Sadhara Vol. 27, Part 2, April 2002, pp. 163-180. © Printed in India

Min-max event-triggered computation tree logic

PALLAB DASGUPTA, P P CHAKRABARTI and JATINDRA
KUMAR DEKA

Department of Computer Science and Engineering, Indian Institute of
Technology, Kharagpur, India 721 302
e-mail: {pallab,ppchak,jatif@cse.iitkgp.ernet.in

Abstract. Very often timing verification involves the analysis of the timings of
discrete events such as signal changes, sending and receiving of signals, and sen-
sitization of edge-triggered circuit components. The main bottleneck in verifying
timing properties of timed finite state machines (FSM) has been the inherent com-
plexity of verifying timed properties (PSPACE-complete for timed extensions of
computational tree logic (CTL)). Often however, we are interested in the best case
or worst case timings between events. In this paper we introduce a temporal query
language called Min-max Event-Triggered Computational Tree Logic for express-
ing such extremal queries on the timings of events and show that such queries can
be evaluated in time polynomial in the size of the system times the length of the
formula.

Keywords. Computational tree logic; timing verification; temporal query lan-
guage.

1. Introduction

Temporal logic model-checking (Clark¢al 1986) is one of the most popular and well studied
paradigms for formal verification of hardware (see Clarke & Kurshan 1996, for a survey). In
this approach the property to be verified on a given finite state machine (FSM) is specified
in a temporal logic. Model checking has been extensively studied for two broad categories
of temporal logics, namellinear time temporal logiand branching time temporal logic
(Burchet al 1994; Clarkeet al 1996).

In order to verify timing properties involving absolute quantums of time, researchers
have extendedintimedtemporal logics such asinear Temporal LogiqLTL), Computa-
tion Tree Logic(CTL), and CTL* (Clarke et al 1986) totimed temporal logics such as
Timed CTLTCTL) (Alur & Henzinger 1993) andReal Time CT(RTCTL) (Emersoret al
1989). However, the verification of timed temporal logics has been found to be much more
complex than their untimed counterparts (see Alur 1998, for a survey). For example, while
LTL model checking is PSPACE complete, TLTL model checking is undecidable (Alur &
Henzinger 1994). The problem is less severe in the case of branching time timed logics,
where TCTL model checking is PSPACE complete (Alur & Henzinger 1993; Atual
1993) (whereas CTL model checking is possible in polynomial time). It has been shown

163

164 Pallab Dasgupta et al

by Alur et al (1993) that TCTL model checking is PSPACE complete even in discrete-time
models.

Often while evaluating the timing properties of an FSM, we are interested in evaluating
the best case or worst case timing properties of signals (more formally, atomic proposi-
tions). For example, in an arbitrated bus model (such as AMBA or PCI) we are typically
interested in the worst case delay between a request signal for the bus and the correspond-
ing grant signal. In a previous work (Dasgupgtiaal 2001), we presented a temporal logic,
Min-max CTL, for reasoning about such extremal timing properties and showed that Min-
max CTL evaluation works in time polynomial in the size of the state space and the length
of the formula. We also illustrated the expressibility of Min-max CTL over diverse problem
domains.

While Min-max CTL can express queries related to the earliest and latest timings of signals,
we are sometimes interested in the timings of non-extremal occurrences of signals as well.
Specification of the earliest and latest occurrences of signals along a computation path is
achieved in Min-max CTL by using thentil-min (Unin) anduntil-max (Unmay) Operators in
place of theuntil (U) operator of CTL. Since Min-max CTL is solely concerned with the
extremal timings of signals, the syntax of Min-max CTL does not contain the ustib{U)
operator of CTL. However in order to generalize Min-max CTL to be able to specify queries
relating to the non-extremal timings of signals we need to add theu®iLoperatorl/, into
the syntax of Min-max CTL.

In this paper, we investigate the implications of augmenting Min-max CTL with the usual
until operatorU, of CTL. We show that as soon as this is done, the complexity of Min-max
CTL evaluation increases significantly, and the algorithm for evaluation is at best pseudo-
polynomial. We then show that reasoning about the timings of changes in signal values
(which we call events) is significantly more efficient (polynomial time) as against reason-
ing about the timings of signals. This result is indeed good news since very often timing
verification actually involves the analysis of the timings of discrete events such as signal
changes, the sending and receiving of signals, and sensitization of edge triggered circuit
components.

In order to express the above class of efficiently checkable event timing queries, we
define an extension of Min-max CTL, call&din-max Event Triggered Computation Tree
Logic (Min-max ETCTL). We then present an algorithm for Min-max ETCTL evaluation
and show that it runs in time polynomial in the size of the state space times the length of
the formula.

The paper is organized as follows. In § 2, we outline the syntax of Min-max CTL. Section 3
describes the formal model of computation. We introduce the syntax and semantics of Min-
max ETCTL in 88 4 and 5 respectively. Section 6 demonstrates the problems induced by
using the CTLluntil operator in Min-max CTL, and how the problem is surpassed in Min-max
ETCTL by using a restricted syntax. Section 7 presents an algorithm for Min-max ETCTL
evaluation and establishes that the algorithm works in time polynomial in the size of the state
space times the length of the formula.

2. Min-max CTL

The syntax of Min-max CTL (Dasgupgt al2001) is an extension of CTL, where we embed
the notion of costs and optimization functions over the computation tree. For example, con-
sider the CTL formulay = E(f1Uf2) (where f; and f, are CTL formulas)g is true at

Min-max event-triggered computation tree logic 165

a states iff there exits a pathr starting ats to some state, such thatf, is true atr and
f1is true at each state (if any) in preceding. In Min-max CTL, we may pose the query
V¥ = min Ec 1) (f1Unmin f2), Wheref1 is a CTL formula andf; is a Min-max CTL formula,
andC(g, h) is a cost function over two variablgsand/ which are defined below. Evalua-
tion of ¢y on a state returns a value. IE£(f1Uf>) is not true ins then the value returned is
NULL. Otherwise, consider the sét/, of paths starting from which satisfyf1U f>. In each
such pathr, consider thearlieststate t, such thatf; is true inz and f3 is true in all states
preceding in . (If we had used/max instead ofUpin, then we would have considered the
last state in & wheref; is true andf; is true in all preceding states). The state called the
closing stateof & for f1Umin f2. The distance from to the closing state is represented by
g- The value returned by evaluating at s is represented bk. The Min-max value of path
7 for ¢ is the value ofC (g, h). The Min-max value of statefor ¢ is theminimumamong
the Min-max values of the paths . (If we had usednax in place ofmin outside theE in
¥, then the Min-max value of would have been theaximumamong the Min-max values
of paths inW.)

The syntax of Min-max CTL is as follows3 denotes boolean formula$,denotes CTL
formulas, andZ denotes Min-max CTL formulag® andC’ are user defined functions.

B = falsdtrue|lg|—¢|B A B|B vV B|—B

S=B|ISASISVSIESU SIAS U S)|-S

O = min| max
Z=ZANS|QEcgn(SUQZ)|QEc(SUS)|QAc(q.m(SUgZ)|QAc) (SUpS)

We illustrate Min-max CTL through example 1 below.

Examplel. Consider the timed model shown in figure 1. The timed model represents the
states of a client process in a closed system (where the behaviour of the server process is
known). The states labeledq are states in which it makesraquestand the states labeled

gr are states in which it getsgrant Suppose we wish to determine the minimum among the
worst-case response times for the earliest request along all possible computation paths of the
client, where the worst-case response time f@cmesof a client is defined as the maximum

delay by which it reachesgrant state. This query can be formulated in Min-max CTL as:

@ = min Ej(true Umin max E,(req Upmin g7))

/®X
req
req req req
2 1 1/69\5
1/ 1 eq gr Qgr
ar ar ar Q Q
O O™ Y e Y

‘ ‘ Vg roV
ST el
v

v

Figure 1. Sample timed model.

166 Pallab Dasgupta et al

Thus,p = min Ej(true Umin f) Wheref = max E,(reqUmin gr). The closing states far at
s are the states, b, andc. Evaluatingf ata, b, andc returns 4, 3, and 5 respectively. These
are ther-values respectively for the paths to the closing stajésandc for evaluatingy at
s. Since the cost function fay is 2 and the objective function is min, the evaluationgoht
s returns 3. O

It should be noted that the syntax of Min-max CTL does not allow the use of the usual
until operator,U, of CTL. Properties involving the CTL until operator may be useful in
many cases. For example, in the context of the previous example, we may be interested in
determining the minimum among the worst-case response times among requests along all
possible computation paths — not necessarily the first one. This may be specified by the
following property provided we allow the CTL until operator:

@ =min E;(trueU max Ey(req Umin &7)).

In the next sections we shall augment Min-max CTL withuahél operator of CTL and study
the implications in terms of evaluation complexity.

3. Timed event structures

We first define the formal model used throughout this paper to represent timed finite state
machines. We call each sequence of state transitions of the systemputationof the
system. In a computation aventis said to occur if:

o Any variable of the system is possibly modified (like assignments).
e A control flow decision is taken based on the value of one or more variables (like a
branching or waiting).

Events execute instantaneously (thatis, in zero time) and multiple events can occur atthe same
instant. A computation can be characterized by a sequence of instances of event occurrences,
interspersed by known delays during which the system is in transition. The variables of the
system do not change during these transition periods. Thus we have two distinct types of
statesof the system:

Event states:States where an event may occur.

Non-event statesTransition states between event states. If the delay between two event states,
v; andv;, ist;; > 0, then we have;; — 1 non-event states (separated by unit delays) between
them. If7;; = 0, then there are no non-event states betweamdv; .

Since we consider finite representations of delays, we work on integer representations with
a granularity of one unit. Aimed event structurés an extension of the Kripke structure
obtained by labeling each edge with an integer representing the delay of that edge. Each node
of atimed event structure representesaant statgthat is, a state resulting from the execution

of an event along some computation path.

DEFINITION 1 (Timed event structure)
A timed event structure is a tuple= (AP, S, R, so, L), Where:

e AP is a finite set of boolean variables (analogous to atomic propositions in Kripke
structures),

Min-max event-triggered computation tree logic 167

S is a set of event states,

e R C § x S x N is a transition relation, wheré/ denotes the set of integers, and
(vi,vj, 7;;) € R implies that the delay between successive event stat@sdv; is 7;;

units of time,

sg € S is the initial event state,

L : S — 24 is a labeling of event states with the set of boolean variables true in that
state. O

Each transition of a timed event structure having a delay 1 is a compaction of — 1
non-event states, that is states where no event can occur. Each non-event state in a transition
(vi, vj, 7) inherits the truth values of the boolean variablestih from v;.

4. Syntax of Min-max ETCTL

The syntax of Min-max ETCTL is similar to CTL (Clarlat al 1986), except for three special
types ofuntil operators and two trigger construgtssedge(fandnegedge(f)where f is a
boolean formula over the set of atomic propositions. Since we consider timed models, we
exclude the next-time (X) operator of CTL. We first define the syntax and then illustrate the
logic with examples.

B denotes the set of boolean formulas over the set of atomic propositiens4P, S
denotes CTL formulad; denotes trigger formulas aitidenotes Min-max ETCTL formulas.
C andC’ are user defined functions.

e B = false|true|g|—qg|B AN B|B Vv B|—B

oS =B|SAS|ISVSIESUS|ASUS)|—-S

e T = posedgéB) |negedgéB) |T A T|T v T

e Q0 = min | max

oZ = Z NS|QEcn(SUgZ)| QEcg(SUg S) | QAcgm(SUg Z) |
QAc)(SUg) | QEc(qmy(SU (T N 2)) | QEcy(SU (T A S)) |
QAcemS U (T N 2))| QAcp(SU (T N S))

Given a computation, posedge(f) istrue in an event state if in the preceding staigas

false and the execution of the event maKdeue, anchegedge(f) istruein an event state if

in the preceding statg was true and the execution of the event makéalse. Since truths of

the atomic variables change only on event states, it follows that the trigger formulas can only
be true on event states along specific computation paths. We use the following abbreviations:

Fq: trueU q
Fnaxg: true Umax g

Throughout this papetZ-formulas, S-formulas andB-formulas refer to formulas derived
out of Z, S and B respectively. We first present a few examples to informally explain the
semantics of Min-max ETCTL and then proceed to define the formal semantics.

It may be observed that Min-max ETCTL is an extension of Min-max CTL where we
allow theuntil operator of CTL in thez-formulas. However, we restrict the syntax somewhat

168 Pallab Dasgupta et al

by forcing any formula following theintil operator to appear in conjunction with a trigger
formula. The reason for this will be demonstrated after we familiarize the reader with the
semantics of Min-max ETCTL.

5. Semantics of Min-max ETCTL

Min-max ETCTL has a semantics of evaluation which returns a numeric value whenever the
formula is true at a state. This numeric value quantifies the value of the objective fu@ction
(or C”) which we seek to optimize, and is the answer to the Min-max ETCTL query at that
state. On the other hand, if the formula is false at a state of the model, then the evaluation of
the formula at that state returns null.

A Min-max ETCTL formula is said to be true at a state whenER€CTL restrictionof the
Min-max ETCTL formula is true at that state.

DEFINITION 2 (ETCTL-restriction CR(f) of aformula f)

The ETCTL-restriction CR(f) of a Min-max ETCTL formula,f, is the formula, which is
obtained by dropping the min, max quantifiers and cost functiorfs Formally,

If fisanS-formula orB-formula, thenCR(f) = f.

For a formulaf = z1 A zo Wwherezs is anS-formula, CR(f) = CR(z1) A z2.

Foraformulaf = QEc/ () (21U z2), CR(f) = E(z1 U z22).

For aformulaf = QEc 1) (z1Ugz2), CR(f) = E(z1 U CR(22)).

Foraformulaf = QAci () (zaUpz2), CR(f) = A(z1 U 22).

Foraformulaf = QAc.n(21U¢gz2), CR(f) = A(z1 U CR(22)).

For a formulaf = QFEc) (21U (z2 A z3)) Wherez is a trigger formulaCR(f) =

E(z1U (z2 A z3).

e Foraformulaf = QEcn(z1U(z2 A z3)) Wherez, is a trigger formulaCR(f) =
E(z1 U (z2 A CR(z3)).

e Foraformulaf = QAc () (z1U(z2 A z3)) Wherez; is a trigger formulaCR(f) =
A(za U (z2 A z3).

e Foraformulaf = QAc(n(z1U(z2 A z3)) Wherez; is a trigger formulaCR(f) =

A(z1 U (z2 N CR(z3)).]

A path 7, inatimed event structute = (AP, S, R, so, L) is an infinite sequence of states,
Vo, V1, ..., such that for alf, v; € S and(v;, vi11, 8;;+1) € R. v is called the starting state
of . Since the timed model has a finite set of states, one or more states of the timed model
will appear multiple number of times on a path. In other words, a path (as defined here) is an
infinite walk over the state transition grapt’. denotes the suffix of starting from the”
state,y;, of 7.

If a state formulaf is true in a state we writes = f. Likewise, if a path formulagf’ is
true in a pathr we writerr = f’.

Vs € S,s = True ands [~ False
s Epiff pe L(s)

s = —piff p & L(s)

s = o1 A @2iff s = @1 ands = @2
sE@Veif s Epiors =g

Min-max event-triggered computation tree logic 169

o s = E(pUv) iff there exists a path = sg, 51, 52, . .. Starting att = sop and some > 0
such thak; = ¢ andforallj <i,s; = ¢. We also say that = U, thatis, the path
formulagU+ is true in the pathr.

e s = E(pU(posedgéf) A y)) iff there exists a pathr = sq, 51, 52, ... starting ab = sg
and some > O suchthas; = —f,siy1 = f Ay andforallj <i,s; = ¢. We also
say thatr = oU (posedgéf) A), that is, the path formulaU (posedgéf) A ¥) is
true in the pathr.

e 5 = E(pU(negedgéf) Ay)) iff there exists a pathr = s, 51, 52, ... Starting att = sg
and some > O suchthas; = f,siv1 = —~f Ay andforallj <i,s; = ¢. We also
say thatr = ¢U(negedgéf) A ¥), that is, the path formulaU (negedgéf) A ¢) is
true in the pathr.

The ETCTL restriction of a Min-max ETCTL formula can be evaluated using a simple
extension of CTL model checking algorithms. We do not elaborate the algorithm in this paper.
For example, for formulas of the form= E (oU (posedgéf) A v)) it suffices to start from
the states wher¢ holds consider only those incident transitions which satefyedgéf)
and work backwards along predecessors which sagigfyobtain the set of states satisfying

DEFINITION 3 (Closirng stae ard g-value of a path)

Given a CTL path formulaf’ = f1 U f>, and a patht = vg, vy, ..., Wherex = f/,
the boolean functionsclosingi, =, f') is defined as followsisclosingO, r, f*) is true iff
vo = f2. Fori > 0,isclosingi, z, f') is true iff v; = f> andV;,0 < j < i,v; = fi.
Let §; ;.1 denote the delay betweepandv; 1, that is,(v;, viy1, 8;.i+1) € R. Given a Min-
max CTL path formulaf = z1 Ugz», and a pathr whererr = CR(f), the closing state,
CLS(m, f), and theg-valueGV AL(w, f) of = with respect tof are defined as follows:

o If Qismin,thenleti = min{;j : isclosingj, =, CR(f))}. Then:

CLS(m, f) = v,
0, if i =0,

GVAL(m, f) = {Zi’jﬂs.fﬁl’ otherwise.

o If O is max, then we have two cases. ¥j, 3i,i > j, andisclosingdi, =, CR(f))
is true, thenCLS(x, f) is not well defined andsVAL(x, f) = oo. Otherwise, let
i = max : isclosingj, =, CR(f))}. Then:

CLS(t, f) = v,
o, if i =0,
Y 58).j+1. otherwise.

GVAL(m, f)

The closing state for path formulas of the forfh = f; U (posedgéf) A f») and
f"= f1 U (negedgéf) A f») is defined in a similar way, except that the transitiomrin
leading to the closing state must satipfysedgéf) andnegedgéf) respectively.

O
The Min-max value of a statein a timed model/ = (AP, S, R, so, L) with respect to a
Z-formula f will be denoted byEvalS(f, s). The semantics aEvalS(f, s) is as follows.

o If s & f,thenEvalS(f, s) = null.

170 Pallab Dasgupta et al

o If f =2z1 Azp, Wwheres = f and (wlog)z; is aS-formula andz, is a Z-formula, then
EvalS(f,s) = EvalS(z, s).
o If f=0QFEcun(ziUgz2),0rf = QAc.n(z1Ugz2) then,

(1) If Q' ismin then:

— If Q ismin, then:

Min{C(GV AL(n, f), EvalS(zz, CLS(rm, f)))
among all pathg = vg, vy, ... starting fromyg = s},

EvalS(f,s)

— If Q ismax, then:

EvalS(f,s) max{C(GVAL(x, f), EvalS(z2, CLS(m, f)))

among all pathg = vg, vy, ... starting fromvg = s}.

(2) If Q"ismax,then we have a special case to consider. Ifin somempathvg, vy, . ..
starting fromvg = s, we havevj, 3i,i > j andisclosingi, =, CR(f)) is true, then
CLS(m, f) is not well defined. HowevelGV AL(r, f) = oo. In order to have a
well defined semantics, we restrict the set of admissible cost functions to those which
have the following limiting behaviour:

lim C(g,h) = lim C(g, k).
g—>00 g—>0o0

wherek is an arbitrary constant. In other words, we allow only cost functions where
the value ofC (g, /) isindependent af wheng approacheso. Under this restriction,
we defineEval S(f, s) as follows.

— If Q ismin, then:

EvalS(f,s) = min{C(GVAL(x, f), EvalS(z2, 1))
among all pathg = vg, vy, ... starting fromvg = s},

wheren = CLS(x, f)if CLS(w, f)iswell defined, and some arbitrary constant
k otherwise.
— If Q ismax, then:

EvalS(f,s) = ma{C(GVAL(x, f), EvalS(z2, 1))
among all pathg = vg, vy, ... starting fromvg = s},

wheren = CLS(m, f)if CLS(w, f)iswell defined, and some arbitrary constant
k otherwise.

o If f= OEc(z1Ugz2), 0f f = QAc()(z1Ug 22) then,
(1) If Qismin, then

EvalS(f,s) = min{C(GVAL(x, f))
among all pathg = vg, vy, ... starting fromvg = s}.

Min-max event-triggered computation tree logic 171

(2) If Q ismax, then

EvalS(f,s) = ma{C(GVAL(xm, f))
among all patha = vg, vy, ... starting fromvg = s}.

From the above semantics it follows thatal S(f, s) returns the value returned by the cost
functionC for somebestvalue pathr, wherebestis either the minimum cost or the maximum
cost. We shall refer to the setloéstvalue paths with respect ®valS(f, s) asBest P(f, s).

The following example illustrates the semantics of Min-max ETCTL.

Example2. We illustrate the syntax and semantics of Min-max ETCTL through an example
on the timed model shown in figure 1. In figure 1 the transition delays are shown on the edges,
and the labelling of states with the set of atomic propositions true in them are shown besides
the states. Consider the following Min-max ETCTL formulas:

f= min Ej, (Fin maXEg(req Umin 91),
y = min E ¢ (FminMaxE, (reqUmin g1)).

Both of these formulas have the subformule: maxE,(reqUmin gr). At each state where
t = z (thatis, the ETCTL-restriction’ = E(reqU gr), of z is true atr), we get a non-null
value forEvalS(z,t) For example, in figure EvalS(z,a)= 4, EvalS(z,b)= 3, andEvalS(z,c)
=5.

e Forevaluatingf ats, note that the cost function&(g, 1) = h, thatis, the cost function
is independent of the distangédo the state wherez is true. On the other hand the cost
depends only on the valueevaluated at the statdoy EvalS(z,t) ThusEvalS(f,s)= 3,
and the optimal path goes through state

e For evaluatingy ats, note that the cost function &(g, h) = g + h, that is, we require
to minimize the sum of thé-value evaluated bfvalS(z,tland the delay to the state
Itis easy to see thd&valS(f,s)= 9, and the optimal path goes through state

0

The complexity of Min-max ETCTL evaluation depends on the nature of the cost functions
C(g)andC (g, h) usedinthe formulas. Earlier (Dasguptal2001) we showed that Min-max
CTL evaluation is DP-hard in general. We had also established that @Gi@randC (g, /)
are monotonic with respect gpand/, Min-max CTL evaluation works in polynomial time.
Since Min-max CTL is a fragment of Min-max ETCTL, we restrict Min-max ETCTL to the
following monotonic fragment. It may be noted that in all our examples we have actually
used monotonic cost functions.

DEFINITION 4 (Monotonic Min-max ETCTL)

A function f(x) is said to be monotonically increasing iffila) > f(b) whenevera > b.

The function is said to be monotonically decreasing’iff) < f(b) whenever > b. Also a
function f (x, y) is said to be monotonically increasing (decreasing) with respectitiofor
each constarg, the functionf (x, k) is monotonically increasing (decreasing). A Min-max
CTL formula is said to be monotonic iff its cost functia(g, #) (or C(g)) is monotonically
increasing or decreasing with respectgtoand each of it's subformulas are monotonic.
Monotonic Min-max CTL is the language consisting of monotonic Min-max CTL formulas
only. O

172 Pallab Dasgupta et al
6. Advantages of event triggering

Timed event structures allow us to condense sequences of non-event states into lump transition
delays. A delayr > 1 in a transition(v;, v;, 7) is a condensation of — 1 non-event states
into a single lump delay. The number of non-event states is exponential in the number of
bits required to represent the delays, hence we expect to perform Min-max ETCTL evaluation
without having to explicitly un-condense the non-event states in the transitions.

Interestingly, though the non-event states are identical in terms of the truth of the boolean
variables inA P, the non-event states ametidentical in terms of the Min-max ETCTL for-
mulas constructed out of these boolean variables. We shall illustrate this through an example,
but we first show that intermediate non-event states are indeed identical with respect to path
formulas involvingUmin or Unmax Operators.

DEFINITION 5 (Intermedia¢ non-evert state)

In a timed event structuré = (AP, S, R, so, L), for each(v;, v;, 7, ;) € R, there exists
7;,; — 1 non-event states between the event stgtesidv; (unlessr; ; = 0, in which case
there are no non-event states betweeandv;). vﬁ ; denotes the state of the systéranits

of time after the execution of the eventathen the next event is;. Exceptv} j andyv, 7

all other non-event states betwegrandv; are defined as intermediate non-event states. In
other words, an intermediate non-event state is a non-event state which has a non-event state
as a predecessor and a non-event state as a successor.]

We say that a timed event structurénterval independenwith respect to a temporal logic,
if all non-event states in any transition of the structure has the same truth value with respect
to every logic that can be specified in that logic.

Theorem 1. The closing state of a Min-max until path formula (involvitigi, or Unay) can
never be an intermediate non-event state.

Proof. Consider a path formulg Uy f> (whereQ ismin ormax) and a pathr = so, s1, . . .
satisfying the path formula. Since CTL-restriction of Min-max CTL formulas are interval-
independent, iff; is true in one of the non-event states betweeands; 1, then £ is true

in all non-event states betweegnands; ;. Since we consider only the earliest (agigin)
state or the latest (as inax) State wheref, is true, intermediate non-event states can never
be closing states for the formuja U, f>. However, the first or the last non-event state in a
transition may qualify to be a closing state. O

By theorem 1, we have shown that the closing state of a Min-omait path formula
can never be an intermediate non-event state. It is however possible that the first or the last
non-event state in a transition qualifies to be a closing state. If we treat these first and last
non-event states as event states as well, then we have a slightly modified event structure
where Min-max ETCTL is interval independent in the strict sense. This situation is explained
by example.

Example3. Consider the timed event structure shown in figure 2a. Suppose we wish to
evaluate the following Min-max CTL formula at statg

min E, (true Umin A(true U q)).

Min-max event-triggered computation tree logic 173
() (o)
#1
(s
e p # #1
\e OO}
@ (o) ©
#5
O

p
#1
(s3) v
#1

P

#3
(o) »
| #1
(s4)a
O

a b

Figure 2. Sample timed event structure and its augmentation.

It is easy to see that the only candidate closing state fob/thgformula is the non-event
state immediately following statg in the transition frony; to s3, since this non-event state
is the earliest state wher(true U ¢) is true.

As a second example, let us consider the following Min-max CTL formula at thesgtate
of the timed event structure of figure 2a:

min E, (true Umax p)-

Since the atomic propositiop is not true at the statg, the only candidate closing state for
this formula is the non-event state immediately precedirghat is, the non-event state at a
delay of 4 units from stat&). In both these cases we have assumed the granularity of time to
be one unit. Since the granularity of time is one unit, there is no non-event state for unit-delay
transition and:--delay transition.

Theorem 1 shows that intermediate non-event states can never be closing states for Min-
max CTL formulas. Thus in order to circumvent the problem of handling non-event states,
we need to define only the first and last non-event state in every transition (that is, if any such
non-event state exists) as event states. Figure 2b shows the modified timed event structure
after the redefinition of the first and last non-event states in the transitions. ad

We are now in a position to demonstrate the reason for restricting the use of then@ilL
operator in Min-max ETCTL. Min-max ETCTL does not allow path formulas of the form
Jf1U f» involving the CTLuntil operator. Instead formulas of the forfplU (n A f2), wheren is
a trigger formula are allowed. We first demonstrate the problem which arises out of allowing
the CTLuntil operator in an unrestricted way.

Exampled. Consider the timed transition system shown in figure 3. Suppose we wish to
evaluate the following query at staig

@ = min Egoyp2(true Umin (g A min E.(p Uninr))).

174 Pallab Dasgupta et al

p p.q p p.q p r

Figure 3. Sample timed transition system.

Lety = (g Amin E,(p Umin 1)). If the transition system is a timed event structure, tfren
is also true in the non-event states betwegeands,, and in the non-event states betwagn
ands,. Since in checking, we are looking fotrue Unin ¥, only s; qualifies to be the closing
state. Therefore, evaluatingat s, yields 3 + 107 = 1009.

Suppose we wish to evaluate the following query at siate

@ = Min Egp2(true Umax ¥)-

The only state which qualifies to be a closing state is the last non-event state pregeding
the transition fromsz to s4. As discussed previously, if we treat the first and last non-event
states in a transition as event states, then we have interval independence in the strict sense
and the query evaluates t0%4 22 = 125 atsy.

Let us now study what happens when we use the @til operator in an unrestricted way
as follows:

@ =minEgy2(truelU).

It may be observed that we no longer have interval independence. Each of the non-event states
betweers; ands,, as well as all non-event states betwegands, qualify to be closing states.

The best closing state in this case is the non-event state at a delay of 6 units femsuming

the granularity of delays as 1 unit), and the value evaluated fisg is 6 + 72 = 85. O

Since the number of bits required to represent a dél@yhich is a compaction of non-
event states in atimed event structure) isp@ghaving to inspeai non-event states separately
is indeed an exponential blow-up in complexity, and we have a pseudo-polynomial algorithm
at best. In a previous work on timed verification (Dasgugital 2000) we had encountered
a similar problem, and had observed that reasoning about timings of events (that is, signal
changes) does not suffer from this problem. This is demonstrated by the example 5.

Example5. We continue with the timed event structure shown in figure 3. Now consider the
following formula:

@ =minEg 2 (true U (posedgey) A min Ey(p Unin 1))).

Let ¥ = (posedgéy) A min E,(p Unmin r)). Along all paths starting fromg, the trigger
formulaposedgéy) is true only on the event statesandss. Thusy is true only at these

two event states, and only these two event states qualify as closing states for the path formula
true U . Thereforep evaluates to 89 at. O

Thus by forcing the subformula appearing after the @til operator to appear in conjunc-
tion with a trigger formula, we guarantee interval independence of Min-max ETCTL over the
augmented timed event structures. The following section shows that Min-max ETCTL eval-
uation works in time polynomial in the size of the state space times the length of the formula.

Min-max event-triggered computation tree logic 175

Algorithm Evaluate(f,s)

1. Use CTL model checking techniques to label the states of the model with the sub-formulas of the
ETCTL restriction off. During this step, ignore the transition delays.

2. The evaluation at a statg,of a Min-max ETCTL formulaf = QEc(fiUy f>), whereQ andQ’
are min or max quantifiers, is done as follows.
The procedure for evaluating formulas of the fofim= QAc(f1Uy f2) is exactly similar

2.1 Recursively evaluate all Min-max ETCTL subformulasfodt all states of the model.
2.2 If Q' is max then define = f; else defingy = f1 A = f>.

2.3 LetH denote the set of states labelgd which are reachable fromalonge-paths.
2.4 1f Q' is max then:

2.4.1 Remove each statdrom H such that:
(a)n does not belong to any-cycle, and
(b) For each successotof n,n’ = A(f1Uf2).
2.4.2 Label a state from H with the symbobo if:
(a) n belongs to g-cycle, and
(b) For each successotof n,n’ = A(f1Uf2).

2.5 For each statee H do:

2.5.1Ift is labeledso then setg = oo and computéV (1) = C(g, h), whereh = EvalS(f>, t).
2.5.2 Else consult table 1 to determine the required path typesrtom, determine the
lengthg of that path, and comput (r) = C(g, h), whereh = EvalS(f2,t).

2.6 If Q ismin, setEvalS(f,s) = min{W ()|t € H}
else setEvalS(f,s) = max{W)|t € H}.

3. The evaluation at a state,of a Min-max ETCTL formula,f = QEc(fi U T A f>), where
Q is min or max quantifiers, anfl is a trigger formula is done as follows.
The procedure for evaluating formulas of the fofm= QA-(f1 U T A f>) is exactly similar.

3.1 Recursively evaluate all Min-max ETCTL subformulasfadt all states of the model.

3.2 LetH denotes the set of states|abeledf,, which are:
(a) reachable from along f;-paths, and
(b) the trigger formuldl” is true in the transition to from the predecessor ofin the f;-path.

3.3 For each statee H do:

3.3.1 Consult table 2 to determine the required best path frimoughs among thosef; paths
where the trigger formuld is true in the transition to from the predecessor of
3.3.2 In the chosen path, Compw&t) = C(g, h), whereh = EvalS(f2,1).

3.41f Q ismin, setEvalS(f,s) =min{W () |t € H}
else setFvalS(f,s) = max{W() |t € H}.

Figure 4. Algorithm for Min-max ETCTL evaluation.

7. Algorithm for Min-max ETCTL evaluation

In this section we present an algorithm for Min-max ETCTL evaluation and analyse its
complexity.

176 Pallab Dasgupta et al

DEFINITION 6 (f-pahard f-cycle)

A path,r, starting at a stateand going through a statéis called a “f-path froms through
s"" iff the state formulaf holds in all states precedingin . An f-cycle through a state
is an f-path from: through:. O

A shortest lengthf-path from a state through a state’ is one where’ occurs as early
as in any otherf-path froms throughs’. The longest lengtly-path froms throughs’ is
defined similarly, whera’ occurs at least as late as any othepath froms throughs’.
Obviously, a shortest lengtli-path will have nof-cycles. Hence shortest lengjfipaths
can be found using any standard shortest path algorithms on the state transition graph in
polynomial time.

If any f-path froms throughs’ contains an intermediate state which is infagycle, then
it is possible to have -paths of infinite length from throughs’, and hence the length of the
longestf -path froms throughs’ is co. Determining the set of states which belong'taycles
can be done in polynomial time. Finding whether there existsfapath froms throughs’
via any of these states can also be done in polynomial time. If no gyadith exists, then
by dropping all states whergis false, we are left with finding a longest length path from
throughs’ in an acyclic graph, which is also solvable in polynomial time.

The algorithm which we describe is a labelling algorithm. A statén the timed model
is labelled by a sub-formulgf, iff its ETCTL restriction is true in that state. Further, if the
sub-formula is a Min-max ETCTL formula, then the evaluation algorithm augments the label
with the valueEvalS(f, s).

Once the first and last non-event states in the transitions of the original timed event structure
is redefined as event states, we have full interval independence for Min-max ETCTL formulas.
The algorithm shown in figure 4 assumes that such a pre-processing has already been done
on the original timed event structure.

We prove the correctness of the algorithm with respect to Monotonic Min-max ETCTL
formulas. We establish the correctness of evaluation for the forfnedaQ Ec (AU f2). The
correctness of evaluation far formulas follows from the fact that the evaluation procedure
for E formulas andA formulas are essentially the same.

Lemmal. If Q' is min, then a stater, which cannot be reached frasvby a(f1 A — f2)-path
is not a closing state of any path in BestP(f,s).

Table 1. Best path types fof = QEc(fiUg f2).

C-type Q-type Q'-type Best path type fromto ¢
Increasing min min Shortest lengtliy A — f2)-path
Increasing min max Shortest lengthrpath
Increasing max min Longest lengthfy A — f2)-path
Increasing max max Longest lengfirpath
Decreasing min min Longest lengthfy A — f2)-path
Decreasing min max Longest lengfirpath
Decreasing max min Shortest lendth A — f>)-path

Decreasing max max Shortest lengthpath

Min-max event-triggered computation tree logic 177

Table 2. Best path types fof = QEc(fAU T A f2).

C-type Q-type Best path type fromto ¢
Increasing min Shortest lengffi-path
Increasing max Longest lengifi-path
Decreasing min Longest lengifi-path
Decreasing max Shortest lengfirpath

Proof. If t cannot be reached frosrby an f;-path, then by definition (semantics of Min-max
CTL), t cannot be a closing state tIEan be reached fromby f;-paths, but not by, A — fo-
paths, then every;-path froms through: has an intermediate state whefeis true. Since
Q' is min, that intermediate state is the closing state. O

Lemma2. If Q' is max then a statet, which cannot be reached frostby a f1-path is not a
closing state of any path in BestP(f,s).

Proof. If r cannot be reached frosrby an f1-path, then by definition (semantics of Min-max
CTL), ¢ cannot be a closing state. O

Lemma3. If Q' is maxandt is a state which does not belong to afiycycle, and for each
successor ofz, we have’ = A(f1Uf>), thenr is not a closing state of any path in BestP(f,s).

Proof. Since for each successdrof ¢, t' = A(f1U f>), it follows that any f1-path froms
throughz in BestP(f,s) will also be arf;-path froms through some stat€ where f, holds,
andr occurs earlier thas'. Sincer does not belong to ang;-cycle,s” # ¢. SinceQ’ is max,
¢t cannot be a closing state. O

Lemmad. If Q' is maxand¢ is a state such that there existsfapath froms throughz,
t &= f>, t belongs to af;-cycle, and for each successoof ¢, we have’ = A(f1U f2), then
t cannot be a closing state in any path having figtealue, and there exists a path from
throught havingg-value ascc.

Proof. Consider a pathgz, having finiteg-value. Then there exists a statewhich is the
closing state ofr . Clearlys’ # ¢, since for each successoof ¢, = A(f1Uf>) and therefore
every instance of is followed by some other candidate closing state.

Consider ary;-path froms throughr which repeatedly goes around in tfiecycle through
t. Inthis pathf; holds on all states andoccurs infinitely often. By definition, thg-value of
such a path isc. O

Lemmab. If C-type is increasing, an@-type ismin, then anyp-path, P, froms through
t which is longer than the shortest lengthpath, P*, from s throught does not belong to
BestP(f,s).

Proof. SinceC-type is increasing, the path cost®f is less than that of. Since,Q-type is
min, P* is better thanP and henceP cannot belong to BestP(f,s). O

Lemmab. If C-type is increasing, an@-type ismax, then anyp-path, P, from s through
t which is shorter than the longest lengthpath, P*, from s throughs does not belong to
BestP(f,s).

178 Pallab Dasgupta et al

Proof. SinceC-type is increasing, the path cost®f is greater than that a?. Since,Q- type
is max, P* is better thanP and henceP cannot belong to BestP(f,s).

Lemmar. If C-type is decreasing, an@-type ismin, then anygp-path, P, from s through
¢t which is shorter than the longest lengthpath, P*, from s throughs does not belong to
BestP(f,s).

Proof. SinceC-type is decreasing, the path costif is less than that oP. Since,Q- type
is min, P* is better thanP and henceP cannot belong to BestP(f,s).

Lemma8. If C-type is decreasing, an@-type ismax, then anygp-path, P, froms through
¢t which is longer than the shortest lengthpath, P*, from s throughs does not belong to
BestP(f,s).

Proof. SinceC-type is decreasing, the path cost®fis greater than that @?. Since,Q-type
is max, P* is better thanP and henceP cannot belong to BestP(f,s). O

Theorem 2. Algorithm Evaluate correctly evaluates a Monotonic Min-max ETCTL formula
at a state of a timed event structure.

Proof. We establish the correctness of the algorithm for evaluating a Min-max ETCTL for-
mula, f = QEc(f1Uy f2), at a states, under the induction hypothesis that the algorithm
correctly evaluates the subformulgsand f> at all states of the model. Since evaluation for
A formulas is exactly similar, the same proof appliegittormulas as well.

The algorithm determines the set of candidate closing states, and then proceeds to determine
the g-value of thegp-path of appropriate type (longest or shortest) through the candidate
closing states.

By lemmas 1 and 2, we have shown that a state can be a closing state only if it is reachable
from s by ag-path (wherey is defined in step 2.2 of the algorithm). Therefore, in step 2.3,
we consider the set of states reachable fsdmy ¢-paths.

By lemma 3, we have shown thatdf is max and is a state which does not belong to any
Ja1-cycle, and for each successoof ¢, t' = A(f1Uf>), thenr is not a closing state of any
path in BestP(f,s). In step 2.4.1 of the algorithm, we remove all such statesfrom

By lemma 4, we have shown thatdf’ is max and is a state which belongs tofa-cycle,
and for each successooft, ' = A(f1U f>), then for every path (shortest or longest) through
t, either theg-value of the path iso, or there is some other closing state. Further we have
shown that there exists at least one path through such stateg-wétlne as>. Therefore, in
step 2.4.2 of the algorithm, we label such statescagind in step 2.5.1 we treat tlgevalues
of paths through these statescas

Lemmas 5-8 establish that only one path through each state in thf¢ seeds to be
considered for evaluation, and the path types are as shown in table 1. In step 2.5, for each
state inH, the algorithm evaluates the co8t(z) of the best path through Since these
are the only candidate paths (by lemmas 5-8), the cost of the best path among these is
the desired value oEvalS(f,s). In step 2.6, the algorithm assigns the cost of the best
path toEvalS(f, s). O

Lemmald. The complexity of finding the length of a shortgégbath or a longesyf -path from
a states to a stater in a timed model i® (|R| 4 |S|log|S|), where|S| is the number of states
in the model andR| is the size of the transition relatioR.

Min-max event-triggered computation tree logic 179

Proof. Each f-path froms to ¢ includes only states which are labellgdand the state. We
first remove from the transition graph those states (exdephich are not labelleg” and the
set of transitions to and from these states. This can be doO€|iR| + |S|) time. All paths
in the reduced transition graph afepaths.

Finding the shortest path between a pair of nodes in a graph with non-negative edge costs
requiresO (J|R|+]|S|log |S]) time wherdR | denotes the number of edgesinthe graph (Cormen
et al 1990).

For determining the longest path length, we require to consider the cycles in the graph. If
we find a path frony to r through a statg which is self-reachable (that ig,belongs to a
f-cycle), then the longest path length frano ¢ is co. Otherwise, we use the algorithm for
acyclic graphs. This can be achieveddi|R| + |S|) time. O

Theorem 3. Algorithm Evaluate require® (| f].|S|%.(IR| + |S|log|S])) time to evaluate
a Monotonic Min-max ETCTL formulg of length|f] on a timed event structuré =
(AP, S, R, s0, L)

Proof. Steps 2.3 and 3.2 can be done by a single depth-first traverégl|f®| + |S|) time.

Step 2.4 requires us to determine whether statés belong to anyp-cycle. Since the worst
case number of states #f is | S|, this step can be completed@(|S|.(JR| + |S])) time. By

virtue of lemma 9, the complexity of steps 2.5.2 and 3.3Q2(sR| + |S|log|S]|). Therefore,

the total complexity of step 2.2 to step 2.6 and step 3.2 to step B.4K.(|R|+|S|log|S))).

This is the complexity of evaluating the formula at one state when the Min-max values for
the subformulas are given. The complexity of evaluating the formula at every state is given
by O(|S|2.(JR| + |S|log|S|)). By induction on the length of the formula, the complexity of
Algorithm Evaluate iO (| f1.|S]%.(|R| + | S| log|S])). O

8. Conclusion

This paper shows that reasoning about the extremal timing properties of events can be done
for efficiently than that of general extremal timing queries over timed event structures. The
proposed logic, Min-max ETCTL, combines the ideas presented earlier (Dasgap2800,

2001) into a unified logic for reasoning about extremal timing properties of events.

PD acknowledges the partial support of the Indian National Science Academy, New Delhi for
this work. PPC acknowledges the partial support of the Department of Science & Technology,
Govt. of India, for this work.

References

Alur R 1998 Timed automata. Manuscript: www.cis.upenn.e@lir/Nato97.ps.gz

Alur R, Courcoubetis C, Dill D 1993 Model checking in dense real-timé.Comput.104: 2—34

Alur R, Henzinger T A 1993 Real time logics: Complexity and expressiverissSComput.104:
35-77

Alur R, Henzinge T A 1994 A really temporal logicJ. Assoc. Comput. MacAl: 181-204

Burch J R, Clarke E M, Long D E, McMillan K L, DilD L 1994 Symbolic model checking for
sequential circuit verificatiodEEE Trans. Comput. Aided Desidi3: 401-424

180 Pallab Dasgupta et al

Clarke E M, Kursha R P 1996 Computer aided verificatidBEE Spectrun33(6): 61-67

Clarke E M, Emerson E A, SistlA P 1986 Automatic verification of finite-state concurrent systems
using temporal logic specification&CM Trans. Program. Lang. Sy&: 244263

Cormen T H, Leiserson C E, RiveR L 1990Introduction to algorithmgCambridge, MA: MIT Press
and McGraw-Hill)

Dasgupta P, Deka J K, ChakrahdtP 2000 Model checking on timed event structutE&E Trans.
Comput. Aided Design Integrated Circuits Sy€: 601-611

Dasgupta P, Deka J K, Chakrabarti P P, Sriram S 2001 Min-max computation treeNdgidntell.
127:137-162

