
Discriminative Link Prediction using
Local Links, Node Features and Community Structure

Abir De

IIT Kharagpur, India
abir.de@cse.iitkgp.ernet.in

Niloy Ganguly

IIT Kharagpur, India
niloy@cse.iitkgp.ernet.in

Soumen Chakrabarti

IIT Bombay, India
soumen@cse.iitb.ac.in

Abstract—A link prediction (LP) algorithm is given a graph,
and has to rank, for each node, other nodes that are candidates
for new linkage. LP is strongly motivated by social search
and recommendation applications. LP techniques often focus
on global properties (graph conductance, hitting or commute
times, Katz score) or local properties (Adamic-Adar and many
variations, or node feature vectors), but rarely combine these
signals. Furthermore, neither of these extremes exploit link
densities at the intermediate level of communities. In this
paper we describe a discriminative LP algorithm that exploits
two new signals. First, a co-clustering algorithm provides
community level link density estimates, which are used to
qualify observed links with a surprise value. Second, links in
the immediate neighborhood of the link to be predicted are
interpreted through a local model of node feature similarities.
These signals are combined into a discriminative link predictor.
We evaluate the new predictor using five diverse data sets that
are standard in the literature. We report on significant accuracy
boosts compared to standard LP methods (including Adamic-
Adar and random walk). Apart from the new predictor,
another contribution is a rigorous protocol for benchmarking
and reporting LP algorithms, which reveals the regions of
strengths and weaknesses of all the predictors studied here,
and establishes the new proposal as the most robust.

Keywords-Social network, Link prediction, Recommendation.

1. INTRODUCTION

The link prediction (LP) problem [15] is to predict future

relationships from a given snapshot of a social network.

E.g., one may wish to predict that a user will like a movie

or book, or that two researchers will coauthor a paper, a

user will endorse another on LinkedIn, or two users will

become “friends” on Facebook. Apart from the obvious

recommendation motive, LP can be useful in social search,

such as Facebook Graph Search1, as well as ranking goods

or services based on not only real friends’ recommendations

but also that of imputed social links.
Driven by these strong motivations, LP has been inten-

sively researched in recent years; Lu and Zhou [17] provide

a comprehensive survey. As we shall describe in Section 2, in

trying to predict if nodes u, v in a social network are likely

to be(come) related, LP approaches predominantly exploit

three kinds of signals:

• When nodes have associated feature vectors (user de-

mography, movie genre), node-to-node similarity may

help predict linkage.

1https://www.facebook.com/about/graphsearch

• Local linkage information, such as the existence of

many common neighbors, may hint at linkage. The

well-known Adamic-Adar (AA) [1] predictor and vari-

ants use such information.

• Non-local effects of links, such as effective conduc-

tance, hitting time, commute time [8], or their heuristic

approximations are often used as predictors. The Katz

score [13] is a prominent example. The random walk

paradigm has also been combined [2] with edge fea-

tures for enhanced accuracy.

Recently, stochastic block models [9], factor models and

low-rank matrix factorization [14] have been used to “ex-

plain” a dyadic relation using a frugal generative model.

These have rich connections to coding and compression.

Co-clustering [7] and cross-association [4] are related ap-

proaches. Co-clustering exposes rich block structure in a

dyadic2 relation. E.g., in a user-movie matrix, it can reveal

that some users like a wide variety of movies whereas others

are more picky, or that some classic movies are liked by all

clusters of people.

Although co-clustering provides a regional community

density signal, it is arguably more meaningful than global,

unbounded random walks. However, exploiting the signal

from co-clustering is non-obvious. The generative model im-

plicit in co-clustering is that edges in each dyadic block are

sampled iid from a Bernoulli distribution with a parameter

corresponding to the empirical edge density in the block.

While the choices of blocks and their edge densities offer

optimal global compression, they cannot predict presence

or absence of individual links without incorporating node

features and local linkage information.

Our key contribution (Section 4) is a new two-level

learning algorithm for LP. At the lower level, we learn a local

model for similarity of nodes across edges (and non-edges).

This is combined, using a support vector machine, with an

entirely new non-local signal: the output of co-clustering [7],

suitably tuned into feature values.

To the best of our knowledge, this is the first work

that brings all three sources of information (node features,

immediate neighborhood, “regional” community structure)

together in a principled way. Another contribution (Sec-

tion 3) is a rigorous evaluation protocol for LP algorithms,

2Can be extended to larger arity.

2013 IEEE 13th International Conference on Data Mining

1550-4786/13 $31.00 © 2013 IEEE

DOI 10.1109/ICDM.2013.68

1009

using a new binning strategy for nodes based on their local

link structure. The new protocol reveals the strengths and

weaknesses of LP algorithms across a range of operating

conditions.

On five diverse and public data sets (NetFlix, MovieLens,

CiteSeer, Cora, WebKb) that are standard in the LP com-

munity, our algorithm offers (Section 5) substantial accu-

racy gains beyond strong baselines. Our main experimental

observations are:

• The local similarity model on edges beats baselines in

some regions of the problem space, but is, in the overall,

not significantly better.

• The additional signal from communities, found through

co-clustering, is strong and helpful.

• A global discriminative learning technique using the

above signals convincingly beats baselines.

2. RELATED WORK

LP has been studied in different guises for many years,

and formalized, e.g., by Liben-Nowell and Kleinberg [15].

Lu and Zhou [17] have written a comprehensive survey.

Local Similarity: To decide if nodes u and v may get linked,

one strong signal is the number of common neighbors they

already share. Adamic and Adar (AA) [1] refined this by

a weighted counting: common neighbors who have many

other neighbors are dialed down in importance:

simAA
i,j =

∑

k∈Γ(i)∩Γ(j)

1

log d(k)
, (1)

where d(k) is the degree of common neighbor k.

Random walks and conductance: Lu and Zhou [17] have

shown that the best-performing definition were local [19]

and cumulative (called “superposed” by Lu and Zhou)

random walks (LRW and CRW). Although some of these

approaches may feel ad-hoc, they work well in practice;

Sarkar et al. [18] have given theoretical justification as to

why this may be the case.

Probabilistic generative models: One of the two recent ap-

proaches that blend node features with linkage information is

by Ho et al. [9], although it is pitched not as a link predictor,

but as an algorithm to cluster hyperlinked documents into a

Wikipedia-like hierarchy. Documents directly correspond to

social network nodes with local features.

Supervised random walk (SRW): The other approach to

blend node features with graph structure is supervised and

discriminative [2], and based on personalized PageRank

[11]. However, it does not receive as input regional graph

community information. Thus, SRW and our proposal ex-

ploit different sources of information. Unifying SRW with

our proposal is left for future work.

Unsupervised random walk: Before SRW, Lichtenwalter

et al. [16] introduced an unsupervised prediction method

called PropFlow. It is somewhat similar to rooted PageRank,

but it is a more localized measure of propagation, and is

insensitive to topological noise far from the source node.

Co-clustering: Similar documents share similar terms, and

vice versa. In general, clustering one dimension of a dyadic

relation (represented as a binary matrix A, say) is synergistic

with clustering the other. Dhillon et al. [7] proposed the

first information-theoretic approach to group the rows and

columns of A into separate row and column groups (also

called blocks, assuming rows and columns of A have been

suitably permuted to make groups occupy contiguous rows

and columns) so as to best compress A using one link density

parameter per (row group, column group) pair.

3. EVALUATION PROTOCOL

An LP algorithm applied to the current snapshot of a

live social network ranks node pairs that are predicted to

materialize as edges soon. As time progresses, in principle,

the quality of such predictions can be directly measured.

In practice, multiple LP algorithms cannot be precisely

compared on a live network. Furthermore, feeding back pre-

dictions to users may modify the future evolution trajectory.

Finally, public data sets are mostly “fossilized” without any

scope for time travel.

From the application perspective, the LP algorithm’s

output is best captured as a ranking of all current non-

neighbors of every node q. In Facebook terms, every person

gets a ranked recommendation for potential friends. If they

agree to some of them and create a link, that is a positive

judgment; if they ignore a high-ranking recommendation,

that is a negative judgment. Therefore, instead of using a

0/1 per-edge loss, we need a ranking loss function involving

something like AUC, MAP or NDCG [10] at each node, and

then average these.

For evaluating algorithms within practical time on large

graphs, we may not be able to afford evaluating a rank-

ing loss at every node, Instead we may sample a subset

of query nodes. 92% of all edges created on Facebook

Iceland close a path of length two, i.e., a triangle [2]. In

our experiments, only such nodes are sampled as query

nodes Q. Even after this filter, query nodes are diverse

with regard to the existing edge density in their immediate

neighborhood. Two LP algorithms with comparable accuracy

may perform quite differently at query nodes with many

neighbors vs. few neighbors. As we shall see, bucketing

overall MAP or NDCG performance by current query node

degree can expose strengths and weaknesses of competing

LP algorithms.

Once we sample Q, |Q|(n − 1)| edge slots remain, but

this can also be too large. To sample edges in the absence of

edge timestamps, we proceed as follows. Fix a query node q.

In the fully-disclosed graph, V \q is partitioned into “good”

neighbors G(q) and “bad” non-neighbors B(q). We set a

train sampling fraction σ ∈ (0, 1). We sample �σ|G(q)|�
good and �σ|B(q)|� bad nodes and present the resulting

1010

training graph to the LP algorithm. To avoid paring down

the graph connectivity drastically, we use σ ∼ 0.8 . . . 0.9.

4. PROPOSED FRAMEWORK: CCLL

We, in this section, first clearly define the link prediction
problem and then explain our scheme.

4.1. Problem definition
We are given a snapshot of a social network, represented

as a graph (V,E) with |V | = N and |E| = M . Let u ∈ V
be a node (say representing a person). Edges may represent

“friendship”, as in Facebook. Depending on the application

or algorithm, the graph may be directed or undirected. The

goal of LP is to recommend new friends to u, specifically, to

rank all other nodes v ∈ V \ u in order of likely friendship

preference for u. LP systems often restrict the potential set

of vs to ones that have a common neighbor c, i.e., (u, c)
and (c, v) already exist in E.

4.2. Overview of two-level discriminative framework
LP can also be regarded as a classification problem: given

a pair of nodes u, v, we have two class labels (“link”

vs. “no link”) and the task is to predict the correct label.

To estimate a confidence in the (non) existence of a link,

we will aggregate several kinds of input signals, described

throughout the rest of this section. Apart from subsuming

existing signals from AA we will harness two new signals.

First, in Section 4.3, we will describe a local learning process

to determine effective similarity between two given nodes.

Unlike AA and other node-pair signals, our new approach

recognizes that propensity of linkage is not purely a function

of node similarity; it changes with neighborhood. Second, in

Section 4.4 we describe how to harness the output of a co-

clustering of the graph’s adjacency matrix to derive yet more

features. To our knowledge coclustering has never been used

in this manner for LP.
For each proposed node pair u, v, these signals will be

packed as features into a feature vector f(u, v) ∈ R
d for

some suitable number of features d. We estimate a global
model ν ∈ R

d, such that the confidence in the existence

of edge (u, v) is directly related to ν · f(u, v). f(u, v) will

consist of several blocks or sub-vectors, each with one or

more elements. (i) f(u, v)[AA] is the block derived from

the Adamic-Adar (AA) score (1). (ii) f(u, v)[LL] is the

block derived from local similarity learning (Section 4.3).

(iii) f(u, v)[CC] is the block derived from co-clustering

(Section 4.4).
As we shall demonstrate in Section 5, these signals exploit

different and complementary properties of the network. If

y(u, v) ∈ {0, 1} is the observed status of a training edge,

we can find the weights (ν) using a SVM and its possible

variations. The details will be discussed in Section 4.5.
To exploit possible interaction between features, we can

construct suitable kernels [3]. Given we have very few fea-

tures, a quadratic (polynomial) kernel can be implemented

by explicitly including all quadratic terms, i.e., we construct

a new feature vector whose elements are (i) f(u, v)[i] for

all indices i, and (ii) f(u, v)[i] f(u, v)[j] (ordinary scalar

product) for all index pairs i, j. We can also choose an

arbitrary informative subset of these. We will now describe

the three blocks of features.

4.3. Learning local similarity

An absolute notion of similarity between u and v, based

on node features θu, θv , is not strongly predictive of linkage;

it also depends on the typical distribution of similarity values

in the neighborhood [5]. Also, the presence or absence of

edge (u, v) is rarely determined by nodes far from u and v.

Keeping these in mind, the first step of the algorithm learns

the typical (dis)similarity between u and v and their common

neighbors. We term this as the reference dissimilarity. We

then use this to predict the chance of link (u, v) arriving.

Let Γ(u) be the (immediate) neighbors of u. We will

model the edge dissimilarity between u and v as

Δw(u, v) = wuv · |θu − θv|, (2)

where θu is a node feature vector associated with u, and

| · · · | denotes the elementwise absolute value of a vector,

e.g., |(−2, 3)| = (2, 3), although other general combinations

of θu and θv are also possible [2]. wuv is the weight vector

fitted locally for u, v. (Contrast this with the final proposal

in SRW [2] that fits a single model over all node pairs.)

4.3.1. Finding wuv and reference dissimilarity: Through-

out this work, and consistent with much LP work, we

assume that edges are associative or unipolar, i.e., there

are no “dislike” or antagonistic links. Similar to AA, when

discussing node pair u, v, we restrict our discussion to the

vicinity N = Γ(u) ∪ Γ(v).
For A ⊆ V \ u, A �= ∅, we extend definition (2) to the

set dissimilarity

Δw(u,A) =
1

|A|
∑

v∈A

Δw(u, v). (3)

We define Δw(u,∅) = 0. Δw(u,A) is the average dissim-

ilarity between u and A. Note that Δw(u, {v}) is simply

Δw(u, v).
The key idea here is that, if there is an edge (u, v), we

want to choose wu,v such that Δw(u, v) is low, relative
to node pairs that are not neighbors. Conversely, if (u, v)
is not an edge, we want the dissimilarity to be large

relative to nearby node pairs that are neighbors. Subject to

these constraints, we wish to choose w so as to minimize

Δw(u, v). Details are in the full version of this paper [6].

4.3.2. Computation of LL features: The linear program

outputs w∗
uv , from which we can compute

δuv = w∗
uv · |θu − θv|. (4)

But is δuv larger than “expected”, or smaller? Plugging in

the raw value of δuv into our outer classifier may make

1011

it difficult to learn a consistent model ν globally across

the graph. Therefore, we also compute the triangulated
dissimilarity between u and v, using common neighbors i,
as

Δ̄w∗(u, v) =
∑

i∈Γ(u)∩Γ(v)

Δw∗(i, u) + Δw∗(i, v)

|Γ(u) ∩ Γ(v)| (5)

= Δw∗(u,Γ(u) ∩ Γ(v)) + Δw∗(v,Γ(u) ∩ Γ(v)).

Finally, we return, f(u, v)[LL] = Δ̄w∗(u, v)− δuv. (6)

If f(u, v)[LL] is large and positive, it expresses confidence

that link (u, v) will appear; if it is large and negative, it

expresses confidence that it will not. Around zero, the LL

feature is non-committal; other features may then come to

the rescue.

4.4. Co-clustering and “surprise”
Consider a query node pair u, v where we are trying

to predict whether edge (u, v) exists. E.g., u may be a

person, v may be a movie, and we want to predict if u
will enjoy watching v. In this person-likes-movie matrix, as

a specific example, there may be row groups representing

clusters of people that like most movies, and there may

be column groups representing clusters of classic movies

that most people like. In general, the block in which the

matrix element [u, v] is embedded, and in particular, its

edge density d(u, v), gives a strong prior belief about the

existence (or otherwise) of edge (u, v), and could be the

feature f(u, v)[CC] in and of itself.

We turn the block density d(u, v) ∈ [0, 1] into features

for discriminative learning by characterizing the “surprise

value” of an edge decision for node pair u, v. As an extreme

case, if a non-edge (value 0) is present in a co-cluster block

where all remaining elements are 1 (edges), it causes large

surprise. The same is the case in the opposite direction.

There are various ways of expressing this quantitatively.

One way of expressing it is that if an edge (u, v) is claimed

to exist, and belongs to a block with an edge density d(u, v),
the surprise is inversely related to d(u, v); in information

theoretic terms, the surprise is − log d(u, v) bits. (So if

d(u, v) → 0, yet the edge exists, the surprise goes to

+∞.) Similarly, if the edge does not exist, the surprise is to

− log(1− d(u, v)) bits.

4.5. The discriminative learner for global model ν

In order to obtain the best LP accuracy, the above signals

need to be combined suitably. For each edge, there are two

classes (present/absent). One possibility is to label these

+1,−1, and fit the predictor ŷuv = sign(ν · f(u, v)).
4.5.1. Loss function: ν can be learnt to minimize various

loss functions. The simplest is 0/1 edge misclassification3

loss
∑

q∈Q
1

N−1

∑
v �=q�ŷqv �= yqv�, which is usually re-

placed by a convex upper bound, the hinge loss. As we

3�B� is 1 if B is true, 0 otherwise.

Dataset N E n(a) davg

Movielens 3952 5669 18 2.8689

CiteSeer 3312 4732 3703 2.7391

Cora 2708 5429 1433 3.89

WebKb 877 1608 1703 2.45

NetFlix 17770 20466 64 2.3034

Figure 1. Summary of the datasets, where N is the number of items, E
is the total number of links, n(a) is the number of features and davg is
the average degree.

have discussed in Section 3, for ranking losses, it is better

to optimize the AUC, which is closely related [12] to the

pairwise loss. which is again usually approximated by the

hinge loss

∑

q∈Q

∑

g∈G(q),b∈B(q)

max
{
0, 1− ν · (f(q, g)−f(q, b))

}

|G(q)| |B(q)| (7)

Joachims [12] offers to directly optimize Λ for several

ranking objectives; we choose area under the ROC curve

(AUC) for training Λ, although we evaluate the resulting

predictions using MAP. During inference, given q, we find

ν · f(q, v) for all v �= q and sort them by decreasing score.

4.5.2. Feature map: We now finish up the design of

f(u, v)[AA], f(u, v)[LL] and f(u, v)[CC]. The first two

are straight-forward, we simply use the single scalar (1)

for f(u, v)[AA], and f(u, v)[LL] is also a single scalar

as defined in (6). The f(u, v)[CC] case is slightly more

involved, and has two scalar elements, one for each surprise

value:

• − log d(u, v) for the “link exists” case, and

• − log(1− d(u, v)) for the “edge does not exist” case.

Accordingly, ν will have two model weights for the CC

block, and these will be used to balance the surprise values

from training data. The soundness of the above scheme

follows from structured learning feature map conventions

[12], [20].

5. EXPERIMENTS

We compare CCLL against several strong baselines

such as Adamic-Adar (AA) [1], Cumulative Random Walk

(CRW) [17], Supervised Random Walk (SRW) [2], and

Generative Model (GM) [9] with four popular public data

sets, summarized in Figure 1. Apart from using LL as

features to CCLL, we run LL independently as a baseline.

5.1. Performance of CCLL compared to other algorithms

Figure 3 gives a comparative analysis of MAP (Mean Av-

erage Precision) values for all datasets and algorithms, and

Figure 2 gives a more detailed view of precision vs. recall.

We observe that, for all datasets, the overall performance of

CCLL is substantially better than all other methods.

1012

Citeseer

0

0.2

0.4

0.6

0.8

1

0.6 0.7 0.8 0.9 1
Recall

P
re

ci
si

on

AA

CCLL

CRW

LL

SRW

Cora

0.5 0.6 0.7 0.8 0.9 1
Recall

Movielens

0 0.2 0.4 0.6 0.8 1
Recall

Netflix

0 0.2 0.4 0.6 0.8 1
Recall

WebKb

0.7 0.8 0.9 1
Recall

Figure 2. Precision vs. recall curves for all data sets and algorithms.

Performance of the probabilistic generative model is par-

ticularly poor. This was surprising to us, given stochastic

block models (SBMs) seem ideally suited for use in LP.

Closer scrutiny showed model sparsity as a likely culprit,

at least in case of Ho et al.’s formulation. They derive a

tree-structured hierarchical clustering of the social network

nodes, where the number of hierarchy nodes is much smaller

than N , the number of social network nodes. Their model

assigns a score to an edge (u, v) that depends on the

hierarchy paths to which u and v are assigned. Since the

number of hierarchy nodes is usually much smaller than

the number of social nodes, the score of neighbors of any

nodes have a lot of ties, which reduces ranking resolution.

Therefore, MAP suffers. In contrast, the coarse information

from co-clustering (CC) is only a feature into our top-level

ranker.

AA, CRW all produce comparable performance. All these

methods solely depend on link characteristics, for example

AA depends on the number of triangles a node is part

of, hence misses out the important node or edge feature

information. Regarding CRW, as t goes to ∞, it doesn’t

converge, and there is no consistent global t for best MAP.

SRW, which performs best among the baselines, uses node

and link features (PageRank) but not community based (co-

clustering) signal. Moreover, SRW learns only one global

weight vector, unlike wuv in LL, a signal readily picked up

by CCLL. We also found the inherent non-convexity of SRW

to produce suboptimal optimizations. LL is better than SRW

in all data sets except NetFlix. This is because the number

of features in Netflix is small and the values assumed by

each feature is very diverse, making the feature-based local

prediction strategy ineffective.

A possible explanation of the superior performance of

CCLL can be that the underlying predictive modules (LL,

AA, CC) perform well in complementary zones which

CCLL can aggregate effectively.

In order to probe into this aspect we make a detailed study

of the performance of the various algorithms with respect to

various distribution of work load (elaborated in Section 5.3).

5.2. Importance of various features

Figure 4 dissects the various features involved in CCLL,

fixing at 90% sampling rate henceforth. To understand

the role of different features (local link structure, global

community structure), we build our SVM model eliminating

either LL or CC and calculate the ranking accuracy (MAP).

The results show that the absence of each of the signals

(LL and CC) significantly deteriorates the performance.

However, closer scrutiny showed the interesting property

that the deterioration occurs in different zones, that is, it is

almost always true that the node whose MAP gets affected

by elimination of LL does not face such problem when CC

is removed.

5.3. Workload Distribution

In this section, we present some comparative analysis

between CCLL and other four best benchmark algorithms

on two representative datasets: Netflix and Movielens (Fig-

ure 5). The choice is motivated by the fact that Movielens

gives best performance and Netflix gives worst performance

(with CCLL) among all the five datasets. Netflix has few

features while Movielens is feature-rich. Query nodes are

bucketed based on the number of neighbors they have

(changes from sparse to dense), and each bucket holds

roughly one-sixth of the nodes. The workload distribution

highlights the nature of each algorithm. The behavior of

the algorithms is similar for the two workload distributions.

It is seen that AA and CRW which solely depend on link

structure improve as the graph becomes more dense (number

of neighbor increases). The two feature based algorithms,

LL and SRW, perform well in the sparse zone, and the

improvement in the dense (more social) zone is observed

Dataset CCLL LL AA CRW GM SRW

Netflix 0.602 0.475 0.538 0.543 0.127 0.456

Movielens 0.875 0.813 0.534 0.578 0.200 0.811

CiteSeer 0.772 0.739 0.665 0.531 0.145 0.628

Cora 0.723 0.681 0.614 0.477 0.058 0.627

WebKb 0.858 0.751 0.604 0.574 0.336 0.669

Figure 3. Mean average precision over all algorithms and datasets.

1013

Dataset CCLL SVM(LL,AA) SVM(LL,CC)
Netflix 0.6017 0.5761 0.5478

Movielens 0.8740 0.8436 0.8483

Citeseer 0.7719 0.7467 0.7677

Cora 0.7203 0.7044 0.7139

WebKb 0.8583 0.8106 0.8470

Figure 4. Feature ablation study.

0

0.2

0.4

0.6

0.8

1

1-3 3-5 5-12 12-30 30-80 80+Nbrs-->

M
A

P CCLL LL AA SRW CRW

0

0.2

0.4

0.6

0.8

1

1-3 3-10 10-20 20-35 35-70 70+Nbrs-->

M
A

P CCLL LL AA SRW CRW

Figure 5. Workload distribution based on no. of neighbors on “Netflix”
(above) and “Movielens” (below).

but not as significant as the two link-based algorithms.

Clearly, in these two zones (sparse and dense), two different

classes of algorithm work well. CCLL performs well in all

the zones by appropriately learning signals in each zone.

However, it even improves upon its two constituents in each

and every zone. From Figure 5 we observe that CCLL

performs best (substantially better than LL and AA), at

intermediate density. There are two reasons behind it. Even

though the graph is sparse, in these regions, |G(q)| and

|B(q)| are not far apart, which helps CCLL to train better.

Second, nodes in these zones are member of community

coclustering structures with informative block densities and

surprise feature. Factoring in the community signal helps to

positively interpret the surprise.

6. CONCLUSION

We described a new two-level learning algorithm for link

prediction. At the lower level, we learn a local similarity

model across edges. At the upper level, we combine this

with co-clustering signals using a SVM. On diverse standard

public data sets, the resulting link predictor outperforms

recent LP algorithms.

Acknowldegement: This work was supported by Google

India under the Google India PhD Fellowship Award.

REFERENCES

[1] L. A. Adamic and E. Adar. Friends and neighbors on the
Web. Social Networks, 25(3):211 – 230, 2003.

[2] L. Backstrom and J. Leskovec. Supervised random walks:
predicting and recommending links in social networks. In
WSDM Conference, pages 635–644, Hong Kong, 2011.

[3] C. M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

[4] D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Falout-
sos. Fully automatic cross-associations. In SIGKDD Confer-
ence, pages 79–88, Seattle, WA, USA, 2004. ACM.

[5] A. De, M. S. Desarkar, N. Ganguly, and P. Mitra. Local
learning of item dissimilarity using content and link structure.
In RecSys, pages 221–224, 2012. (Poster).

[6] A. De, N. Ganguly, and S. Chakrabarti. Discriminative link
prediction using local links, node features and community
structure. http://arxiv.org/abs/1310.4579, Oct. 2013.

[7] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-
theoretic co-clustering. pages 89–98, Washington, D.C., 2003.
ACM.

[8] P. Doyle and L. Snell. Random walk and electric networks.
In Mathematical Association of America, 1984.

[9] Q. Ho, J. Eisenstein, and E. P. Xing. Document hierarchies
from text and links. In WWW Conference, pages 739–748,
Lyon, France, 2012. ACM.

[10] K. Järvelin and J. Kekäläinen. IR evaluation methods for
retrieving highly relevant documents. In SIGIR Conference,
pages 41–48, 2000.

[11] G. Jeh and J. Widom. Scaling personalized web search. In
WWW Conference, pages 271–279, 2003.

[12] T. Joachims. A support vector method for multivariate
performance measures. In ICML, pages 377–384, 2005.

[13] L. Katz. A new status index derived from sociometric
analysis. Psychometrika, 18(1):39–43, Mar. 1953.

[14] D. D. Lee and H. S. Seung. Algorithms for non-negative
matrix factorization. In NIPS Conference, 2001.

[15] D. Liben-Nowell and J. Kleinberg. The link-prediction
problem for social networks. Journal of the American Society
for Information Science and Technology, 58(7):1019–1031,
2007.

[16] R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla. New
perspectives and methods in link prediction. In SIGKDD
Conference, pages 243–252, Washington, DC, USA, 2010.
ACM.

[17] L. Lu and T. Zhou. Link prediction in complex networks: A
survey. Physica A: Statistical Mechanics and its Applications,
390:1150–1170, Mar. 2011.

[18] P. Sarkar, D. Chakrabarti, and A. W. Moore. Theoretical
justification of popular link prediction heuristics. In IJCAI,
pages 2722–2727, Barcelona, Spain, 2011. AAAI Press.

[19] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random walk with
restart and its applications. In ICDM, 2006.

[20] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun.
Large margin methods for structured and interdependent
output variables. JMLR, 6(Sep):1453–1484, 2005.

1014

