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SMALL MATHIEU GROUP COVERINGS IN CHARACTERISTIC TWO

shreeram s. abhyankar and ikkwon YIE

(Communicated by Wolmer V. Vasconcelos)

Abstract. Explicit equations are given for unramified coverings of the affine

line in characteristic two whose Galois groups are the Mathieu groups of degrees

11 and 12 and the automorphism group of the Mathieu group of degree 12.

1. Introduction

In Proposition 2 of the 1957 paper [Abl], for any elements Cq, C\,...,

C(n/p)-i in a fi^d1 k of characteristic p ^ 0 with cq ^ 0, where « is any
positive integer divisible by p, the polynomial

f(Y) = Y" + c(B/p)_, Y"-p + ... + cxYp + c0Y

was considered, and it was noted that the equation f(Y) + X — 0 gives an

unramified covering of the affine line Lk over k . In [Abl] it was also suggested

that the Galois group Gal(/(T) + X, k(X)) of this covering be computed.
Recently (cf. [Ab5], [Ab6], [Ab7], [Ab8], [AOS], [AY1], [AY2]) this has been
done for some values of the parameters p, «, Co, cx, ... , C(n/p)-i. In this paper

we shall do it for a few more cases.

Henceforth we take k to be any field of characteristic p = 2 (for instance k

= GF(2)) and, as a case of / with n - 12, we consider the polynomial

fn(Y) = Yn + Y6 + Y4 + Y2 + Y£ k[Y].

Concerning this polynomial, in Section 6 we shall prove that:

First Mathieu Group Theorem (1.1). The equation fx2(Y) + X = 0 gives an

unramified covering of the affine line Lk with Gal(fx2(Y) + X, k(X)) = Mx2.

Now the "twisted derivative" (cf. Section 18 of [Ab5]) of fx2(Y) + X is given

by

f[x(X, Y) = Y~l[fx2(Y + X) - fx2(X)]

and upon simplifying we get

fxx(x, y) = yu+x4y7 + y5 + (x8 + x2 + i)r3 + (x4 + i)y + i e/c[x, ft

As a consequence of (1.1), in Section 6 we shall show that:
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Second Mathieu Group Theorem (1.2). The equation f[x(X, Y) = 0 gives an

unramified covering of the affine line Lk with Gal(/j', (X, Y), k(X)) = Mxx.

As a biproduct of the proof of (1.1), in Section 6 we shall show that:

Third Mathieu Group Theorem (1.3). The equation fx2(Y) + fx2(X) + 1=0
gives an unramified covering of the affine line Lk with

Gal(fx2(Y) + fx2(X) + 1, k(X)) = MXX(12).

Upon letting

/24(y) = [/i2(y)]2+/i2(y)

we clearly have

fu(Y) = y24 + y8 + y6 + Y

which is a case of / with « = 24. As a companion to (1.1), in Section 6 we
shall prove that:

Fourth Mathieu Group Theorem (1.4). The equation /24(y)+X = 0 gives an un-

ramified covering of the affine line Lk with G&l(f2^(Y)+X, k(X)) = Aut(Mx2).

Note that Mx2 and its one-point stabilizer Mxx are respectively the unique
sharply 5-transitive and the unique sharply 4-transitive permutation groups

of degree 12 and 11 discovered by Mathieu [Mat] in 1861. Also note that
MXX(12) is the 3-transitive but not 4-transitive representation of Mxx acting

on 12 letters. Finally note that MX2 is an index 2 subgroup of its automorphism

group Aut(Mx2) which is transitive but not doubly transitive permutation group

of degree 24. For information about Mathieu groups see Chapter XII of [HuB].

The fact that Theorems (1.2) and (1.3) both give MX1 can be explained
by observing that the polynomials involved in them are closely related by the

equation Yf[x(X, Y) + 1 = /i2(y + X) + fx2(X) + 1. At any rate, in Sections
2 and 3, by resolution of singularities of plane curves (cf. [Ab2], [Ab3], [Ab4]),

we shall prove Irreducibility Lemmas (2.1) and (3.1) which respectively say that

the polynomials f[x(X, Y) and /i2(y) + /i2(X) +1 are irreducible, and which
yield some estimates for the sizes of the above four Galois groups.

In (1.5) of [Ab6] it was shown that the polynomial Y23 + XY3 + 1 divides

an additive polynomial of degree 211, i.e., a polynomial of the form y2" +

52]!oaiY2' with ao ^ 0. By slightly modifying the proof of this, in Section
4 we shall prove Linearization Lemma (4.1) which says that the polynomial

/24(y) + X divides an additive polynomial of degree 212, and which yields
some more estimates for the sizes of the said Galois groups.

In Section 6 we shall put together these estimates to prove Theorems (1.1) to

(1.4). Some other auxiliary lemmas needed in these theorems will be proved in
Section 5.

2. Resolution of singularities

By resolving singularities of a plane curve, let us prove the following:

First Irreducibility Lemma (2.1). The polynomial f[x(X, Y)  is irreducible in

(GF(2)(X))[y] and the order IGalC/7, (X, Y), GF(2)(X))| is divisible by 8.

Upon letting

0(x,y) = x11y¡',(i/x,y/x)
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we have

</>(x, Y) = y-'[(y+1)12- i] + x6y_1[(y +1)6- i] + x8y-'[(y+1)4- i]

+ x10y-1[(y+ i)2- i] + xu

= y11 + y7 + x6y5 + (X8 + x6 + i)y3 + (x4 + i)x6y + x11

and clearly (2.1) is equivalent to saying that: (*) </>(X, Y) is irreducible in
(GF(2)(X))[y] and |Gal(<¿(X, Y), GF(2)(X))| is divisible by 8.

Let C be the curve in the (X, y)-plane over GF(2) given by the equation

</>(X, Y) =0. Considering the quadratic irreducible polynomial 0 = Y2 + Y +

1 £ GF(2)[y] we have

(t) 4> = (t>(x, y) = e4y3 + x6e2y + x8y3 + x10y + xu.

In particular

(t) (t> = e4Y3 + Xh(X, Y)   where   «(X, Y) £ GF(2)[X, Y]

and hence the intersection of the line X = 0 and the curve C consists of the

two points P and Q given by the maximal ideals (X, y)GF(2)[X, Y] and
(X, 0)GF(2)[X, Y] in GF(2)[X, Y] respectively, and the said intersection
has no point on the line at infinity.

We shall show that: (I) C is analytically irreducible at Q. From (t) and (I)
it follows that <f>(X, Y) has an irreducible factor of y-degree = (4 times the

degree of 0 ) = 8 with coefficients in the formal power series ring GF(2)[[X]],
and hence |Gal(0(X, Y), GF(2)(X))| is divisible by 8. We shall also show
that: (II) C has exactly two (analytically irreducible) branches at P, they

are rational over GF (2), and their mutual intersection multiplicity at P is 6.

Finally we shall show that: (III) C has no singularities on the line at infinity,
and P and Q are the only singularities of C at finite distance. If C had two
components, then their degrees would be d and 11 - d with 0 < d < 11 and,

by Bezout's Theorem, their intersection multiplicity (in the projective plane)

would be d(ll -d) which is at least 10. Thus (I) to (III) imply (*). Therefore

it suffices to prove (I), (II) and (III).
To prove (I) we shall resolve the singularity of C at the point Q by applying

a succession of QDTs, i.e., quadratic transformations. The initial form of 4> at
Q is 04T3 and by applying the QDT: X = Xx, 0 = X0i, centered at Q,
we get

<t> = X,Vi   where    <t>x = (Bx + Xx )4 Y3 + X?02 Y + Xf Y + X\.

Here the factor X4 is the contribution of the exceptional line, and the proper

transform of C is given by Ci : 4>\ — 0. There is a unique point Qx on Ci

corresponding to Q, and (Xi, 0i) is a basis of the maximal ideal in the local

ring of Qx.
Now the initial form of (f>x at Qx is (0i+Xi)4y3 and by applying the QDT:

Xi = X2, 0i = X2(02 + 1), centered at Qx, we get

<t>x = x\<$>2   where    fa = O4^3 + X220^y + X23.

Again the factor X4 is the contribution of the exceptional line, and the proper
transform of Ci is given by C2 : 4>2 = 0. There is a unique point Q2 on C2
corresponding to Qx, and (X2, Q2) is a basis of the maximal ideal in the local

ring of Q2.
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The initial form of fa at Q2 is Xj3 and by applying the QDT: 02 = ©3,
X2 = ©3X3, centered at Q2, we get

fa = Q\fa   where   fa = 03y3 + X3203y + X33.

The factor 0?, is the contribution of the exceptional line, and the proper trans-

form of C2 is given by C3 : fa = 0. There is a unique point (?3 on C3
corresponding to Q2, and (X3, ©3) is a basis of the maximal ideal in the local

ring of Qi. The initial form of fa at Q3 is ©3 Y3. Thus C is analytically
irreducible at Q.

To prove (II) we shall resolve the singularity of C at the point P again by

applying a succession of QDTs. The initial form of <fi at P is T3 and by

applying the QDT: X = Xx, Y = Xx Yx, centered at P, we get

4, = X3fa    where    fa = Yx3 + XX4YX + X8 + Xfy, + Xfy3

+ x,8 y,3 + x4 y,7 + xf y,5 + xf y,1 •.

The factor X3 is the contribution of the exceptional line, and the proper trans-

form of C is given by Ci : fa =0. There is a unique point Px on Cj
corresponding to P, and (Xi, Yx) is a basis of the maximal ideal in the local

ring of 7^ .
The initial form of fa at Px is T,3 and by applying the QDT: Xi = X2,

Yx = X2y2 , centered at 7^ , we get

fa = X\fa   where    fa = Y2(Y2 + X2)2 + X\ + X|«2(X2, Y2)

with «2(X2, y2) £ GF(2)[X2, y2]. Here the factor X23 is the contribution of

the exceptional line, and the proper transform of Ci is given by C2 : fa - 0.
There is a unique point P2 on C2 corresponding to 7*1, and (X2, Y2) is a

basis of the maximal ideal in the local ring of P2 .

The initial form of fa at P2 is Y2(Y2 + X2)2 and by applying the QDT:
X2 = X3, Y2 = X3(y3 + 1), centered at P2 , we get

fa = Xjfa   where   fa = Y2 + X\ + Y3 + X4«3(X3, T3)

with «3(X3, y3) £ GF(2)[X3, y3]. The factor X\ is the contribution of the
exceptional line, and the proper transform of C2 is given by C3 : fa = 0. There
are exactly two points Pi and P^ on C3 corresponding to P2, and (X3, Y})

and (X3, y3 + 1 ) are bases of the maximal ideals in the respective local rings

of P3 and P¡.

Now 03 = (y3 + l) + (y3 + l)3 + X2 + X34«3(X3, y3) and hence P; isa simple

point of C3. The initial form of (^3 at P$ is (Y-¡ + X3)2 and hence P3 is a

double point of C3, and by applying the QDT: X3 = X4, y3 = X4(y4 + 1),
centered at P3, we get

fa = X\fa   where   fa = X4 + X4y4 + Y¡ + X4Y¡ + XAY¡ + X42«3(X4, X4y4).

The factor X2 is the contribution of the exceptional line, and the proper trans-

form of C3 is given by C4 : fa = 0. There is a unique point P4 on C4
corresponding to P-$, and (X4, T4) is a basis of the maximal ideal in the local

ring of Pi,. The initial form of fa at P4 is X4, and hence C4 has a simple
point at P4.

Thus C has two analytically irreducible branches at P. Since the multiplic-

ity of P on C is 3, one of the branches should have a simple point and the
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other a double point at P. Those two branches split after three QDTs, and

hence their intersection multiplicity is 2 + 2 + 2 = 6.

To prove (III), we homogenize <f>(X, Y) to get

<D = y11 + Z4Y7 + X6Y5 + (X8 + X6Z2 + ZS)Y3 + (X4 + Z4)X6Y + X11.

The partial derivatives of <P are

o* = x10,

<Dr = Y2(Y2 + ZY + Z2)4 + X6(Y4 + X2Y2 + Z2Y2 + X4 + Z4),

Oz = 0.

Solving the equations O = O* = Oy = <I>z = 0, we see that C has no
singularity at infinity and 7* and Q are its only singularities at finite distance.

3. More resolution of singularities

Again by resolution of singularities of plane curves, we shall now prove the

following:

Second Irreducibility Lemma (3.1). The polynomial fx2(Y) + fX2(X) + 1 is irre-
ducible in (GF(2)(X))[y].

Upon letting

Kx,y) = x12[/12(y/x+i/x) + /12(i/x) + i]

we have

y/(X, Y) = [(Y + l)12 - 1] + X6[(y + l)6 - 1] + x8[(y + l)4 - 1]

+ x10[(y +1)2 -1] + xuy + x12

= y12 + y8 + x6y6 + (x8 + x6 + i)y4 + (x4 + i)x6y2

+ xuy + x12

and clearly (3.1) is equivalent to saying that: (') y/(X, Y) is irreducible in

(GF(2)(X))[y].
Let D be the curve in the (X, y)-plane over GF(2) given by the equation

y/(X, Y) =0. Clearly the intersection of the line Y = 0 and the curve D

consists of the point P given by the maximal ideal (X, y)GF(2)[X, Y], and

the said intersection has no points on the line at infinity. Since, by Bezout's

Theorem, the line Y = 0 has a nonempty intersection with each component of

D, it follows that P must lie on each (global) component of D. Therefore to

prove ( ' ) it suffices to show that: ( " ) D is analytically irreducible at P.

To prove ( " ) we shall again resolve the singularity of D at the point P by

applying a succession of QDTs. The initial form of y/ at P is Y4 and by

applying the QDT: X = Xi, Y = XXYX, centered at P, we get

y/ = Xf y/x   where     y/x = Yx4 + X4Y2 + X8 + Xf Yx + X8 Y¡ + X4Yx4g(Xx, Yx )

with g(Xx ,YX)£ GF(2)[Xi ,YX]. Here the factor Xf is the contribution of
the exceptional line, and the proper transform of D is given by Dx : y/x — 0.

There is a unique point 7^ on Dx corresponding to P, and (Xx, Yx) is a basis

of the maximal ideal in the local ring of 7*1.
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The initial form of y/x at Px is Y4 and by applying the QDT: Xi = X2,
Yx — X2Y2 , centered at Px, we get

¥x = X\ y/2   where     y/2 = (Y22 + X2 Y2 + X2)2 + X\ Y2 + X| Y22

+ X4Y4g(X2,X2Y2).

Again the factor X4 is the contribution of the exceptional line, and the proper

transform of Dx is given by D2 : y/2 = 0. There is a unique point P2 on D2

corresponding to Px, and (X2, Y2) is a basis of the maximal ideal in the local
ring of P2.

The initial form of y/2 at P2 is (Y22 + X2Y2 + X\)2 and by applying the

QDT: X2 = X3, y2 = X3Y3, centered at P2 , and considering the quadratic
irreducible polynomial A3 = y32 + y3 + 1 £ GF(2)[y3], we get

y/2 = X3V3   where     ^ = A2i+X2Ai+X¡(Yi + l)2+XfYi+X$Y}g(X3, X2Y3).

The factor X4 is the contribution of the exceptional line, and the proper trans-

form of D2 is given by D3 : y/j, = 0. There is a unique point 7^ (which is not

rational over GF(2)) on 7)3 corresponding to P2, and (X3, A3) is a basis of

the maximal ideal in the local ring of T3. Let A3 = A3 + X3(Î3 + 1). Then
(X3, A3) is another basis of the said maximal ideal, and we have

Vi = A2 + X32A3 + X3(y3 + 1) + X4Y2 + X4Y4g(X,, x32y3).

The initial form of y/3 with respect to the basis (X3, A3) is A2 and by

applying the QDT: X3 = X4, A3 = X4A4 , centered at 7J3, we get

y/i = X42y/4   where   ip4 = A¡ + X4AA + X4(Y3+l) + X¡YÍ + X¡Y^g(X4, X¡Y3).

The factor X\ is the contribution of the exceptional line, and the proper trans-

form of 7)3 is given by D4 : y/4 = 0. There is a unique point P4 (which is not
rational over GF(2) ) on D4 corresponding to P3, and (X4, A4) is a basis of

the maximal ideal in the local ring of P4 . Since Y3 + 1 does not belong to the
said maximal ideal, we see that y/4 belongs to it but not to its square. Therefore
D4 has a simple point at P4 , and hence D is analytically irreducible at P.

4. Linearization

By slightly modifying the proof of (1.5) of [Ab6], let us prove the following:

Linearization Lemma (4.1). Let F = f24(Y) + X.   Then there exist elements

Aq, Ax , ... , Ax2 in k[X] with A0 ̂  0 and Ax2 = 1 such that Z),=o^'^2' =
HF for some H£k[X,Y].

Now
F = Y24 + YS + Y6 + Y + X

and by adding F + Y24 to both sides of this we get

( /2'4 ) Y24 = Y* + Y6 + Y + X + F.

Let P = Q mean P - Q = HF for some 77 £ k[X][Y]. Then multiplying
(J¡4) by y'"24 for z = 24, 26, 28, 32, 36 we get:

( J24 ) Y24 = YS + Y6 + Y + X,

(J26) Y26 = Yl0 + Ys + Y3 + XY2,
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(/2g) Y2S = Yn + Y10 + Y5 + XY4,

(73'2) Y32 = Y16 + Y14 + Y9 + XY*,

(j36) y36 = y20 + y18 + y13 + xy12.

From (/3'2) we get

( j32 ) y32 + y16 + xy8 s y14 + y9.

Squaring (/32) we get

y64   ,   y32   ,   X2Y[6 = Y2i + Yli

and using (/2g) we obtain

( j64 )        y64 + y32 + x2y16 + xy4 = y18 + y12 + y10 + y5.

Likewise, by squaring (/64) and then using (J24) and (J^) we obtain

(y12g) y128+y64+x4y32+(x+i)2y8+y = y18+y13+xy12+y10+y6+x.

Again, by squaring (Jx2$) and then using (724), (J26), and (J^), we obtain

y256 + Ym + x8y64 + (x + i)4y16

(456) +(x+i)2y8 + (x+i)y2 + x2y

= y18 + y13 + (x + i)y12 + y10 + x2y6 + y3 + x3 + x2.

Now adding (Jx2») to (/256) we obtain

y256 + (X + i)8y64 + x4y32 + (x + i)4y16 + (x + i)y2 + (x + i)2y

(/256)       =y12 + (x+i)2y6 + y3 + x3+x2+x.

Again, by squaring (/2S6) and then using (/24) we obtain

y512 + (x + i)16y128 + x*y64 + (x + i)8y32

(/512) + Y* + (X + l)2Y4 + (X + l)4Y2 + Y

= (x+ i)4y12 + x6 + x4 + x2 + x

Likewise, by squaring (/512) and then using (J24) we obtain

y1024 + (X+ l)32y256 + ^16yl28 + (^ + i)16y64

( ^1024 ) + y16 + x4(x + i)4y8 + (x + i)8y4 + y2 + (x + i)8y

= (x + i)8y6 + x12 + x9 + x8 + x4 + x2 + x.

By squaring (^1024) we obtain

y 2048 + {x+ 1)64y512 + X32y256 + {X + 1}32yl28

( 4m8 ) + y32 + x8(x + i)8y16 + (x + i)16y8 + y4 + (x + i)16y2

= (x + i)16y12 + x24 + x18 + x16 + x8 + x4 + x2.

By adding (X+l)12 times (/512) to (J204S) we obtain

( ^2048 )

y2048 + [(x +1)64 + (x + i)12]y512 + x32y256

+ [(x +1)32 + (x + i)28]y128 + x8(x + i)12y64

+ [(x +1)20 + i]y32 + x8(x + i)8y16

+ [(x +1)16 + (x + i)12]y8 + [(x +1)14 + i]y4 + (x + i)12y

= x24 + x13 + x12 + x9 + x5 + x.
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Finally, by multiplying the above equation by its right hand side X24 + X13 +
X12 + X9 + X5 + X and then adding the resulting equation to the square of the

above equation we get

y4096 + (X24 + ^13 + jr« + ^9 + ^5 + ^)y2048

+ (x128 + x24 + x16 + x8)y1024

+(x88 + x77 + x76 + x73 + x69 + x65 + x64 + x36 + x32 + x28

+ x25 + x24 + x20 + x17 + x16 + x13 + x5)y512

+(X64 + x48 + x45 + x44 + x41 + x40 + x37

+ x33 + x32 + x24 + x16 + x8)y256

+ (X56 + X52 + X48 + X45 + X40 + X37 + X32 + X20 + X13 + X5)Ym

+ (x44 + x36 + x33 + x32 + x28 + x25 + x24 + x20 + x17 + x9 + x8)y64

+ X44 + X40 + X33 + X13 + X9 + X5)Y32

+ (x40 + x29 + x28 + x25 + x24 + x20 + x16 + x13 + x9 + x8)y16

+ (x40 + x36 + x32 + x29 + x28 + x21 + x13 + x12 + x8 + x5 + x4)y8

+(X38 + X36 + X34 + X32 + X30 + X28 + X27 + X25 + X24 + X22 + X20

+ X19 + X18 + X17 + X16 + X14 + X13 + X11 + X5 + X3)Y4

+ x24 + x16 + x8 + i)y2

+ (X36 + X32 + X28 + X25 + X20 + X17 + X16 + X12 + X9 + X)Y

= 0,

and this proves (4.1).

5. Auxiliary lemmas

We shall now prove two auxiliary lemmas needed in the proof of Theorems

(1.1) to (1.4).

Lemma (5.1). There is no field T with k(f24(Y)) cTc k(Y) such that [k(Y) :

n = 2.
Suppose, if possible, that there is such a field V. Then by Liiroth's theorem

(see (2.6) of [AEH]) we have T = k(T) for some T = Y2 + aY + b with
a, b £ k, and we can write /24(y) = T12 + aTu + ßT10 + yT9 + ■•■ with

a, ß, y, ■■■ £ k . By substituting the first equation into the second we get:

y24 + Y& + Y6 + Y

= [Y24 + a4Y20 + (a8 + b4)Y16 + ■••] + a[y22 + aY21 +■■■]

+ ß[Y20 + a2Yl* + b2Y16 + •••] + y[Y1H + aY11 + bY16 + •••].

Since ay22 is the only term of y-degree 22, we must have a = 0, and now

by simplifying the above equation we get:

Y24 + Ys + Y6 + Y = Y24 + (a4 + ß)Y20 + (a2ß + y)Yl* + ayYxl + ■■■ .

Comparing coefficients we get ß = a4 , y = a2ß = a6, ay = a1 = 0, and hence
we must have a = 0. Therefore T £ k[Y2] and hence /24(y) G k[Y2] which
is a contradiction.
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Lemma (5.2). Let 77 and 77 be normal subgroups of a finite group G such

that 77 n 77 = 1, and G/H is isomorphic to G/H. Assume that for some

prime number n, the order of G is nondivisible by n2 and the order of every

nonidentity normal subgroup of G/H is divisible by n. Then 77 = 77 = 1.

Namely, the ^ubgroup 7777 of G is isomorphic to_the direct product

[(HH)/H]x[(HH)/H]. Therefore either the order of (HH)/H is nondivisible

by n or the order of (HH)/H is nondivisible by n. By symmetry we may

assume that the order of (7777)/77 is nondivisible by n . Now (HH)/H is iso-

morphic to a normal subgroup of C7/77 and hence we must have (HH)/H = 1.

Consequently 77 c 77 and hence 77 = 1. Since G/H is isomorphic to C7/77,
we get 77 = 1 .

6. Mathieu groups

To prove Theorems (1.1) to (1.4), let Kx2, Kx2, K'n , JX2, and K24 be

the respective splitting fields of fx2(Y) + X, fx2(Y) + X + 1, f[x(X,Y),
fu{Y)+f\2(X) + l > and f24(Y)+X over l(X) in a fixed algebraic closure Q of
k(X) where we have put / = GF(2). Note that then 7Ci2(rc), Kx2(k), K'u(k),
Jx2(k), and K24(k) are the respective splitting fields of /i2(y)+X, /i2(y)+X+

1, fn(X, Y), /i2(y)+/i2(X) + l, and f24(Y) + X over k(X) in Q, and obvi-
ously G(Kx2(k), k(X)) « G(Kx2(k), k(X)) where « stands for isomorphism,
and the Galois group of any Galois extension K/Kq is denoted by G(K, Ko).

What we want to prove is that G(Kx2(k), k(X)) = MX2, G(K'n(k),k(X)) =
Mxx, G(Jx2(k), k(X)) = MXX(12), and G(K24(k), k(X)) = Aut(A/12) where
we regard the Galois groups as permutation groups on the roots of the corre-

sponding polynomials.

In view of the relation between "twisted derivatives" and one-point stabiliz-

ers discussed in [Ab5], by (2.1) we see that C7(7Ci2, l(X)) is a doubly transitive
permutation group of degree 12, G(K'U , l(X)) is the one-point stabilizer of

G(KX2, l(X)), and the order of the said one-point stabilizer is divisible by 8.

Therefore by CTT and Special CDT on pages 86 to 89 of [Ab5] (or alternatively
by [Mil]), we have G(7C12, l(X)) = Mx2 or ^i2 or SX2. It also follows that:

G(K'n , l(X)) = Mxx # G(KX2 , l(X)) = MX2 .
We can take a root y of f24(Y)+X in Q, and then upon letting X* = /i2(y)

we have X*2 + X* + X = f24(y) + X = 0. It follows that l(X) c l(X*) c K24,
and l(X*)/l(X) is a Galois extension with Galois group Z2 (= the cyclic group

of order 2). Also X h-> X* gives an isomorphism of l(X) onto l(X*), and upon

letting K*2 and K*x2 to be the respective splitting fields of fx2(Y) + X* and

/i2(y) + X* + 1 over l(X*) in Q we have G(K*n,l(X*)) « G(Kx2,l(X)) «

G(Kl2,l(X)) « t7(7C12, l(X*)). Since X*2 + X* + X = 0, we get /24(y) +
X = (fn(Y) + X*)(fx2(Y) + X* + 1). Therefore K24 is the compositum of

K*2 and K*x2, and G(K24, K*2) and C7(7C24, K*X2) are normal subgroups of

C7(7C24, l(X*)) with C7(7C24, K*n) n C7(7<:24, Tx2) = 1 and

G(K24, l(X*))/G(K24, K*X2) « G(K*X2, l(X*)) « C7(7?;2, l(X*))

*G(K24,l(X*))/G(K24,Tx2).

Clearly |G(7<:24,/(X*))| divides \G(K24, l(X))\ and, in view of the Basic Pro-

jection Principle on page 94 of [Ab5] and (5.1) of [AY1], by (4.1), C7(7C24, l(X))
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is a homomorphic image of a subgroup of GL( 12, 2) and hence \G(K24, /(X*))|

divides |GL(12, 2)|. As a factorization of |GL(12, 2)| into powers of prime
numbers we have

ii

|GL(12, 2)| = fJ(212-2') = 266x38x53x74xllxl3xl7x23x312x73x89xl27
¡=o

and hence |C7(AT24, /(X*))| ^ 0 (mod ll2). Now the groups Af12, ̂ 12, Si2

have the property that the order of any nonidentity normal subgroup is divisible

by 11 (the nonidentity normal subgroups are: Mx2 in the first case, ^12 in

the second case, and Ax2 and Sx2 in the third case). Consequently by taking

G(K24, K*n), G(7<:24, Tx2), G(K24, l(X*)), and 11 for 77, 77, G, and n in

(5.2) we see that G(K24, K*2) = G(K24, K*x2) = 1, and hence K24 = K*2 = K*X2 .

Thus 7C24 is the common splitting field of fx2(Y) + X* as well as /i2(y) +
X* + 1 over l(X*) in Q, and as a permutation group on the roots of either

polynomial we have G(K24, l(X*)) = Mx2 or Ax2 or Sx2 . We can take x £ K24

with fx2(x) + X* = 0 and then l(X*, x) = l(x) and fx2(Y) + X* + l =/12(y) +
fn(x) + 1 • Therefore by (3.1) we see that /i2(T) + X* + 1 remains irreducible

in l(x)[Y], and hence G(K24, l(x)) is a transitive subgroup of C7(7<f24, l(X*))

when we view the latter as a permutation group on the roots of fx2(Y) + X* + l.

Since l(x) is a root field of fx2(Y) + X* over l(X*) in K24, the index of
G(K24, l(x)) in G(K24, l(X*)) is 12. Neither ^n nor Si2 has a transitive
subgroup of index 12 (see (2.19) on page 300 and Exercise 8 on page 308 of

[Suz]), and hence we must have G(K24, l(X*)) = Mx2 and G(7<:24, l(x)) =

MXX(12). It follows that G(KX2,l(X)) = Mx2, G(K'n,l(X)) = Mxx, and

G(Jl2,i(X)) = Mlx(l2).
Let /Co and kx be the algebraic closures of / and k in Í2 respectively.

Since A/u and Mx2 are nonabelian finite simple groups, by Corollary (1.8)
of the Refined Extension Principle on page 97 of [Ab 5] we see that the

groups G(K24,l(X*)), G(Kx2,l(X)), G(K'n,l(X)), G(JX2,l(X)) coincide
with the groups G(K24(h), /co(X*)), G(Kx2(ko), /co(X)), G(K'u(ko), ko(X)),
G(Jx2(ko), /co(X)) respectively, and by (2.10) of [AY1] we see that these groups
relative to /Co coincide with their respective versions relative to kx, and by the

Basic Extension Principle on page 93 of [Ab 5] we see that the said versions rel-

ative to kx are subgroups of the respective versions relative to k which them-

selves are subgroups of the respective original versions over /. Thus we get

C7(7s:24(Ä:), k(X*)) = A/,2, G(KX2(k), k(X)) = Mx2, G(K'n(k), k(X)) = Mxx ,
L7(/12(/c),/c(X)) = A/n(12).

Now k(X*)/k(X) and K24(k)/k(X*) are Galois extensions with Galois
groups Z2 and Af12 respectively, and K24(k)/k(X) is a Galois extension whose

Galois group is a group extension of G(K24(k), k(X*)) by G(k(X*), k(X)).
Since MX2 is centerless and Out(A/12) = Aut(Mx2)/Mx2 - 12, by the Exten-
sion Lemma (as stated and proved in [Ab9]) it follows that there are exactly two
nonisomorphic extensions of A7i2 by Z2. Obviously Mx2 x Z2 and Aut(A/12)

are two such extensions. Therefore, G(K24(k), k(X)) = Mx2 x Z2 or Aut(Mx2).

Suppose, if possible, that G(K24(k), k(X)) = Mx2 x Z2 and let p :
G(K24(k), k(X)) -» A/12 and v : G(K24(k), k(X)) — Z2 be the correspond-
ing projections. Since G(K24(k), k(X*)) is a nonabelian simple subgroup of
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G(K24(k), k(X)), we must have

v(G(K24(k),k(X*))) = l.

Since G(K24(k), k(y)) is a subgroup of G(K24(k), k(X*)), we get

v(G(K24(k),k(y)))=l.

Therefore G(K24(k), k(y)) is an index 2 subgroup of p~l(p(G(K24(k), k(y)))).

Hence for the fixed field T of p~l(p(G(K24(k), k(y)))) we have k(f24(y)) =
k(X) c T c k(y) with [k(y) : Y] = 2 which contradicts (5.1). Consequently
we must have G(K24(k), k(X)) = Aut(A/12).
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