangular elements, the minimum
order of pressure interpolation is dictated by the constraint equations that emerge from the
Hu±Washizu variational statement. That is, if the pressures (both mean and rotational) are
interpolated as dictated by the constraint equations, it gives a stiffness matrix that
corresponds to a fully integrated stiffness matrix of the penalty finite element approach.
The study has shown that no pressure interpolation will help avoid locking in linear
triangles, when the twin constraints are enforced simultaneously. However, in quadratic
triangles, using linear interpolation for mean pressure and constant rotational pressure,
locking in the element is removed under the action of twin constraints.

From this study, a concept has emerged that would unify the penalty finite approach, the
mixed finite element approach and the field consistency approach. The field consistent
method can be viewed both as penalty method and mixed finite element method. When
viewed as a penalty method, the field consistency approach identifies constants in the
displacement polynomial that are spurious and cause locking. It also suggests the required
order of numerical integration in order to make the penalty matrix singular, which is the
essential requirement for proper enforcement of constraints. In addition, through a
functional re-constitution procedure (see Prathap 1993) one can also obtain the error
measure that is associated with locking. The variational correctness of the field consistency
is seen when one views it in mixed finite element context. That is, the constraint equations
that emerge due to the minimization of secondary variables are, in fact, the variational
representation of the field consistent approach. If one can identify the form of the
constrained field involving arbitrary coefficients so that only the consistent terms are
retained, then all the true constraints appear in the penalty limits. This form helps to
determine the arbitrary coefficients in the redistributed field from the coefficients of the
corresponding strain field derived directly from the kinematically admissible displacement
fields using the constraint conditions. The integration of energies based on this form now
yield a stiffness matrix, which is free of all inconsistencies. Both the known methods ± the
penalty method and the mixed element method ± try to achieve this in one form or the
other.
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