
Sādhanā Vol. 27, Part 2, April 2002, pp. 163–180. © Printed in India

Min-max event-triggered computation tree logic

PALLAB DASGUPTA, P P CHAKRABARTI and JATINDRA
KUMAR DEKA

Department of Computer Science and Engineering, Indian Institute of
Technology, Kharagpur, India 721 302
e-mail:{pallab,ppchak,jatin}@cse.iitkgp.ernet.in

Abstract. Very often timing verification involves the analysis of the timings of
discrete events such as signal changes, sending and receiving of signals, and sen-
sitization of edge-triggered circuit components. The main bottleneck in verifying
timing properties of timed finite state machines (FSM) has been the inherent com-
plexity of verifying timed properties (PSPACE-complete for timed extensions of
computational tree logic (CTL)). Often however, we are interested in the best case
or worst case timings between events. In this paper we introduce a temporal query
language called Min-max Event-Triggered Computational Tree Logic for express-
ing such extremal queries on the timings of events and show that such queries can
be evaluated in time polynomial in the size of the system times the length of the
formula.

Keywords. Computational tree logic; timing verification; temporal query lan-
guage.

1. Introduction

Temporal logic model-checking (Clarkeet al1986) is one of the most popular and well studied
paradigms for formal verification of hardware (see Clarke & Kurshan 1996, for a survey). In
this approach the property to be verified on a given finite state machine (FSM) is specified
in a temporal logic. Model checking has been extensively studied for two broad categories
of temporal logics, namelylinear time temporal logicandbranching time temporal logic
(Burchet al1994; Clarkeet al1996).

In order to verify timing properties involving absolute quantums of time, researchers
have extendeduntimedtemporal logics such asLinear Temporal Logic(LTL), Computa-
tion Tree Logic(CTL), and CTL∗ (Clarke et al 1986) to timed temporal logics such as
Timed CTL(TCTL) (Alur & Henzinger 1993) andReal Time CTL(RTCTL) (Emersonet al
1989). However, the verification of timed temporal logics has been found to be much more
complex than their untimed counterparts (see Alur 1998, for a survey). For example, while
LTL model checking is PSPACE complete, TLTL model checking is undecidable (Alur &
Henzinger 1994). The problem is less severe in the case of branching time timed logics,
where TCTL model checking is PSPACE complete (Alur & Henzinger 1993; Aluret al
1993) (whereas CTL model checking is possible in polynomial time). It has been shown

163

164 Pallab Dasgupta et al

by Alur et al (1993) that TCTL model checking is PSPACE complete even in discrete-time
models.

Often while evaluating the timing properties of an FSM, we are interested in evaluating
the best case or worst case timing properties of signals (more formally, atomic proposi-
tions). For example, in an arbitrated bus model (such as AMBA or PCI) we are typically
interested in the worst case delay between a request signal for the bus and the correspond-
ing grant signal. In a previous work (Dasguptaet al 2001), we presented a temporal logic,
Min-max CTL, for reasoning about such extremal timing properties and showed that Min-
max CTL evaluation works in time polynomial in the size of the state space and the length
of the formula. We also illustrated the expressibility of Min-max CTL over diverse problem
domains.

While Min-max CTL can express queries related to the earliest and latest timings of signals,
we are sometimes interested in the timings of non-extremal occurrences of signals as well.
Specification of the earliest and latest occurrences of signals along a computation path is
achieved in Min-max CTL by using theuntil-min (Umin) anduntil-max(Umax) operators in
place of theuntil (U) operator of CTL. Since Min-max CTL is solely concerned with the
extremal timings of signals, the syntax of Min-max CTL does not contain the usualuntil (U)
operator of CTL. However in order to generalize Min-max CTL to be able to specify queries
relating to the non-extremal timings of signals we need to add the CTLuntil operator,U , into
the syntax of Min-max CTL.

In this paper, we investigate the implications of augmenting Min-max CTL with the usual
until operator,U , of CTL. We show that as soon as this is done, the complexity of Min-max
CTL evaluation increases significantly, and the algorithm for evaluation is at best pseudo-
polynomial. We then show that reasoning about the timings of changes in signal values
(which we call events) is significantly more efficient (polynomial time) as against reason-
ing about the timings of signals. This result is indeed good news since very often timing
verification actually involves the analysis of the timings of discrete events such as signal
changes, the sending and receiving of signals, and sensitization of edge triggered circuit
components.

In order to express the above class of efficiently checkable event timing queries, we
define an extension of Min-max CTL, calledMin-max Event Triggered Computation Tree
Logic (Min-max ETCTL). We then present an algorithm for Min-max ETCTL evaluation
and show that it runs in time polynomial in the size of the state space times the length of
the formula.

The paper is organized as follows. In § 2, we outline the syntax of Min-max CTL. Section 3
describes the formal model of computation. We introduce the syntax and semantics of Min-
max ETCTL in §§ 4 and 5 respectively. Section 6 demonstrates the problems induced by
using the CTLuntil operator in Min-max CTL, and how the problem is surpassed in Min-max
ETCTL by using a restricted syntax. Section 7 presents an algorithm for Min-max ETCTL
evaluation and establishes that the algorithm works in time polynomial in the size of the state
space times the length of the formula.

2. Min-max CTL

The syntax of Min-max CTL (Dasguptaet al2001) is an extension of CTL, where we embed
the notion of costs and optimization functions over the computation tree. For example, con-
sider the CTL formulaϕ = E(f1Uf2) (wheref1 andf2 are CTL formulas).ϕ is true at

Min-max event-triggered computation tree logic 165

a states iff there exits a pathπ starting ats to some statet , such thatf2 is true att and
f1 is true at each state (if any) inπ precedingt . In Min-max CTL, we may pose the query
ψ = minEC(g,h)(f1Uminf2), wheref1 is a CTL formula andf2 is a Min-max CTL formula,
andC(g, h) is a cost function over two variablesg andh which are defined below. Evalua-
tion of ψ on a states returns a value. IfE(f1Uf2) is not true ins then the value returned is
NULL. Otherwise, consider the set,W , of paths starting froms which satisfyf1Uf2. In each
such pathπ , consider theearlieststate,t , such thatf2 is true int andf1 is true in all states
precedingt in π . (If we had usedUmax instead ofUmin, then we would have considered the
last statet in π wheref2 is true andf1 is true in all preceding states). The statet is called the
closing stateof π for f1Uminf2. The distance froms to the closing statet is represented by
g. The value returned by evaluatingf2 at t is represented byh. The Min-max value of path
π for ψ is the value ofC(g, h). The Min-max value of states for ψ is theminimumamong
the Min-max values of the paths inW . (If we had usedmax in place ofmin outside theE in
ψ , then the Min-max value ofs would have been themaximumamong the Min-max values
of paths inW .)

The syntax of Min-max CTL is as follows.B denotes boolean formulas,S denotes CTL
formulas, andZ denotes Min-max CTL formulas.C andC ′ are user defined functions.

• B = false|true|q|¬q|B ∧ B|B ∨ B|¬B
• S = B|S ∧ S|S ∨ S|E(S U S)|A(S U S)|¬S
• Q = min | max
• Z = Z ∧ S|QEC(g,h)(SUQZ)|QEC ′(g)(SUQS)|QAC(g,h)(SUQZ)|QAC ′(g)(SUQS)

We illustrate Min-max CTL through example 1 below.

Example1. Consider the timed model shown in figure 1. The timed model represents the
states of a client process in a closed system (where the behaviour of the server process is
known). The states labeledreq are states in which it makes arequest, and the states labeled
gr are states in which it gets agrant. Suppose we wish to determine the minimum among the
worst-case response times for the earliest request along all possible computation paths of the
client, where the worst-case response time for arequestof a client is defined as the maximum
delay by which it reaches agrantstate. This query can be formulated in Min-max CTL as:

ϕ = min Eh(trueUmin max Eg(reqUmin gr))

s

a

b c

5 4

3 9 1

1 1
2 1 1 5

1 2

req

req req

gr
gr gr gr

gr gr

gr

req

req

Figure 1. Sample timed model.

166 Pallab Dasgupta et al

Thus,ϕ = min Eh(trueUminf)wheref = maxEg(reqUmin gr). The closing states forϕ at
s are the statesa, b, andc. Evaluatingf ata, b, andc returns 4, 3, and 5 respectively. These
are theh-values respectively for the paths to the closing statesa, b andc for evaluatingϕ at
s. Since the cost function forϕ is h and the objective function is min, the evaluation ofϕ at
s returns 3. 2

It should be noted that the syntax of Min-max CTL does not allow the use of the usual
until operator,U , of CTL. Properties involving the CTL until operator may be useful in
many cases. For example, in the context of the previous example, we may be interested in
determining the minimum among the worst-case response times among requests along all
possible computation paths – not necessarily the first one. This may be specified by the
following property provided we allow the CTL until operator:

ϕ = min Eh(trueU max Eg(req Umin gr)).

In the next sections we shall augment Min-max CTL with theuntil operator of CTL and study
the implications in terms of evaluation complexity.

3. Timed event structures

We first define the formal model used throughout this paper to represent timed finite state
machines. We call each sequence of state transitions of the system acomputationof the
system. In a computation aneventis said to occur if:

• Any variable of the system is possibly modified (like assignments).
• A control flow decision is taken based on the value of one or more variables (like a

branching or waiting).

Events execute instantaneously (that is, in zero time) and multiple events can occur at the same
instant. A computation can be characterized by a sequence of instances of event occurrences,
interspersed by known delays during which the system is in transition. The variables of the
system do not change during these transition periods. Thus we have two distinct types of
statesof the system:

Event states:States where an event may occur.
Non-event states:Transition states between event states. If the delay between two event states,
νi andνj , isτij > 0, then we haveτij −1 non-event states (separated by unit delays) between
them. Ifτij = 0, then there are no non-event states betweenνi andνj .

Since we consider finite representations of delays, we work on integer representations with
a granularity of one unit. Atimed event structureis an extension of the Kripke structure
obtained by labeling each edge with an integer representing the delay of that edge. Each node
of a timed event structure represents anevent state, that is, a state resulting from the execution
of an event along some computation path.

DEFINITION 1 (Timed event structure)

A timed event structure is a tupleJ = 〈AP , S,R, s0,L〉, where:

• AP is a finite set of boolean variables (analogous to atomic propositions in Kripke
structures),

Min-max event-triggered computation tree logic 167

• S is a set of event states,
• R ⊆ S × S × N is a transition relation, whereN denotes the set of integers, and
(νi, νj , τij) ∈ R implies that the delay between successive event statesνi andνj is τij
units of time,

• s0 ∈ S is the initial event state,
• L : S → 2AP is a labeling of event states with the set of boolean variables true in that

state. 2

Each transition of a timed event structure having a delayτ > 1 is a compaction ofτ − 1
non-event states, that is states where no event can occur. Each non-event state in a transition
(νi, νj , τ) inherits the truth values of the boolean variables inAP from νi .

4. Syntax of Min-max ETCTL

The syntax of Min-max ETCTL is similar to CTL (Clarkeet al1986), except for three special
types ofuntil operators and two trigger constructsposedge(f)andnegedge(f), wheref is a
boolean formula over the set of atomic propositions. Since we consider timed models, we
exclude the next-time (X) operator of CTL. We first define the syntax and then illustrate the
logic with examples.
B denotes the set of boolean formulas over the set of atomic propositionsq ∈ AP , S

denotes CTL formulas,T denotes trigger formulas andZ denotes Min-max ETCTL formulas.
C andC ′ are user defined functions.

• B = false| true | q | ¬q | B ∧ B | B ∨ B | ¬B
• S = B | S ∧ S | S ∨ S | E(S U S) | A(S U S) | ¬S
• T = posedge(B) | negedge(B) | T ∧ T | T ∨ T

•Q = min | max

• Z = Z ∧ S |QEC(g,h)(S UQ Z) |QEC ′(g)(S UQ S) |QAC(g,h)(S UQ Z) |
QAC ′(g)(S UQ S) |QEC(g,h)(S U (T ∧ Z)) |QEC ′(g)(S U (T ∧ S)) |
QAC(g,h)(S U (T ∧ Z)) |QAC ′(g)(S U (T ∧ S))

Given a computationπ , posedge(f) is true in an event state if in the preceding statef was
false and the execution of the event makesf true, andnegedge(f) is true in an event state if
in the preceding statef was true and the execution of the event makesf false. Since truths of
the atomic variables change only on event states, it follows that the trigger formulas can only
be true on event states along specific computation paths. We use the following abbreviations:

Fq: trueU q

Fminq: trueUmin q

Fmaxq: trueUmax q

Throughout this paper,Z-formulas,S-formulas andB-formulas refer to formulas derived
out of Z, S andB respectively. We first present a few examples to informally explain the
semantics of Min-max ETCTL and then proceed to define the formal semantics.

It may be observed that Min-max ETCTL is an extension of Min-max CTL where we
allow theuntil operator of CTL in theZ-formulas. However, we restrict the syntax somewhat

168 Pallab Dasgupta et al

by forcing any formula following theuntil operator to appear in conjunction with a trigger
formula. The reason for this will be demonstrated after we familiarize the reader with the
semantics of Min-max ETCTL.

5. Semantics of Min-max ETCTL

Min-max ETCTL has a semantics of evaluation which returns a numeric value whenever the
formula is true at a state. This numeric value quantifies the value of the objective functionC

(or C ′) which we seek to optimize, and is the answer to the Min-max ETCTL query at that
state. On the other hand, if the formula is false at a state of the model, then the evaluation of
the formula at that state returns null.

A Min-max ETCTL formula is said to be true at a state when theETCTL restrictionof the
Min-max ETCTL formula is true at that state.

DEFINITION 2 (ETCTL-restrictionCR(f) of a formulaf)

TheETCTL-restriction, CR(f) of a Min-max ETCTL formula,f , is the formula, which is
obtained by dropping the min, max quantifiers and cost functions inf . Formally,

• If f is anS-formula orB-formula, thenCR(f) = f .
• For a formulaf = z1 ∧ z2 wherez2 is anS-formula,CR(f) = CR(z1) ∧ z2.
• For a formulaf = QEC ′(g)(z1UQ′z2), CR(f) = E(z1 U z2).
• For a formulaf = QEC(g,h)(z1UQ′z2), CR(f) = E(z1 U CR(z2)).
• For a formulaf = QAC ′(g)(z1UQ′z2), CR(f) = A(z1 U z2).
• For a formulaf = QAC(g,h)(z1UQ′z2), CR(f) = A(z1 U CR(z2)).
• For a formulaf = QEC ′(g)(z1U(z2 ∧ z3)) wherez2 is a trigger formula,CR(f) =
E(z1 U (z2 ∧ z3).

• For a formulaf = QEC(g,h)(z1U(z2 ∧ z3)) wherez2 is a trigger formula,CR(f) =
E(z1 U (z2 ∧ CR(z3)).

• For a formulaf = QAC ′(g)(z1U(z2 ∧ z3)) wherez2 is a trigger formula,CR(f) =
A(z1 U (z2 ∧ z3).

• For a formulaf = QAC(g,h)(z1U(z2 ∧ z3)) wherez2 is a trigger formula,CR(f) =
A(z1 U (z2 ∧ CR(z3)). 2

A path,π , in a timed event structureJ = 〈AP , S,R, s0,L〉 is an infinite sequence of states,
ν0, ν1, . . . , such that for alli, νi ∈ S and(νi, νi+1, δi,i+1) ∈ R. ν0 is called the starting state
of π . Since the timed model has a finite set of states, one or more states of the timed model
will appear multiple number of times on a path. In other words, a path (as defined here) is an
infinite walk over the state transition graph.πi denotes the suffix ofπ starting from theith

state,νi , of π .
If a state formulaf is true in a states we writes |= f . Likewise, if a path formulaf ′ is

true in a pathπ we writeπ |= f ′.

• ∀s ∈ S, s |= T rue ands 6|= False

• s |= p iff p ∈ L(s)
• s |= ¬p iff p 6∈ L(s)
• s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 ands |= ϕ2

• s |= ϕ1 ∨ ϕ2 iff s |= ϕ1 or s |= ϕ2

Min-max event-triggered computation tree logic 169

• s |= E(ϕUψ) iff there exists a pathπ = s0, s1, s2, . . . starting ats = s0 and somei ≥ 0
such thatsi |= ψ and for allj < i, sj |= ϕ. We also say thatπ |= ϕUψ , that is, the path
formulaϕUψ is true in the pathπ .

• s |= E(ϕU(posedge(f)∧ψ)) iff there exists a pathπ = s0, s1, s2, . . . starting ats = s0
and somei ≥ 0 such thatsi |= ¬f , si+1 |= f ∧ ψ and for allj < i, sj |= ϕ. We also
say thatπ |= ϕU(posedge(f) ∧ ψ), that is, the path formulaϕU(posedge(f) ∧ ψ) is
true in the pathπ .

• s |= E(ϕU(negedge(f)∧ψ)) iff there exists a pathπ = s0, s1, s2, . . . starting ats = s0
and somei ≥ 0 such thatsi |= f , si+1 |= ¬f ∧ ψ and for allj < i, sj |= ϕ. We also
say thatπ |= ϕU(negedge(f) ∧ ψ), that is, the path formulaϕU(negedge(f) ∧ ψ) is
true in the pathπ .

The ETCTL restriction of a Min-max ETCTL formula can be evaluated using a simple
extension of CTL model checking algorithms. We do not elaborate the algorithm in this paper.
For example, for formulas of the formη = E(ϕU(posedge(f)∧ψ)) it suffices to start from
the states whereψ holds consider only those incident transitions which satisfyposedge(f)
and work backwards along predecessors which satisfyϕ to obtain the set of states satisfyingη.

DEFINITION 3 (Closing stateand g-valueof a path)

Given a CTL path formula,f ′ = f1 U f2, and a pathπ = ν0, ν1, . . . , whereπ |= f ′,
the boolean functionisclosing(i, π, f ′) is defined as follows.isclosing(0, π, f ′) is true iff
ν0 |= f2. For i > 0, isclosing(i, π, f ′) is true iff νi |= f2 and∀j, 0 ≤ j < i, νj |= f1.
Let δi,i+1 denote the delay betweenνi andνi+1, that is,(νi, νi+1, δi,i+1) ∈ R. Given a Min-
max CTL path formulaf = z1 UQz2, and a pathπ whereπ |= CR(f), the closing state,
CLS(π, f), and theg-valueGVAL(π, f) of π with respect tof are defined as follows:

• If Q ismin, then leti = min{j : isclosing(j, π, CR(f))}. Then:

CLS(π, f) = νi,

GVAL(π, f) =
{

0, if i = 0,∑i−1
j=0 δj,j+1, otherwise.

• If Q is max, then we have two cases. If∀j, ∃i, i > j , and isclosing(i, π, CR(f))
is true, thenCLS(π, f) is not well defined andGVAL(π, f) = ∞. Otherwise, let
i = max{j : isclosing(j, π, CR(f))}. Then:

CLS(π, f) = νi,

GVAL(π, f) =
{

0, if i = 0,∑i−1
j=0 δj,j+1, otherwise.

The closing state for path formulas of the formf ′ = f1 U (posedge(f) ∧ f2) and
f ′ = f1 U (negedge(f)∧ f2) is defined in a similar way, except that the transition inπ
leading to the closing state must satisfyposedge(f) andnegedge(f) respectively.

2

The Min-max value of a states in a timed modelJ = 〈AP , S,R, s0,L〉 with respect to a
Z-formulaf will be denoted byEvalS(f, s). The semantics ofEvalS(f, s) is as follows.

• If s 6|= f , thenEvalS(f, s) = null.

170 Pallab Dasgupta et al

• If f = z1 ∧ z2, wheres |= f and (wlog)z1 is aS-formula andz2 is aZ-formula, then
EvalS(f, s) = EvalS(z2, s).

• If f = QEC(g,h)(z1UQ′z2), or f = QAC(g,h)(z1UQ′z2) then,

(1) If Q′ ismin then:

– If Q ismin, then:

EvalS(f, s) = min{C(GVAL(π, f), EvalS(z2, CLS(π, f)))

among all pathsπ = ν0, ν1, . . . starting fromν0 = s},
– If Q ismax, then:

EvalS(f, s) = max{C(GVAL(π, f), EvalS(z2, CLS(π, f)))

among all pathsπ = ν0, ν1, . . . starting fromν0 = s}.
(2) If Q′ ismax, then we have a special case to consider. If in some pathπ = ν0, ν1, . . .

starting fromν0 = s, we have∀j, ∃i, i > j andisclosing(i, π, CR(f)) is true, then
CLS(π, f) is not well defined. However,GVAL(π, f) = ∞. In order to have a
well defined semantics, we restrict the set of admissible cost functions to those which
have the following limiting behaviour:

lim
g→∞C(g, h) = lim

g→∞C(g, k).

wherek is an arbitrary constant. In other words, we allow only cost functions where
the value ofC(g, h) is independent ofhwheng approaches∞. Under this restriction,
we defineEvalS(f, s) as follows.

– If Q ismin, then:

EvalS(f, s) = min{C(GVAL(π, f), EvalS(z2, η))

among all pathsπ = ν0, ν1, . . . starting fromν0 = s},
whereη = CLS(π, f) if CLS(π, f) is well defined, and some arbitrary constant
k otherwise.

– If Q ismax, then:

EvalS(f, s) = max{C(GVAL(π, f), EvalS(z2, η))

among all pathsπ = ν0, ν1, . . . starting fromν0 = s},
whereη = CLS(π, f) if CLS(π, f) is well defined, and some arbitrary constant
k otherwise.

• If f = QEC(g)(z1UQ′z2), or f = QAC(g)(z1UQ′z2) then,

(1) If Q ismin, then

EvalS(f, s) = min{C(GVAL(π, f))
among all pathsπ = ν0, ν1, . . . starting fromν0 = s}.

Min-max event-triggered computation tree logic 171

(2) If Q ismax, then

EvalS(f, s) = max{C(GVAL(π, f))
among all pathsπ = ν0, ν1, . . . starting fromν0 = s}.

From the above semantics it follows thatEvalS(f, s) returns the value returned by the cost
functionC for somebestvalue pathπ , wherebestis either the minimum cost or the maximum
cost. We shall refer to the set ofbestvalue paths with respect toEvalS(f, s) asBestP (f, s).

The following example illustrates the semantics of Min-max ETCTL.

Example2. We illustrate the syntax and semantics of Min-max ETCTL through an example
on the timed model shown in figure 1. In figure 1 the transition delays are shown on the edges,
and the labelling of states with the set of atomic propositions true in them are shown besides
the states. Consider the following Min-max ETCTL formulas:

f = minEh(Fmin maxEg(reqUmin gr)),

y = minEg+h(Fmin maxEg(reqUmin gr)).

Both of these formulas have the subformulaz = maxEg(reqUmin gr). At each statet where
t |= z (that is, the ETCTL-restrictionz′ = E(reqU gr), of z is true att), we get a non-null
value forEvalS(z,t). For example, in figure 1,EvalS(z,a)= 4, EvalS(z,b)= 3, andEvalS(z,c)
= 5.

• For evaluatingf ats, note that the cost function isC(g, h) = h, that is, the cost function
is independent of the distanceg to the statet wherez is true. On the other hand the cost
depends only on the valueh evaluated at the statet by EvalS(z,t). ThusEvalS(f,s)= 3,
and the optimal path goes through stateb.

• For evaluatingy at s, note that the cost function isC(g, h) = g + h, that is, we require
to minimize the sum of theh-value evaluated byEvalS(z,t)and the delay to the statet .
It is easy to see thatEvalS(f,s)= 9, and the optimal path goes through statea.

2

The complexity of Min-max ETCTL evaluation depends on the nature of the cost functions
C(g)andC(g, h)used in the formulas. Earlier (Dasguptaet al2001) we showed that Min-max
CTL evaluation is DP-hard in general. We had also established that whenC(g) andC(g, h)
are monotonic with respect tog andh, Min-max CTL evaluation works in polynomial time.
Since Min-max CTL is a fragment of Min-max ETCTL, we restrict Min-max ETCTL to the
following monotonic fragment. It may be noted that in all our examples we have actually
used monotonic cost functions.

DEFINITION 4 (Monotonic Min-max ETCTL)

A function f (x) is said to be monotonically increasing ifff (a) > f (b) whenevera > b.
The function is said to be monotonically decreasing ifff (a) < f (b)whenevera > b. Also a
functionf (x, y) is said to be monotonically increasing (decreasing) with respect tox, iff for
each constantk, the functionf (x, k) is monotonically increasing (decreasing). A Min-max
CTL formula is said to be monotonic iff its cost functionC(g, h) (orC(g)) is monotonically
increasing or decreasing with respect tog, and each of it’s subformulas are monotonic.
Monotonic Min-max CTL is the language consisting of monotonic Min-max CTL formulas
only. 2

172 Pallab Dasgupta et al

6. Advantages of event triggering

Timed event structures allow us to condense sequences of non-event states into lump transition
delays. A delayτ > 1 in a transition(νi, νj , τ) is a condensation ofτ − 1 non-event states
into a single lump delayτ . The number of non-event states is exponential in the number of
bits required to represent the delays, hence we expect to perform Min-max ETCTL evaluation
without having to explicitly un-condense the non-event states in the transitions.

Interestingly, though the non-event states are identical in terms of the truth of the boolean
variables inAP , the non-event states arenot identical in terms of the Min-max ETCTL for-
mulas constructed out of these boolean variables. We shall illustrate this through an example,
but we first show that intermediate non-event states are indeed identical with respect to path
formulas involvingUmin orUmax operators.

DEFINITION 5 (Intermediatenon-event state)

In a timed event structureJ = 〈AP , S,R, s0,L〉, for each(νi, νj , τi,j) ∈ R, there exists
τi,j − 1 non-event states between the event statesνi andνj (unlessτi,j = 0, in which case
there are no non-event states betweenνi andνj). νδi,j denotes the state of the systemδ units

of time after the execution of the event atνi when the next event isνj . Exceptν1
i,j andν

τi,j−1

i,j ,
all other non-event states betweenνi andνj are defined as intermediate non-event states. In
other words, an intermediate non-event state is a non-event state which has a non-event state
as a predecessor and a non-event state as a successor. 2

We say that a timed event structure isinterval independentwith respect to a temporal logic,
if all non-event states in any transition of the structure has the same truth value with respect
to every logic that can be specified in that logic.

Theorem 1. The closing state of a Min-max until path formula (involvingUmin or Umax) can
never be an intermediate non-event state.

Proof. Consider a path formulaf1UQ f2 (whereQ ismin ormax) and a pathπ = s0, s1, . . .

satisfying the path formula. Since CTL-restriction of Min-max CTL formulas are interval-
independent, iff2 is true in one of the non-event states betweensi andsi+1, thenf2 is true
in all non-event states betweensi andsi+1. Since we consider only the earliest (as inUmin)
state or the latest (as inUmax) state wheref2 is true, intermediate non-event states can never
be closing states for the formulaf1 UQ f2. However, the first or the last non-event state in a
transition may qualify to be a closing state. 2

By theorem 1, we have shown that the closing state of a Min-maxuntil path formula
can never be an intermediate non-event state. It is however possible that the first or the last
non-event state in a transition qualifies to be a closing state. If we treat these first and last
non-event states as event states as well, then we have a slightly modified event structure
where Min-max ETCTL is interval independent in the strict sense. This situation is explained
by example.

Example3. Consider the timed event structure shown in figure 2a. Suppose we wish to
evaluate the following Min-max CTL formula at states0:

minEg(trueUmin A(trueU q)).

Min-max event-triggered computation tree logic 173

s0

s1

s2 s3

s4

p

p

p

q

r

s0

s1

s2

p

p

pr
#5#1

#1

#5

#1

#1 #1

s5

ba

s3

s4

p

p

p

q

#1

#1

s7

s8

#3

s6

#3

p

#1

Figure 2. Sample timed event structure and its augmentation.

It is easy to see that the only candidate closing state for theUmin-formula is the non-event
state immediately following states1 in the transition froms1 to s3, since this non-event state
is the earliest state whereA(trueU q) is true.

As a second example, let us consider the following Min-max CTL formula at the states0
of the timed event structure of figure 2a:

minEg(trueUmax p).

Since the atomic propositionp is not true at the states4, the only candidate closing state for
this formula is the non-event state immediately precedings4 (that is, the non-event state at a
delay of 4 units from states3). In both these cases we have assumed the granularity of time to
be one unit. Since the granularity of time is one unit, there is no non-event state for unit-delay
transition andε-delay transition.

Theorem 1 shows that intermediate non-event states can never be closing states for Min-
max CTL formulas. Thus in order to circumvent the problem of handling non-event states,
we need to define only the first and last non-event state in every transition (that is, if any such
non-event state exists) as event states. Figure 2b shows the modified timed event structure
after the redefinition of the first and last non-event states in the transitions. 2

We are now in a position to demonstrate the reason for restricting the use of the CTLuntil
operator in Min-max ETCTL. Min-max ETCTL does not allow path formulas of the form
f1Uf2 involving the CTLuntil operator. Instead formulas of the formf1U(η∧f2), whereη is
a trigger formula are allowed. We first demonstrate the problem which arises out of allowing
the CTLuntil operator in an unrestricted way.

Example4. Consider the timed transition system shown in figure 3. Suppose we wish to
evaluate the following query at states0:

ϕ = minEg2+h2(trueUmin (q ∧ minEg(p Umin r))).

174 Pallab Dasgupta et al

s0 s1 s2 s3 s4 s5
3 4 1 4

1
1

p rp.q p p.q p

Figure 3. Sample timed transition system.

Letψ = (q ∧ minEg(p Umin r)). If the transition system is a timed event structure, thenψ

is also true in the non-event states betweens1 ands2, and in the non-event states betweens3
ands4. Since in checkingϕ, we are looking fortrueUmin ψ , only s1 qualifies to be the closing
state. Therefore, evaluatingϕ at s0 yields 32 + 102 = 109.

Suppose we wish to evaluate the following query at states0:

ϕ = minEg2+h2(trueUmaxψ).

The only state which qualifies to be a closing state is the last non-event state precedings4 in
the transition froms3 to s4. As discussed previously, if we treat the first and last non-event
states in a transition as event states, then we have interval independence in the strict sense
and the query evaluates to 112 + 22 = 125 ats0.

Let us now study what happens when we use the CTLuntil operator in an unrestricted way
as follows:

ϕ = minEg2+h2(trueU ψ).

It may be observed that we no longer have interval independence. Each of the non-event states
betweens1 ands2, as well as all non-event states betweens3 ands4 qualify to be closing states.
The best closing state in this case is the non-event state at a delay of 6 units froms0 (assuming
the granularity of delays as 1 unit), and the value evaluated forϕ at s0 is 62 + 72 = 85. 2

Since the number of bits required to represent a delayd (which is a compaction ofd non-
event states in a timed event structure) is log2d, having to inspectd non-event states separately
is indeed an exponential blow-up in complexity, and we have a pseudo-polynomial algorithm
at best. In a previous work on timed verification (Dasguptaet al 2000) we had encountered
a similar problem, and had observed that reasoning about timings of events (that is, signal
changes) does not suffer from this problem. This is demonstrated by the example 5.

Example5. We continue with the timed event structure shown in figure 3. Now consider the
following formula:

ϕ = minEg2+h2(trueU (posedge(q) ∧ minEg(p Umin r))).

Let ψ = (posedge(q) ∧ minEg(p Umin r)). Along all paths starting froms0, the trigger
formula posedge(q) is true only on the event statess1 ands3. Thusψ is true only at these
two event states, and only these two event states qualify as closing states for the path formula
trueU ψ . Thereforeϕ evaluates to 89 ats0. 2

Thus by forcing the subformula appearing after the CTLuntil operator to appear in conjunc-
tion with a trigger formula, we guarantee interval independence of Min-max ETCTL over the
augmented timed event structures. The following section shows that Min-max ETCTL eval-
uation works in time polynomial in the size of the state space times the length of the formula.

Min-max event-triggered computation tree logic 175

Algorithm Evaluate(f,s)

1. Use CTL model checking techniques to label the states of the model with the sub-formulas of the
ETCTL restriction off . During this step, ignore the transition delays.

2. The evaluation at a state,s, of a Min-max ETCTL formula,f = QEC(f1UQ′f2), whereQ andQ′

are min or max quantifiers, is done as follows.
The procedure for evaluating formulas of the formf = QAC(f1UQ′f2) is exactly similar.

2.1 Recursively evaluate all Min-max ETCTL subformulas off at all states of the model.

2.2 IfQ′ is max then defineϕ = f1 else defineϕ = f1 ∧ ¬f2.

2.3 LetH denote the set of states labeledf2, which are reachable froms alongϕ-paths.

2.4 IfQ′ is max then:

2.4.1 Remove each staten fromH such that:
(a)n does not belong to anyϕ-cycle, and
(b) For each successorn′ of n, n′ |= A(f1Uf2).

2.4.2 Label a staten fromH with the symbol∞ if:
(a)n belongs to aϕ-cycle, and
(b) For each successorn′ of n, n′ |= A(f1Uf2).

2.5 For each statet ∈ H do:

2.5.1 If t is labeled∞ then setg=∞ and computeW(t)=C(g, h), whereh = EvalS(f2, t).
2.5.2 Else consult table 1 to determine the required path type froms to t , determine the

lengthg of that path, and computeW(t) = C(g, h), whereh = EvalS(f2, t).

2.6 IfQ is min, setEvalS(f, s) = min{W(t)|t ∈ H }
else setEvalS(f, s) = max{W(t)|t ∈ H }.

3. The evaluation at a state,s, of a Min-max ETCTL formula,f = QEC(f1 U T ∧ f2), where
Q is min or max quantifiers, andT is a trigger formula is done as follows.
The procedure for evaluating formulas of the formf = QAC(f1 U T ∧ f2) is exactly similar.

3.1 Recursively evaluate all Min-max ETCTL subformulas off at all states of the model.

3.2 LetH denotes the set of states,t , labeledf2, which are:
(a) reachable froms alongf1-paths, and
(b) the trigger formulaT is true in the transition tot from the predecessor oft in thef1-path.

3.3 For each statet ∈ H do:

3.3.1 Consult table 2 to determine the required best path froms throught among thosef1 paths
where the trigger formulaT is true in the transition tot from the predecessor oft .

3.3.2 In the chosen path, ComputeW(t) = C(g, h), whereh = EvalS(f2, t).

3.4 IfQ is min, setEvalS(f, s) = min{W(t) | t ∈ H }
else setEvalS(f, s) = max{W(t) | t ∈ H }.

Figure 4. Algorithm for Min-max ETCTL evaluation.

7. Algorithm for Min-max ETCTL evaluation

In this section we present an algorithm for Min-max ETCTL evaluation and analyse its
complexity.

176 Pallab Dasgupta et al

DEFINITION 6 (f -path and f -cycle)

A path,π , starting at a states and going through a states ′ is called a “f -path froms through
s ′” iff the state formulaf holds in all states precedings ′ in π . An f -cycle through a statet
is anf -path fromt throught . 2

A shortest lengthf -path from a states through a states ′ is one wheres ′ occurs as early
as in any otherf -path froms throughs ′. The longest lengthf -path froms throughs ′ is
defined similarly, wheres ′ occurs at least as late as any otherf -path froms throughs ′.
Obviously, a shortest lengthf -path will have nof -cycles. Hence shortest lengthf -paths
can be found using any standard shortest path algorithms on the state transition graph in
polynomial time.

If any f -path froms throughs ′ contains an intermediate state which is in anf -cycle, then
it is possible to havef -paths of infinite length froms throughs ′, and hence the length of the
longestf -path froms throughs ′ is∞. Determining the set of states which belong tof -cycles
can be done in polynomial time. Finding whether there exists anyf -path froms throughs ′
via any of these states can also be done in polynomial time. If no suchf -path exists, then
by dropping all states wheref is false, we are left with finding a longest length path froms
throughs ′ in an acyclic graph, which is also solvable in polynomial time.

The algorithm which we describe is a labelling algorithm. A state,s, in the timed model
is labelled by a sub-formula,f , iff its ETCTL restriction is true in that state. Further, if the
sub-formula is a Min-max ETCTL formula, then the evaluation algorithm augments the label
with the valueEvalS(f, s).

Once the first and last non-event states in the transitions of the original timed event structure
is redefined as event states, we have full interval independence for Min-max ETCTL formulas.
The algorithm shown in figure 4 assumes that such a pre-processing has already been done
on the original timed event structure.

We prove the correctness of the algorithm with respect to Monotonic Min-max ETCTL
formulas. We establish the correctness of evaluation for the formulaf = QEC(f1UQ′f2). The
correctness of evaluation forA formulas follows from the fact that the evaluation procedure
for E formulas andA formulas are essentially the same.

Lemma1. If Q′ is min, then a state,t , which cannot be reached froms by a(f1 ∧ ¬f2)-path
is not a closing state of any path in BestP(f,s).

Table 1. Best path types forf = QEC(f1UQ′f2).

C-type Q-type Q′-type Best path type froms to t

Increasing min min Shortest length(f1 ∧ ¬f2)-path
Increasing min max Shortest lengthf1-path
Increasing max min Longest length(f1 ∧ ¬f2)-path
Increasing max max Longest lengthf1-path
Decreasing min min Longest length(f1 ∧ ¬f2)-path
Decreasing min max Longest lengthf1-path
Decreasing max min Shortest length(f1 ∧ ¬f2)-path
Decreasing max max Shortest lengthf1-path

Min-max event-triggered computation tree logic 177

Table 2. Best path types forf = QEC(f1 U T ∧ f2).

C-type Q-type Best path type froms to t

Increasing min Shortest lengthf1-path
Increasing max Longest lengthf1-path
Decreasing min Longest lengthf1-path
Decreasing max Shortest lengthf1-path

Proof. If t cannot be reached froms by anf1-path, then by definition (semantics of Min-max
CTL), t cannot be a closing state. Ift can be reached froms byf1-paths, but not byf1 ∧¬f2-
paths, then everyf1-path froms throught has an intermediate state wheref2 is true. Since
Q′ is min, that intermediate state is the closing state. 2

Lemma2. If Q′ is max, then a state,t , which cannot be reached froms by af1-path is not a
closing state of any path in BestP(f,s).

Proof. If t cannot be reached froms by anf1-path, then by definition (semantics of Min-max
CTL), t cannot be a closing state. 2

Lemma3. If Q′ is maxand t is a state which does not belong to anyf1-cycle, and for each
successort ′ of t , we havet ′ |= A(f1Uf2), thent is not a closing state of any path in BestP(f,s).

Proof. Since for each successort ′ of t , t ′ |= A(f1Uf2), it follows that anyf1-path froms
throught in BestP(f,s) will also be anf1-path froms through some states ′ wheref2 holds,
andt occurs earlier thans ′. Sincet does not belong to anyf1-cycle,s ′ 6= t . SinceQ′ is max,
t cannot be a closing state. 2

Lemma4. If Q′ is max and t is a state such that there exists af1-path froms through t ,
t |= f2, t belongs to af1-cycle, and for each successort ′ of t , we havet ′ |= A(f1Uf2), then
t cannot be a closing state in any path having finiteg-value, and there exists a path froms
throught havingg-value as∞.

Proof. Consider a path,π , having finiteg-value. Then there exists a states ′ which is the
closing state ofπ . Clearlys ′ 6= t , since for each successort ′ of t , t ′ |= A(f1Uf2) and therefore
every instance oft ′ is followed by some other candidate closing state.

Consider anf1-path froms throught which repeatedly goes around in thef1-cycle through
t . In this pathf1 holds on all states andt occurs infinitely often. By definition, theg-value of
such a path is∞. 2

Lemma5. If C-type is increasing, andQ-type ismin, then anyϕ-path,P , from s through
t which is longer than the shortest lengthϕ-path,P ∗, from s through t does not belong to
BestP(f,s).

Proof. SinceC-type is increasing, the path cost ofP ∗ is less than that ofP . Since,Q-type is
min,P ∗ is better thanP and henceP cannot belong to BestP(f,s). 2

Lemma6. If C-type is increasing, andQ-type ismax, then anyϕ-path,P , from s through
t which is shorter than the longest lengthϕ-path,P ∗, from s through t does not belong to
BestP(f,s).

178 Pallab Dasgupta et al

Proof. SinceC-type is increasing, the path cost ofP ∗ is greater than that ofP . Since,Q-type
is max,P ∗ is better thanP and henceP cannot belong to BestP(f,s). 2

Lemma7. If C-type is decreasing, andQ-type ismin, then anyϕ-path,P , from s through
t which is shorter than the longest lengthϕ-path,P ∗, from s through t does not belong to
BestP(f,s).

Proof. SinceC-type is decreasing, the path cost ofP ∗ is less than that ofP . Since,Q-type
is min,P ∗ is better thanP and henceP cannot belong to BestP(f,s). 2

Lemma8. If C-type is decreasing, andQ-type ismax, then anyϕ-path,P , from s through
t which is longer than the shortest lengthϕ-path,P ∗, from s through t does not belong to
BestP(f,s).

Proof. SinceC-type is decreasing, the path cost ofP ∗ is greater than that ofP . Since,Q-type
is max,P ∗ is better thanP and henceP cannot belong to BestP(f,s). 2

Theorem 2. Algorithm Evaluate correctly evaluates a Monotonic Min-max ETCTL formula
at a state of a timed event structure.

Proof. We establish the correctness of the algorithm for evaluating a Min-max ETCTL for-
mula,f = QEC(f1UQ′f2), at a state,s, under the induction hypothesis that the algorithm
correctly evaluates the subformulasf1 andf2 at all states of the model. Since evaluation for
A formulas is exactly similar, the same proof applies toA formulas as well.

The algorithm determines the set of candidate closing states, and then proceeds to determine
the g-value of theϕ-path of appropriate type (longest or shortest) through the candidate
closing states.

By lemmas 1 and 2, we have shown that a state can be a closing state only if it is reachable
from s by aϕ-path (whereϕ is defined in step 2.2 of the algorithm). Therefore, in step 2.3,
we consider the set of states reachable froms by ϕ-paths.

By lemma 3, we have shown that ifQ′ is max andt is a state which does not belong to any
f1-cycle, and for each successort ′ of t , t ′ |= A(f1Uf2), thent is not a closing state of any
path in BestP(f,s). In step 2.4.1 of the algorithm, we remove all such states fromH .

By lemma 4, we have shown that ifQ′ is max andt is a state which belongs to af1-cycle,
and for each successort ′ of t , t ′ |= A(f1Uf2), then for every path (shortest or longest) through
t , either theg-value of the path is∞, or there is some other closing state. Further we have
shown that there exists at least one path through such states withg-value as∞. Therefore, in
step 2.4.2 of the algorithm, we label such states as∞, and in step 2.5.1 we treat theg-values
of paths through these states as∞.

Lemmas 5–8 establish that only one path through each state in the setH needs to be
considered for evaluation, and the path types are as shown in table 1. In step 2.5, for each
state inH , the algorithm evaluates the costW(t) of the best path throught . Since these
are the only candidate paths (by lemmas 5-8), the cost of the best path among these is
the desired value ofEvalS(f, s). In step 2.6, the algorithm assigns the cost of the best
path toEvalS(f, s). 2

Lemma9. The complexity of finding the length of a shortestf -path or a longestf -path from
a states to a statet in a timed model isO(|R|+ |S| log |S|), where|S| is the number of states
in the model and|R| is the size of the transition relationR.

Min-max event-triggered computation tree logic 179

Proof. Eachf -path froms to t includes only states which are labelledf , and the statet . We
first remove from the transition graph those states (exceptt) which are not labelledf and the
set of transitions to and from these states. This can be done inO(|R| + |S|) time. All paths
in the reduced transition graph aref -paths.

Finding the shortest path between a pair of nodes in a graph with non-negative edge costs
requiresO(|R|+|S| log |S|) time where|R|denotes the number of edges in the graph (Cormen
et al1990).

For determining the longest path length, we require to consider the cycles in the graph. If
we find a path froms to t through a statej which is self-reachable (that is,j belongs to a
f -cycle), then the longest path length froms to t is ∞. Otherwise, we use the algorithm for
acyclic graphs. This can be achieved inO(|R| + |S|) time. 2

Theorem 3. Algorithm Evaluate requiresO(|f |.|S|2.(|R| + |S| log |S|)) time to evaluate
a Monotonic Min-max ETCTL formulaf of length |f | on a timed event structureJ =
〈AP , S,R, s0,L〉
Proof. Steps 2.3 and 3.2 can be done by a single depth-first traversal inO(|R| + |S|) time.
Step 2.4 requires us to determine whether states inH belong to anyϕ-cycle. Since the worst
case number of states inH is |S|, this step can be completed inO(|S|.(|R| + |S|)) time. By
virtue of lemma 9, the complexity of steps 2.5.2 and 3.3.2 isO(|R| + |S| log |S|). Therefore,
the total complexity of step 2.2 to step 2.6 and step 3.2 to step 3.4 isO(|S|.(|R|+|S| log |S|)).
This is the complexity of evaluating the formula at one state when the Min-max values for
the subformulas are given. The complexity of evaluating the formula at every state is given
byO(|S|2.(|R| + |S| log |S|)). By induction on the length of the formula, the complexity of
Algorithm Evaluate isO(|f |.|S|2.(|R| + |S| log |S|)). 2

8. Conclusion

This paper shows that reasoning about the extremal timing properties of events can be done
for efficiently than that of general extremal timing queries over timed event structures. The
proposed logic, Min-max ETCTL, combines the ideas presented earlier (Dasguptaet al2000,
2001) into a unified logic for reasoning about extremal timing properties of events.

PD acknowledges the partial support of the Indian National Science Academy, New Delhi for
this work. PPC acknowledges the partial support of the Department of Science & Technology,
Govt. of India, for this work.

References

Alur R 1998 Timed automata. Manuscript: www.cis.upenn.edu/∼alur/Nato97.ps.gz
Alur R, Courcoubetis C, Dill D 1993 Model checking in dense real-time.Inf. Comput.104: 2–34
Alur R, Henzinger T A 1993 Real time logics: Complexity and expressiveness.Inf. Comput.104:

35–77
Alur R, Henzinger T A 1994 A really temporal logic.J. Assoc. Comput. Mach.41: 181–204
Burch J R, Clarke E M, Long D E, McMillan K L, Dill D L 1994 Symbolic model checking for

sequential circuit verification.IEEE Trans. Comput. Aided Design13: 401–424

180 Pallab Dasgupta et al

Clarke E M, Kurshan R P 1996 Computer aided verification.IEEE Spectrum33(6): 61–67
Clarke E M, Emerson E A, Sistla A P 1986 Automatic verification of finite-state concurrent systems

using temporal logic specifications.ACM Trans. Program. Lang. Syst.8: 244–263
Cormen T H, Leiserson C E, Rivest R L 1990Introduction to algorithms(Cambridge, MA: MIT Press

and McGraw-Hill)
Dasgupta P, Deka J K, Chakrabarti P P 2000 Model checking on timed event structures.IEEE Trans.

Comput. Aided Design Integrated Circuits Syst.19: 601–611
Dasgupta P, Deka J K, Chakrabarti P P, Sriram S 2001 Min-max computation tree logic.Artif. Intell.

127: 137–162

