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Abstract. Forsmooth projective varieties X over C, the Hodge Conjecture states that every
rational Cohomology class of type (p, p) comes from an algebraic cycle. In this paper, we prove
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Introduction

For smooth projective varieties X over C, the field of complex numbers, the Hodge
conjecture states that every rational cohomology class of type (p, p) comes from an
algebraic cycle. More precisely, consider the Hodge decomposition

H(X,C)= Y, H"(X)
ptg=i
Let C?(X) denote the Chow group of algebraic cycles of codimension p on X, modulo
rational equivalence. Then one has the ‘class map’ '

l;:C%X)@@—»HZ"(X, Q)N HP?(X).

Then the Hodge (p, p) conjecture states that AE is surjective.

Let C be an irreducible smooth projective curve if genus g > 2,and let M (n, &) be the

¥ moduli space of stable vector bundles V on C, of rank n, detV =~ ¢, ¢ aline bundle of

f degree d such that (n,d) = 1. The aim of this paper is to prove the Hodge (p,p)
conjecture in the case when g = 2, n=>3 (dimM@3,0)= 8). In the case when n= 2,
g =2,3,4,the Hodge conjecture can be proved by elementary means which we indicate
at the end of the paper.

The case we consider is of interest, as it gives a non-trivial family of examples where
the general method of normal functions is used to prove the conjecture. Geometric
descriptions given in [T] in the rank 2 case lead to elementary proofs of the Hodge
conjecture. In the rank 3 case, any such description does not give elementary proofs of

3 the Hodge conjecture. (cf. Remark 4.3, 4.4)

The Poincaré—Lefschetz theory of normal functions was generalized and developed
by Griffiths and Zucker and had the proof of the Hodge (p, p) conjecture as a primary
goal. In this paper we give a natural construction of a smooth projective variety and
a proper generically finite morphism onto the moduli of rank n, degree (ng — n) bundles
which plays the role of the Lefschetz pencil in the context of normal functions. From the
remarks of Zucker (cf. [Z-2], pp. 266) all the known examples where normal functions
have been used to prove the Hodge conjecture, more elementary methods have been
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successful (cf. [M], [Z-2], and [Sh] for a full survey of the Hodge conjecture); however,
in the present case this seems unlikely.

In § 1, we recall some general facts. Section 2, contains a theorem giving a criterion
for a variational Hodge (p, p) conjecture to hold under some stringent conditions.In§ 3,

we give a pencil type construction in the context of moduli. Section 4, gives the proof of
the conjecture for M (3, £).

Some notations. Let X be a smooth projective variety defined over C the field of
complex numbers. We state at the outset that our base field is C. Let C?(X) denote the
Chow group of cycles of codimension p modulo rational equivalence and
AP(X) = CP(X) the subgroup of cycle classes algebraically equivalent to zero.

1. Preliminaries

Lemma 1.1. (cf. [Z-1] A.2) Let X and Y be smooth projective varieties, f: X =Y be

a proper generically finite surjection. If the Hodge (p, p) conjecture is true for X, then it is
true for Y.

Proof. We note that, f, f* =multiplication by d, both on cycles and cohomology,
where d = [k(X):k(Y)]. Therefore, if yeH??(Y,Q), f*yeH"?(X,Q); so if f*y is
a rational cycle Z, then

dy=(fof*N=rZ
implying y is a rational cycle 1/d(f,z) on Y.

Lemma 1.2. Let E be a vector bundle of rank r = e + 1, and let P = P(E). Let f*P — X be

the associated projective bundle. Then the Hodge (p, p) conjecture is true for X if and only
if it is true for P.

Proof. Let h be the relative ample class @p(1), and i = c¢,(0p(1)). Then we have the

well-known decompositions of the Chow groups and cohomology groups of P,and we
have the diagram: ‘

CP(P) = f*CP(X) ® hf‘*CP-—l(X) ) hef*cp~e(X)
L2 LA Vagt e
H?!(P) = f*H*?(X) ® hf*H* 2(X) &® @ fef*H?P-2¢(X)

From this diagram, the proof follows easily, noting the fact that f* is an injection both
on cycles and cohomology.

Lemma 1.3. Let X be a smooth projective variety, Yo X a smooth closed subvariety of
codimensionr; let Uc, X be X — Y, i (resp. ) the inclusion of Y (resp. U) in X. Then we

have the following commutative diagram:
crr(Y) X, CYX) & CYU) -0
Liy Lix |
H2q~— Zr( Y) Gysin qu(X) — HZQ(U)

Proof. This follows from the existence of the Gysin map i, which is functorial with
respect to the class map A. (cf. J Milne, Etale Cohomology, Proposition 9.3, Ch. VI).
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DEFINITION 1.4

Let JP(X) be the pth Griffiths-intermediate Jacobian of X based on H*?~YX)
([G1,[Z-2]) and let

gr: AP(X) — JP(X)
be the Abel-Jacobi map on codimension p-cycles algebraically equivalent to 0.

We say, X has the Abel-Jacobi property for p, if B7 is surjective.

Lemma 1.5. Let X bea smooth projective variety and E a vector bundle of rankr=e+1
on X. Let P=P(E) be the associated projective bundle and f:P— X the projection. Then
AYX) has the Abel—Jacobi property for all i if and only if A7(P) has it for all p.

Proof. Let g7: AP(X)— JP(X) be the Abel-Jacobi map. Then by assumption, 6? 1s
surjective for all p. By the standard decomposition theorems for Chow groups, and
cohomology of a projective bundle we have

- (py = fAH (0@ X FH T HO0R ()

h=c,(Op(D)-

We note that this decomposition is true for cohomology with integer coefficients,
further, since his of type (1, 1), the isomorphism () preserves the Hodge decomposition.
Hence, the complex structure on the Griffiths Jacobian on P is canonically isomorphic
to the one induced by (*). Therefore, one has ‘

JP(P) = JP(X)@ T HX)® @JrX).
Further, one has a similar decomposition for the Chow groups
AP(P)~ APF(X)D A" HX)D - @ AP 4(X).
Combining this with the functoriality of the Abel-Jacobi maps, we get
gr: AP(P)— J?(P)
is surjective, since itis so in all the terms in the decomposition. The proof of the converse

is similar.

2. Normal functions

Let f:X — S be a proper smooth morphism, with X, a smooth projective variety, and
S a non-singular complex curve. In this section, we provea theorem which under some
very strong assumptions on the fibres of f give the Hodge (p.D) conjecture for X. The
basic ideas in this theorem come from the work of Griffiths and Zucker ([Z-1], [Z-2],

[Z-3], [Z-4))

Theorem 2.1. Let f:X — S beas above. Let X, =~ 1(s)VseS. Suppose that the following:
conditions hold:

(a) Hodge (p,P) and Hodge (p—1,p— 1) are true for X VseS.
(b) X, has the Abel-J acobi property in codimension p, i.e. the map

g7 AP(X )~ P (X

is surjective Vs€S.
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Then Hodge (p, p) holds for X.

Proof. Consider the Leray filtration {L”} on H*(X) associated to the morphism f.
Since the spectral sequence degenerates (cf. [G]), we have:

L°sL'> 12
We need the following description of the Leray filtration from ([Z-3], pp. 194):
L' =ker {H?*?(X)— H??(X )}
L? =ker {H?*(X)— H**(X — X )}
=TIm {H??~2(X,) S0 {22(X)} (cf. Lemma 13)

for any seS, and
L°/L' ~ H(S, R**f, Q).

We need to handle the (p, p) classes in the rational cohomology of X, which come
from the various parts of the Leray filtration.

The primitive class i.e. the ( p, p) classes lying in L! can be dealt with as follows:

(1) Observe firstly that L'/L* ~ H'(S, R*? " 'f, Q). Integral (p, p) classes in L'/L?, thus
arise as cohomology classes of normal functions i.e. holomorphic sections of the
intermediate Jacobian bundle, J?(X ) — S. This is a consequence of Theorem 2.13 of

[Z-4]. Our assumption (b) then ensures by [Z-1], that this normal function comes
from a relative algebraic cycle on X.

(i) (p,p) classes which lie in L?: Note that
L?=1Im {H?r~2(X ) Gysin, H??(X)}

and by assumption (a) and Lemma 1.3 of §1, since Hodge (p — 1, p— l)holdsfor X,
(. p) classes in L* come from algebraic cycles. '

Now for the remaining classes, in L°/L!, let 7 be a (p,p) class in H??(X), which
restricts to non-zero classes y, on X, for all seS. Let >%s denote the Chow variety (or
reduced Hilbert scheme) of relative codimension p cycles of degree d on X. By the
theory of Hilbert schemes, for some d > 0, the natural morphism

d

O, Z - S
XS
is a surjection. Hence for all 4> 1, > %is— S is surjective.
Let V*/ be the non-empty open subset of S for all 4 = 1, such that

qb).a:d);dl (V) >pH

is flat. (Such a non-empty V*¢ exists since ¢, is a proper surjective morphism.) By
a Baire argument, itis easy to see that (), V' # ¢; choose an se (M, V'* and fix thiss.
Consider y|,_= 7, then by (a) of Theorem 2.1, since Hodge (p, p) is true for X, express
¥s=o;— B, where «, and B, are effective codim p-cycles on X, of degree [ and
m respectively. Since we are interested only in rational cohomology, we may assume,
without loss of generality that / and m are multiples of d.
Therefore, by choice se V! V'™, and o,e ¢, *(s). Since ¢, is flat over V", all irreducible
mponents of ¢, (V') dominate ¥ (S being a smooth curve). Choose an irreducible
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component of ¢, 1(‘./1) Which contains o, Then it is easy to see, (by choosing a curve
C through o and taking its closurein 3", ), that we get a curve S’ and  finite morphism

S’— §,such th?.t (we could assume S' is also smooth without loss of generality by going
to the normalization if need be). T

T -3
1o
S— S
and there is a section for £’ over S, which passes through x,. That is if
X 2 X
! !
S —S

then, there exists an effective codimension p-cycle o of degree [on X', such thatx y = %
where s' — s. We can similarly get a p of degm over another finite extension, and we can
therefore get T, a smooth curve, with a finite morphism

T—S,
such that
Y A4, X

! !
T — S

t—s

and « and B give codimension p-cycles on Y of degree ] and m respectively. s.L.

aly, =0y Bly,=Bs (%)

&= [u*y—(@—PleH? (Y. Q)
is a cohomology class which (by (x)) lies in
Kker (H??(Y)— H*?(Y).

Hence ¢ is a primitive cohomologyclassonY; observe that fibres of Y= Targ the @m; d‘s
those of X — S, and hence the hypotheses of Theorem 2..1, holq for the fibres uf ?:—«» as
well. So by the first part of our proof, e comes from a codimension p-algebraiccy cleg on
Y.1e.

Thus,

pry —(a— py=¢=p*y=¢ +(—p)
is algebraic. Since u: Y—s X is a proper finite surjection, by Lemma 1.1. it follows that

y itself is algebraic.

3. A pencil-type construction for moduli

113 dlscu’SSIOIl tihat fOHO W S, we deSCflb€ a pe p \" " ‘ l‘

moduli spaces of vector bundles. We remark that, in general, the geo;
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hyperplane section in the moduli space is not very transparent and so the usual theory
of normal functions and Lefschetz pencil cannot be applied in this setting. We begin by
proving a lemma which is essential in the construction.

Lemma 3.1. Let W be a stable vector bundle of rank 2 and degree 3. Let V be a non-split
extension

00— Vo W0,
Then V is semi-stable.

Proof. Thisis an elementary consequence of Propositions 4.3,4.4.and 4.6 of [N-S]. To

see this, suppose that V is not semistable, then by Proposition 4.6 there exists an F,
stable of rank < 2 such that

uF)zpuV)=1

and a non-zero element feHom (F, V). Thus p(F) = u(W). Thus vo feHom(F, W). If
ve f is zero, f must factor through @ which gives an immediate contradiction. If ve f'is

non-zero, by Proposition 4.4 of [N-S], if W, is the subbundle of W generated by
Im (vof) then u(W,) = u(W).

Since W is stable, it implies W, ~ W and vof is an isomorphism, which gives
a splitting for v, q.e.d.

Let M, = M(3, L), be the moduli space of semi-stable bundies of rank 3, deg3g — 3,
A"V ~ L, g being the genus of C,ie.deg(LY=3g—3,g=2.
Consider the ®-divisor in M, which is defined as follows:

O ={VeM, |h°(V)>0}.
More generally, we can define for all é€J°(C), the divisor
O, ={VeM, |HP(V®E) >0}

Let #°; be the universal family on C x M(2,{® L) and consider the bundle of
extensions given by

¢=PRpH?),
where p:C x M(2,EQ@L)—»M(2,£®L). Observe that, if WeM (2, £®L), then the
points of P, lying above W are given by non-split extensions
0= 0=V —>W-0. | (1)

By Lemma 3.1, we see that bundles V ‘obtained above are semistable. Thus we can
define a morphism

(/)5: P¢—>M(3, L)
VisV@(E13y*,

Note that since det V= { @ L, det(V® (¢ 113)%) = L. Also this map is well-defined since
P parameterizes a universal family and M(3, L) has the coarse moduli property.

It is easy to see that Im ¢, = ®, (when 5 = £'/3). Further, by ([S] Theorem IV, 2.1),
the component of Im ¢, in 6, is of codimension atleast 2 (in general for rank nitisn — 1)

g TR |
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and therefore contains a non-empty open subset of ©,, hence by the properness of ¢,
Im¢,=6,

(in fact by [S], ¢. 1s birational).

The above construction of P, can be globalized as follows:

Let M(2,3) be the moduli space of vector bundles of rank 2 and degree 3. Let
W — C x M(2,3) be the universal family. Define P = P(R'p,#*). Then the morphism
¢, globalizes to give:

¢p:P->M(3,L)

(the ambiguity of ‘cube roots’ can be resolved to by pulling back P by the following
diagram:

|

e Y

L™ ®det det® L™t

o o—

—

Q‘*“\% ‘

2 77""”73

(soinfact, ¢ is well-defined as a morphism ¢: P'—»M (3,L)). Define P by the following
base-change diagram:
P.— P’
)
ColJ

where C ¢, J by mapping a base point X, t0 the fixed degree 3 line bundle L. (Note that
C is in fact connected). Then ¢ induces a morphism

¢:PC—*M(3,L)=ML.

We claim that ¢ is surjective. This is not hard to see since Im ¢ contains the ®-divisor;
further, one can easily get a pointin M — ® in Im ¢. Now surjectivity follows from the
r fact that P and M, are irreducible and ¢ is a proper morphism, such that Im ¢
y properly contains a divisor.

Since

! ' dim P, = dim ® + dim C = dim M,,,
| ¢ gives a generically finite proper surjection.

Remark 3.2, We remark that the above construction can be done for all rgnks by using
{ the construction of desingularization of the ©-divisor in [RV]. Our variety P can be
related to their ® but we would not go into it here.

;’ : 4. Proof of the Hodge conjecture for M 3,

In this section we complete the proof of the Hodge (p, p) conjecture for M(3,n), where
degn = 1or2,g=2.Thestrategy is to relate the geometry of M(3, n)and M(3,L)by the
Hecke correspondence (cf. [B]).
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PROPOSITION 4.1

Let M, =M(3,L),deg L=3g — 3. Letg= 2 and consider the moduli space P construc-
ted in §3. Then Hodge (p, p) is true for P¢ for all p.

Proof. By Theorem 2.1, it s enough to prove the properties (a) and (b) in its statement
for n~*(y) for all yeC, where ,

n:Pe—C.

By §3, 7™ *( y)’s are the moduli spaces P..Since P,isa projective bundle on M (2, ® L)
associated to a vector bundle, to prove (a) and (b) of Theorem 2.1 for P, itis enough to
check them for M (2, ¢ ® L)because of Lemma 1.2and Lemma 1.5.Since M(2,£ ® L)is
a 3-fold, the Hodge conjecture follows from the Lefschetz (1,1) theorem. That
AX(M(2,¢®L)) has the Abel-Jacobi property follows from ([B-M] pp. 78) since
M(2,¢ ® L) is a rational 3-fold.

We could also prove the above Proposition for P more directly by using the follow-
ing fact:

By Thaddeus [T], (cf. also [N]), we could, consider the variety obtained by blowing
up the curve C embedded in a suitable projective space of extensions. It corresponds to
the variety M, in [T]. Denote this by M'(2,® L). Then, when g = 2, it is easy to see
that

M(2,¢®L)~>M(2,¢{®Q L)

is a birational morphism. Since M'(2,¢® L) also parameterizes family of vector
bundles (in fact a family of pairs!), we have a variety P,, a projective bundle associated to
a vector bundle on M'(2, ¢ ® L) and a birational morphism

P,—~P,.

Properties (a) and (b) of Theorem 2.1 are fairly simple for P. Now construct globally
the variety P such that

P. — P
I
C-C

Observe that by Theorem 2.1, Hodge (p, p) is true for P¢.. Since P — Pcisa generically
finite surjection, Hodge (p, p) for P follows from Hodge (p, p) for P¢, by Lemma 1.1.

Theorem 4.2. The Hodge (p,p) conjecture is true for M(3,7), where degn =1 and 2.
(g=2).
Proof. We prove it for degn = d = 1. Proof for d = 2 follows along identical lines.

Let P, be the moduli space of parabolic stable bundles, (V,A), V of rank 3,
deg3g —3 =3, det V ~ L, with parabolic structure A at xeC given by

O#Fszc V..

F2V, a subspace of dim 1, and weights taken sufficiently small (cf. [B],...). Then, we

-
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have the Hecke correspondence

P,
M(37 ’7) ML
where 7 is a line bundle of degn = 3g — 5 = 1. The morphisms y and h are given by
Y(V,A)=W,

WV,A)=V

where W is obtained from the following exact sequence.
0> W-V->T=0,

T being a torsion sheaf of height 2 given by

T V,/F*V, at X
)0 elsewhere.

Then it is known that  is a projective bundle associated to a vector bundle on M(3,n)
(cf. [B]) and the map h (in (x) above) is generically a projective bundle over the stable
points of M. Therefore by Lemma 1.2, it is enough to prove the theorem for P..
Now P, by construction parameterizes a universal family ¥"— C x P¢. By the
definition of ¢ and h, it is easy to see that B, ~ P(¥¥), where ¥, is the bundle on P
obtained by restriction of #” to x x P, and ¥* its dual. Thus by the coarse moduli

property of parabolic bundles for P, we havea morphism ¢: P, — P, and the following
commutative diagram: -

P, 2, P,

k] L

P. 2. M,
‘ By Proposition 4.1, Hodge (p, p) is true for P, and hence by Lemma 1.2, it i.s true
¢ for P_. Thus by Lemma 1.1, since ¢ is a generically finite surjection, Hodge (p, p)istrue
for P, for all p, which proves the theorem.

To prove it when deg# = 2, we modify the parabolic structure by giving F 2y <V,
as a subspace of dim 2 and the rest of the argument is similar.

Al Y

Remark 4.3. (The Hodge (p, p) conjecture for rank 2 moduli when g =3, 4).

In these cases when rank is 2, thereis a geometrical picture due to Thaddeus (cf. [T])

in his notation, if d > 2g — 2, d being the degree, then the moduli space of stable pairs P,

* i =(d—1)/2, dominates M(2, §) d(¢) = d. Further, when d = 2g —1, Py i=(d—1)/2, has
the property that '

¢:P;~>M(2,%)

is a birational surjection. Thus, in the case when g = 3, (resp. 4)d = 5(resp. 7), the index,
i=2 (resp. 3). ‘

Now, the variety P, (resp. P3)1s obtained by a sequence of blow-ups and blow-downs
where the centres are smooth and Hodge conjecture is easily verified by using the

@%’%’,
i

_____——
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“formule-clel” which expresses the Chow ring (resp. cohomology) of the blow-up in
terms of the Chow ring (resp. cohomology) of the base and the centre of the blow-up.
Then by Lemma 1.1, using ¢, Hodge ( p, p) follows for M(2, ). When g =5, the centres

blown-up are projective bundles over S*C, the 4th symmetric power of C and hence
Hodge (p, p) would follow, once it is known for §"C,n = 4.

Remark 4.4. In the rank 3 case,even wheng =2, the centres of blow-ups in any attempt

at such descriptions seem much more complicated, vis-a-vis the Hodge conjecture.

Also, it is not clear if the centres are smooth in the first place. Our proof, which is
“inductive, uses the simple nature of the geometry of rank 2 moduli spaces.
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