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Abstract  We consider the two-parameter Sturm-Liouville system

—yY + qiyr = (Ar11 + pri2)yr on [0,1], (1)

with the boundary conditions
" (0 f(1 A+b

v1(0) =cota; and i) A * 17

y1(0) (1) ar+d
and

—y3 + q2y2 = (Ar21 + pra2)y2  on [0,1], 2
with the boundary conditions

y5(0) yp(1) _ agu+bo

=cotaz and =

y2(0) y2(1)  cop+d2’
subject to the uniform-left-definite and uniform-ellipticity conditions; where ¢; and r;; are continuous
real valued functions on [0, 1], the angle «; is in [0,7) and a4, b;, ci, d; are real numbers with §; =
a;d; —bje; >0 and ¢; # 0 for 4,7 = 1,2. Results are given on asymptotics, oscillation of eigenfunctions
and location of eigenvalues.

2000 Mathematics subject classification: Primary 34B08
Secondary 34B24
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1. Introduction

The Sturm—Liouville theory associated with the ordinary differential equation
—y"+qy=Ary on[0,1],
with ¢ and r continuous and r > 0 subject to the boundary conditions

y(0)cosa =3 (0)sina  and  y(1)cos 3 = 3/ (1)sin 3,
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deals with existence, uniqueness, oscillation of eigenfunctions and completeness. Classical
results about these are well known. The study of the above one-parameter equation
subject to the parameter-dependent boundary conditions

y/(O) apgA + bg y/(l) aiA+ by

= d =
9(0) “eortdo Y YD) T it da

have been investigated and results about the existence and oscillation theory are
known [6]; there are also parameter dependence results and asymptotic expansions [6].
Klein’s oscillation theorem for equations (1) and (2) subject to the fixed boundary con-
ditions

y:(0)cosa; = yi(0)sina; and y;(1)cos B; = yi(1)sin 3;

and under the right definiteness condition

dot [T1(®) ri2(2) >0 for every z € [0,1]
791 (.’L’) 7“22(.T

states that, for each non-negative integer pair (m,n), there is a unique eigenvalue (\, ) €
R? and (up to scalar multiples) a unique pair of eigenfunctions (yi,y2) such that y; has
m zeros and yo has n zeros in (0,1). A special case was proved by Klein, and the general
one (for continuous coefficients) was proved by Ince [9].

Bhattacharyya et al. [1] started the discussion of (1) and (2) subject to parameter-
dependent boundary conditions. Apart from the Sturm—Liouville theory, there are results
on asymptotics and location of eigenvalues. The extension of (1) and (2) to several
parameters with parameter-independent or parameter-dependent boundary conditions
has been discussed by several authors (see, for example, [2,11] and the references therein).
Binding and Browne [3,4] analysed the abstract problem

k
(Tm — Z)\ann)xm =0 for (A, Aa,... M) €RF and m =1,2,.. .k,

n=1

under several definiteness conditions and provided an abstract Klein’s oscillation theorem.
Here the operators T, are self-adjoint and bounded below with compact resolvent and
Vinn are bounded and self-adjoint.

In [1] the system (1), (2) was studied under the uniform-right-definiteness condition,
which is defined in Definition 1.1 below. There it was shown that each eigenvalue has
a unique oscillation count (m,n) where m and n are the number of zeros of the cor-
responding eigenfunctions y; and yo, respectively. In addition, there is an oscillation
theorem [1, Theorem 4.4] that addresses the extent to which the converse is true.

We begin by stating the definiteness conditions, for which formulation of the problems
in terms of Hilbert space operators is essential. In §2 we prove the oscillation theorem
in the uniform-left-definite (ULD) case. As in [1], this result depends heavily on the
asymptotic nature of the zeroth eigencurves of (1) and (2). In §3, we remove the ULD
assumption and retain only the uniform ellipticity (UE). The emphasis here is on finding
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Two-parameter uniformly elliptic Sturm—Liouville problems 533

the location of the eigenvalues coming out of the intersection of the first and second
equation eigencurves. The bounded sets on which these eigenvalues are located arise
from the study of the eigencurves of another system which is also explored.

The operator equivalent forms of (1) and (2) are as follows. Let AC be the subspace
of L?[0, 1] consisting of absolutely continuous functions. Define linear functionals P; and
Q; for j =1,2 on AC by

Pj(y) = byy(1) — d;y'(1), Q;(y) = azy(1) — ¢;y'(1).

Consider the Hilbert space L?[0,1] & C which has the inner product

1
<Y1,Y2>:/ Y1y + af,
0

) (3

are in L?[0, 1] ® C. Now define the unbounded operators T; for j = 1,2 and the bounded
operators Vjy for j,k =1,2 on L?[0,1] & C by

where

D(T;) = { (_é(y)) € L?[0,1] @ C:y,y € AC,

-y + q;y € L2[0, 1], ¥'(0) = cot Ozjy(())}

_ y (Yt ay - Y Y an v _ [y
& (—@@))( P,(0) ) : (—Qxy))ED(Tﬂ ¢ <a> (ajko)’

where d;; is the Kronecker delta. Now (1) and (2) are equivalent to

(T; — (A\Vj1 + u1Vj2)) (gij) =0 for (ij) € D(Ty), j=1,2

For Y = (Y1,Ys) € (L?[0,1] & C) x (L?[0,1] & C), we set
(V) = (T;(Y;),Y)), vk (Y) = (Vi (Y), ¥5), 60(Y) = det v (Y)],

and dojx(Y) equal to the cofactor of v;r(Y) in 6o(Y). Let U be the unit sphere in
L*[0,1] & C.

Definition 1.1. The basic definiteness assumptions used for the study of multi-
parameter Sturm-Liouville problems are defined as follows.

(i) Uniform right definiteness (URD): for some v > 0 and for each

Y=(.Ya) €U XU, 6(Y)>n.
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(ii) Uniform ellipticity (UE): for some v > 0, for each j, k = 1,2, and for each
Y:(Yl,YQ)EUXU, (SOJki(Y)>’7

(iii) Uniform left definiteness (ULD): UE holds and for some v > 0 and for each j = 1,2
and
Y =(Y1,Y2) €U x U with Y; € D(Ty), t;(Y) > ~.

2. Uniform left definiteness

In this section we discuss (1) and (2) subject to the ULD condition. Since UE holds,
(—1)"r;(z) >0for 0 <z < 1andi,j=1,2 [2, Lemma 4.1]. The case when dy(u) > 0
for all w € U is studied in [1] and the case when dp(u) < 0 for all u € U is similar. Hence,
we shall consider the case when dg(u) changes sign for u € U.

2.1. Eigencurves of the system (1), (2)

Consider (2). If we fix A\ and take p as the parameter, equation (2) is then a one-
parameter Sturm-Liouville problem with one boundary condition depending on the
parameter. There exist eigenvalues pioo(A) < p21(A) < -+ with corresponding eigenfunc-
tions Y20, yo1, - - - . Also there exists a natural number Ny depending on A such that yo, has
n zeros for n < Na and n—1 zeros for n > Ny in (0, 1), where pon, < —da/c2 < pa(N,+1)-
Moreover, pa,(A) are continuous strictly increasing functions of A [1, Lemma 2.1, Theo-
rem 3.1], [6, Theorem 3.1]. The graphs of o, (A) for A € R are called the second equation
eigencurves and are denoted by pg,. Similarly in (1), by fixing p and taking A as the
parameter we get eigenvalues \ip(p) < A11(p) < -+ with eigenfunctions yi0, 411, - -
Also there exists a natural number N; depending on u such that i, has m zeros for
m < Ny and m—1 zeros for m > Ny in (0, 1), where A1y, < —di/c1 < Ay(n,+1) [6, Theo-
rem 3.1]. For every m = 0,1,2. .., the function A1,, () is continuous and strictly increas-
ing in u. So the inverse of Ay, exists as a function of A. We call it p1,,(A). This satisfies
10(A) > p11(A) > p12(A) > - --. We call the graphs of p1,,()\) the first equation eigen-
curves and denote them by fi1,,.

The pair (A, p) is called an eigenvalue if there exist functions y; and y2 such that
(A, i, y1, yo2) satisfies the system. The oscillation count of (X, u) is the pair (m,n), m,n >
0, where m and n are the number of zeros of y; and ys, respectively, in (0, 1).

It is well known that, in the uniform left definite case, the first and second equation
eigencurves intersect exactly twice. This follows from [3, Theorem 3.3] and its subsequent
discussion therein. The intersection points are the eigenvalues of the system. There-
fore there are countably many eigenvalues for the system. With respect to the point
(=di/c1,—da/ca), we consider the following quadrants:

—d —d —d —d
le{(xay):x>17y>2} and QQZ{(xay):x<1’y>2}a
C1 C2 C1 Co
—d —d —d —d
Qg—{(:c,y):x<1,y<2} and Q4—{(‘T,y)ix>l7y<2}.
C1 C2 C1 Co
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Let (m,n) = k. We denote the two intersection points of p1,, and jg, as (A¥, u) =
(AR, 1 (AF)), which is always in Qs3, and (A5, 1) = (A5, p1,, (A5)), which is in Q3 for the
particular case m = n = 0, where \} < L.

Lemma 2.1. The graph of p10(\) always lies on the left of the vertical line A = —dy /c;
and limy_,_q, /¢, 10(X) = 00. On the other hand, po()\) < —da/cy for A € R and
limy o0 p20(A) = —da/c.

Proof. For any given A, the value of p99()) is obtained from the point of intersection
of the leftmost branch By of f(u) = cot 8(1, A, 1) and the hyperbola
_agp+bo
capt + da

(see [1, Lemma 2.1] and [6, Theorem 3.1]).
The hyperbola v = g(u) has the horizontal asymptote v = as/co and vertical asymp-

tote p = —ds/ca. Since cot 6(1, A, u) decreases continuously on By, its intersection with
the hyperbola must be on the left of u = —ds/co. It follows that ugg(A\) < —da/ca and,
since pgp is increasing, let limy_ oo 20(A) = 1. To show that | = —da/ca, it is enough to

show that limy_, o cot (1, A, uao(A)) = oc.

Choose 7 > 0 such that n < @ — ap and 5 < 7, where (0, A, u2o())) = a2 € [0, 7).
Consider S = {x € [0,1] : n < 0(x, \, pu2o(A)) < ® —n}. By choosing 7 small enough
we can assure that S is non-empty. Let zy be the infimum of S. Choose & such that
m—n<d<m Forz € §and A > 0, since sinf > sinn, we have

0 (, A, p2o(N)) = cos® 0 4 (Ara1 4 pi20(N)raz — g2) sin® 0

<1+ ()\ sup ro1(z) +1 sup 7“22(30)) sin®n 4+ sup lg2 ()|
z€[0,1] z€[0,1] z€[0,1]
n—
1— i)

< for sufficiently large .
Note that n — §/1 — zq is the slope of the line segment h joining the points (z¢,d) and
(1,7n). Hence, (8 —h)'(x) < 0 for z € S. This, together with (6 — h)(zo) < 0, implies that

0(xz, X\, p2o(N)) < h(z) for x € [z, 1]. (2.1)

Let x1 be the largest number such that [xg,z1] C S. Since 6 is continuous in z, such a
number exists. From (2.1), we get 21 # 1. For any x > x1, we have z ¢ S, since 6 is
decreasing for all x € S. Therefore, S = [zg,z1] and 6(z, A, uao(N)) < n for z > 1. In
particular (1, A, pi2g (X)) < 1. Since ag = 0(0, A, pi20(A)) = 0 and ¢’ > 0 for = 0 (mod ),
we know that 6(z, A, p20(A)) cannot be negative for = € [0, 1], for otherwise 6’ will have
to be negative at the point where 6 becomes zero. Hence, (1, A, pog(A)) = 0. Since > 0
is arbitrary, we are done.

Proceeding as above using the first differential equation, we get A1o(p) < —di/c; and
lim,, 00 A1o(pt) = —di/c1. Since p19(A) is the inverse of Aig(u), the graph of pig(A) lies
on the left of A = —d; /c; and limy_, _g, /¢, ft10(\) = 00. a
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Theorem 2.2 (oscillation theorem). Let

M; = min{m : ()\gm’o),/i) € Q4 and ()\gm’l),,u) € @1}
and
Mo = mi . )\(O,n) d /\(Ln)
2 mm{n.( 2 ,/.L)GQQ an ( 2 7#’)6@1}
With the exceptions below, each oscillation count corresponds to two eigenvalues.

(i) For m > My and n > May, each of the oscillation counts (m,0) and (0,n) corre-
sponds to exactly three eigenvalues.

(ii) For m < My and n < My, the oscillation count k = (m,n) corresponds to at least
two eigenvalues and at most five eigenvalues.

Proof. We find that j1,,,(\) has the oscillation count m when A < —dy/c; and m —1
when A > —dy/c1. pon(A) has the oscillation count n when po, (X)) < —da/ce and n — 1
when po,(A) > —da/co. Hence the oscillation count of the eigenvalue (AF ) is
(m — 1,n — 1) (vespectively, (m,n—1), (m,n) and (m—1,n)) if (\¥, i) € Q1 (respectively,
Q2, @3, Q4).

Let I'F, where k = (m,n) denotes the curvilinear cell defined by the vertices

AT ), AR ) ARy and (AT ), for i = 1,2,

(2

and the corresponding eigencurve sections as edges. Note that I'F, for any k = (m,n),
always lies in Q3. Since the repeated oscillation counts must correspond to the vertices
of some cell, a given oscillation count k& = (m,n) corresponds to the eigenvalue (A, 1)
from I'f and at least one and at most four eigenvalues from I'y. Hence, the minimum
number of occurrences of an oscillation count should be two.

(1) For m > M, the oscillation count (m,0) occurs thrice, once each in Q3, Q4 and
)1, corresponding to ()\ﬁm’o),,u), (/\gmﬂ’o),,u) and ()\gmﬂ’l),
n = Mo, the oscillation count (0,n) corresponds to

@). Similarly when

MO e Qs AP e and (WY ) € Q.

(2) For m > My and n > My, the cell FQ(m’n) is contained in @Q1; therefore, when
m < My and n < Ms, the oscillation count (m,n) corresponds to at least two
eigenvalues and at most five eigenvalues.

O

Remark 2.3. Given an oscillation count, it may be possible that it corresponds to five
eigenvalues. It may or may not happen depending on the problem. If it happens there is
only one such case. There are finitely many cases where an oscillation count corresponds
to four eigenvalues. However, if there is an oscillation count which corresponds to five
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eigenvalues, then no oscillation count corresponds to four eigenvalues. There are always
infinitely many cases where an oscillation count corresponds to three eigenvalues. Sim-
ilarly, there are always infinitely many cases where an oscillation count corresponds to
two eigenvalues. There is no oscillation count which corresponds to one eigenvalue.

Theorem 2.4. Let mi < me < --- < my be positive integers such that
Himy s Plms - - - s Bim,, intersects the line p = pA+c¢ (p < 0) at Ay, Ag,..., Ak, respec-
tively. Then A\; < Ay < -+- < A and for A = A\, and m < my, we have 1, (A) = pA + c.

Proof. For m; <mj, 1 <i < j <k, since pim, (A) > pam, (A), we have \; < A;. For,
if \i > Aj, then pypm, and piy,,, intersect at some \j; and pim, (A) < pam; (A) for X = A,
which is impossible.

Now, for A > Ax and m < my,

Pam(A) 2= pimy, (A) = prim, (Ak) = pAk + ¢ = pA+c.
O

We state an analogue of the previous theorem for the eigencurves pg,. It can be proved
in a similar way.

Theorem 2.5. Let n; < ne < --- < ny be positive integers such that
H2ng s H2ng s - - -y K20y,

intersect the line p = pA+c (p < 0) at A1, Mg, ..., A, respectively. Then \y > Ay > -+ >
Ar and, for X < A\ and n < ny, we have pa,(A) < pA+ c.

Theorem 2.6. The functions fi1,,(\) and pa, () and the eigenfunctions y1,, and yon,
are analytic in A

Proof. Consider the operator equivalent form of (2),

(67

(TQ — ()\‘/21 +M‘/22)) (Z) =0 for <y> € D(TQ)

i.e.

—y" + (g2 — Ara1)y
T22 - ‘LL <y> .
a
Pa(y)
Define the operator Ty : D(Ty) — L?[0,1] @ C by

="+ (g2 — Ara1)y
T)\ <y> - -
P (y)

The linear operator Ty is a self-adjoint [2, Lemma 2.1] holomorphic family of type A
[10, Chapter VII, §2:1] defined for A in any neighbourhood of an interval I of the real
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axis. Let 8 € P(T)), the resolvent of Tx. Then (T — 3)~' : L?[0,1] ® C — D(T3) has

the form
1 (V) _ Gv
=) (7) N (Qg(@)

and is compact [8, IT, Theorem 6.9]. Here y = Guv, where G : L?[0,1] — L?[0,1] is given
by

where c¢ is the Wronskian of yo and 1, and yq is a solution of

="+ (g2 — Ara1)y
T22

— By =0, ¥ (0) = cotazy(0),
and y; is a solution of

=y’ + (g2 — A\ra1)y
T22

—By=0, P(y)+pQ2y) =1.

It follows from [10, VII, 3:5, Theorem 3.9] that the eigenvalues p1,,(A) and the eigen-

functions (yg")

of T are analytic in A. Consequently, y1.,, is also analytic.
In a similar way, considering the operator equivalent form of (1), we arrive at the
conclusion that the eigenvalues Ao, (1) and the eigenfunctions yo,, are analytic. Here we

take the operator T, : D(T1) — L?[0,1] & C to be

=y + (g1 — pri2)y
T, <y> = 11
o
Pi(y)
Being the inverse of Aay,, the function s, () is also analytic. O

The expression for the first derivatives of p1,,(\) and po,(A) with respect to A are
derived in [1, Theorem 3.1]. The second derivatives are given below.

Theorem 2.7. Assume that

82y” a2y "
o (av)
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where a prime denotes 0/0x. The second derivatives of pi1,,(\) and pay,(\) with respect
to \ are given by

d2,u1m()‘)
d)\2
= (r12(y1m))1{(01)\2j1d1)3 [Cl(ylm(l))2 — (e A+ d1)y1m(1)6@lgn)\(1)}

o dm () /1T Oyim /17~ AYim
ar o 12Y1m I\ . 11Y1m O\ )

dpizn (V)
dA2
B {m * 7“22<y2n)}

209 dpian () ’ dpazn(A) 9y2n (1)
e 20 (V) = G ) VR

72dﬂ2n()‘) /17, y 8y2n2/1r y ay2n
d)\ 0 22Y2n a)\ 0 21Y2n 8)\ 9

1
7i2(Yim) =/ rioys,  fori=1,2.
0

where

Proof. Differentiation of (1) twice with respect to A yields

2,/ 2 d d2
8 + a1+ 0y = |71+ i 3y Mmy
oA o\2 X d)\2

0? du 0
+ ()\7’11 + /1,7"12)67;5 + (7’11 + 7’12) 8:1;\ (22)

Multiplying (1) by 0%y/0)2, (2.2) by y and subtracting the former from the later, we get

62y// " 82y 2

dp dy
Yo TV W—Tuy e +2<7‘11+d 7“12) Yax

Integrating over [0, 1], we find that

o (*y\ | %y ot o, dp [ty Loy
[_y6<8)\2>+y (‘3)‘2}0_(1/\2/0 12y +25/0 T12ya+2/0 Tllya' (2.3)

We differentiate the boundary conditions in (1) twice with respect to A and then use it
to solve the left-hand side of (2.3) to get the expression for d?sy,,()\)/dA\2. Using (2) and
following similar steps we get

0 (0% ,0%y ! d?p ! du ! oy ! dy
[_yax((fi)\?) +y ‘WL_ W/( 22y +2d)\/ 7‘22?/54-2/ a1y 5y

Now as in the computation above, we solve the left-hand side using the boundary condi-
tions of (2) to get the required result. O
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3. Uniform ellipticity

From now on we assume only uniform ellipticity for the system (1), (2). The UE condition
implies that (—1)"r;(z) > 0 for 0 < x < 1 and 4,j = 1,2 [2, Lemma 4.1]. We
permit dp(u) to take both positive and negative values for u € U. We also assume that
r11(z1)ree(ze) — r1a(x1)re1(z2) for (z1,22) € [0,1] x [0,1] is not identically zero and
changes sign. The first and second equation eigencurves p1,, and ps, can be derived
exactly as in the uniform left definite case and we are following the same notations. In
particular, note that Lemma 2.1 and Theorem 2.6 are valid in this case as well. The
intersection points of p1,, and pa, are the eigenvalues of the system (1), (2).

Lemma 3.1. The operators T; for j = 1,2 are self-adjoint and bounded below with a
compact resolvent.

Proof. The self-adjointness of T follows from [2, Lemma 2.1]. For the compactness of
the resolvent of T}, see the proof of Theorem 2.6. Now let us have a look at the eigenvalues
of T;. T;Y = pnY implies that

! ! 1 X b
y(O):Comﬁ y() _ ajptb;
y(0) y(1)  cp+d;

—y" + ¢y = py,

Theorem 3.1 of [6] shows that the system has a countable number of eigenvalues
pg < pg < p3 < ---.So the spectrum of the operator Tj is bounded below. The discussion
in [10, Chapter V, §3:10, p. 278] concludes that T; is bounded below. O

Theorem 3.2. Given n > 0, there exists an integer N(n) > 0 such that the po,
intersect with 1, at at least two points if and only if m > N(n).

Proof. For (\pu) € R2, since the operator Th — AVa, — uVas is self-adjoint and
bounded below with compact resolvent [4, Lemma 1], it has a countable number of
eigenvalues p9(\, ) < p3(A, ) < ---. For each n > 0 and \ € R, since —(Vaa(u),u) < 0
for all u € U, there exists a unique p?"(\) such that p5 (X, p?"(\)) = 0 and

2n
(Ty — AVay — p" (A Van) (ya ) —0.

Moreover, p?"()\) are continuous in A and p?°(\) < p?'(\) < --- (see [4, Theorems 2
and 3], [5, Theorem 2.1]). We claim that p?"(\) = p2,(\). Since p2%(\) < p?1(\) < -+
and pog(N\) < pa1(A) < -+, it suffices to show that

{#*"(X) 11> 0} = {p2n(A) 1 n > 0}

For A\ € R, the set {u2,(\) : n > 0} forms a complete set of eigenvalues for the equation

(Ty — AVay — iVas) (Z) —0.
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Since {#*"(\) : n > 0} are eigenvalues of this equation, we have
{1*"(A\) i1 = 0} C {p2n(N) s 2 > 0}

The eigenvalues pa, (\) satisfy the equation

(T2 — )\V21 — /Lgn()\)VQQ) <y;n> = 0

Hence p}(X, pan(N)) = 0 for some j > 0. But p}(\ p2(\)) = 0. Therefore, g, ()\) =
1% (X) by the uniqueness of 2/ (). Thus, the other inclusion holds.

Now consider T} — AVi; — uVie for (A, u) € R2. Its eigenvalues can be ordered as
PI(\ 1) < pi(A ) <---. For each m > 0 and p € R, since —(Viq(u),u) < 0 for all
u € U, there exists a unique A\'™(u) such that p7*(A'™(u), ) = 0. Then, by a similar
procedure to that above, we can prove that A = Ay,,. Since A1m (@) is a continuous
strictly increasing function of p [1, Theorem 3.1], its inverse p1,,(\) exists and

(Ty — A\Vii — pim(\)Va2) (ya> =0 with pI*(\, pim(N)) = 0.

Now we are ready to apply corollary 4.2 of [3]. We know that
(Ty — \Va1 — pian(N)Vas) (%") =0 for A€ R and pizn(N).
It remains to solve the equation

(Th — AVin — p2n(A\)Vi2) (Z) =0 for A€ R and pizq(A).

In other words the problem is to find an m > 0 such that p* (A, pon (X)) =0 for two
values of A. By [3, Corollary 4.2], given n > 0, there exists an integer N(n) > 0 such that

(T — AVi1 — pi2n (M) Vi2) (i) -0

for two values of A, say A1 and Ao, with p7*(A;, pon (X)) =0 for i« = 1,2 if and only
if m > N(n). In this case, since p7"(\i, tan(Ai)) = 0, we have pon(Ai) = p1m(N;) for
i=1,2. 0

A similar argument will give the following result.

Theorem 3.3. For a given m > 0, there exists an integer M (m) > 0 such that the
H1m Intersect with ps, at at least two points if and only if n > M(m).

Corollary 3.4. The non-negative integers M(m) and N(n) are non-increasing in m
and n, respectively, and M(mg) = N(ng) = 0 for some mq and ny.
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Proof. Let n < I. Suppose N(n) < N(I). From the preceding two theorems, we find
that the pop, intersect with py,, for m > N(I). Fix m, where N(n) < m < N(I). Then,
since the py,, intersect with psy if and only if & > M (m), in particular py,, intersects
a1, which is a contradiction.

Given n = 0, there exists N(0) such that pg, intersects piy, if and only if m > N(0).
Now if m > N(0), then puy,, intersects poo. So M(m) = 0 for m > N(0). The other
assertions are proved in a similar way. O

Thus, for m > myg, the curves puy,, intersect with all ps,,, where n > 0, and, for n > ny,
the curves po, intersect with all pq,,, where m > 0.

The study of the eigencurves of the following equation will enable us to find the location
of the intersection points of p1,, and poy,:

=yl + (@1 + Q — A1y — pan(N)ri2)yr = 2Qy1  on [0, 1],

%O _ cotar, (1) =0, (3:)

where @) is a positive constant to be suitably chosen, {2 is a real parameter and (A, 2, (X)),
for n = 0,1,..., are the eigenpairs of (2). For A € R and pa,(\), where n > 0 is fixed,
the eigenvalues can be ordered as 27, < 2P, < --- and Q,l?lm()\), m=0,1,2,..., are
analytic in A [11, Lemma 3.1]. We now wish to investigate the nature of the eigencurves
2P .. Our analysis is similar to that of Sleeman [11].

First, let us form a differential equation. Multiply (2) by y2 and integrate over 0 <
29 < 1. Then substitute the value of ps, () obtained into (3.1) to get

d2
o+ (Malwn, ) = Hi(wr, ) + Ha(w1, ) + Q2 = Q) =0, (3.2)
1
where
a(z1, \) = fol (r11722 — r12721)Y3, dao
fol T92Y3,, Az
1 1
Hi(z1,)) = Jo @r22y3, dza + [y (—112)0293, da
fol T92Y3,, A
1 1!
_ Yy d
Ho(z1,\) = fo( T12)Y2nYs $2.

1 2
fO T22Y5, dZEQ

The following asymptotic result of the eigencurve po,, is useful in providing an estimate
for Hy(z1,\) — Ha(z1, ). Let
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Then K is finite and limy_,o0 ft2n(A)/A = K for n > 0 (see [1, Lemma 3.4] and [2,
Lemma 4.5]). Now, for A € R and pa,(A), where n > 0, we have

Hl(l‘l,)\) — Hg(xl, /\)
1

Jo r2293
0 22y2n

=q(xz1)+O(N) as A — .

1 1
=q(x1)+ [)\/ —712(21)r21Y5, T — / r12(21) 72293, A2
0 0

and, for large positive A and p2g(\), using Lemma 2.1, we have

Hi(21,A) = Ha(z1,A) < qi1) + Lid + L2%7
where L and Lo are the upper bounds for the respective terms in Hy — Ho.

In the (A, £2)-plane we take 2 = 0 as the abscissa and A = 0 as the ordinate and
introduce the angle ¢ as the angle which a ray through the origin makes with the positive
A-axis.

Define

G—_ sup a(wy, \) and g=— o a(xl,)\).
(21, NE[0,1]X (—o0,00) & (z1,0)€[0,1]x (—00,00) @

Then G < 0 and g > 0, since 711722 — 12721 changes sign in [0, 1] x [0, 1]. Let
¢1 = tan_l Gv Qﬁ = tan_l 9, ¢2 =m+ ¢>{ and ¢; =m+ ¢17

where the principal branch of the inverse tangent is taken. Clearly, —%71' <P <0<
P < 3T < Ph < T < ¢ < .

Theorem 3.5. If ¢} < ¢ < 3, then in the (), §2)-plane a straight line through the
origin with slope tan ¢ cuts each curve §2,) . at precisely one point (A(¢), 2 ,,(¢)), for

m,n

m=0,1,2,..., and an(qﬁ) < QEn(QZ)) < -+ and limg, o Q%n(qﬁ) = 00.
Proof. Consider the case ¢7 < ¢ < 1m. Since tan ¢ = £2/), we have, from (3.2),

Ay
da?

+ (ANQFy(x1,\) — Hy(w1,\) + Ha(w1, ) — Q)y1 =0,

where Fy(z1,A) = tan¢ + a(x1,A)/Q. Since tan ¢3 < —a(z1,A)/Q < tan ¢, it follows
that Fy(z1,A) > 0 and does not vanish identically for all z; € [0,1] and ¢] < ¢ < 1.
We introduce the Priifer transformations:

yl(xla )‘7 /\tan ¢) = 7"(.131, )\7 ¢) Sina(‘xlv Aa ¢)7

yi(z1, A Atan¢) = r(w1, A, ¢) cos O(z1, A, @)
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Then 0(x1, A, ¢) is the solution of the initial-value problem

0' (21, ¢) = cos (w1, X, 6) + NQF(z1,\)
- Hl(l‘h A) + HQ(xh A) - Q} Sin2 9(331, )\7 (b)a
0(0, A, 0) = .
We seek values of A such that 0(1, ), ¢) = mm + . If we take @ to be sufficiently

large and positive and argue as in the proof of [7, Chapter VIII, Theorem 2.1], we
get 0(1,0,0) < .

Claim 3.6. 0(1,\, ¢) is a strictly increasing function of \.

Differentiate (3.1) with respect to A, multiply the result by y; and substitute [1, The-
orem 3.1]

-1

dpan(N) /1 5 [(azda = baca)(y2n(1))? /1 2
T ) e | T )+ d)? T2

and po,(N) from (3.1). Integration of this with respect to x; gives

ayl(lv >‘7 Atan ¢)
oA

 [(a2dy — bacg) (y2n(1))? 1T )
B [ (capion () +d2)? +/0 22Ya, d 2}

1 1
X {/ Tzzygndl”z/ QFy(x1, i (1, A, Atan ¢) da
0 0

ds — baca) (y2n (1) [ [ 1
g Ly ot | @t}

The left-hand side is equal to

Ay} (1, A\, A tan )
[5))

-1

y/l(]-’)‘aAtan(ﬁ) _yl(l,)‘a)‘tangb)

(r(1, 1, 9)? 22 0)

and the right-hand side is positive. Hence 6(1, A, ¢) is strictly increasing in .

Furthermore, (1, \,¢) — oo as A — oo. This follows on taking @ sufficiently large,
using the estimate for Hj(x1,\) — Ha(z1,A) and arguing as in the proof of [7, VIII,
Theorem 2.1]. Thus, the equation 6(1,\,¢) = mm + 7 for m = 0,1,2... has a unique
solution. Since 6(1,0,¢) < w, and 6 is increasing in A, these solutions form a strictly
increasing sequence of positive numbers which tends to infinity as m — co. Hence, the
theorem follows in this case.

Let ¢ = %77. Clearly, ()EL’” cuts the vertical axis at precisely one point. If Qg,n (¢) <0
then 20  cuts some lines through the origin with slope tan¢’, ¢; < ¢’ < 3w, where

m,n

!Z,%n(d)’ ) < 0, which is impossible. O
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Theorem 3.7. For all A € (—oo,00) the eigencurve QB,W m = 0,1,2,..., lies in

the sector ¢1 < ¢ < ¢o. Furthermore, given any € € (0, %ﬂ'), there is a positive number
Npm.n(€) such that, for X > Ny, n(€), 25, (X) lies in the sector ¢1 < ¢ < ¢1 + € and, for

A< —Npnle), 25, () lies in the sector g — € < ¢ < pa.
Proof. The result follows from [11, Theorem 4]. O

Theorem 3.8. If 2* < 0, then the line 2 = 2* intersects each curve §2,)  at at least
two points and at most a finite number of points.

Proof. For fixed m > 0, we find from Theorem 3.5 that 22 (0) > 0. By choosing

m,n
€ > 0 very small in Theorem 3.7, we arrive at the conclusion that

lim 20 ()= lim 2D (\)=—c.

A—00 ’ A——o00

Hence, 2P  intersects {2 = 2* at at least one point with positive abscissa and at at

m,n
least one point with negative abscissa. Since Q}%m is analytic, there are at most a finite

number of points of intersection, with each such point having a non-zero abscissa. |
Let
A =min{\ <0: Q,l?lyn intersects {2 =0 at A}
and
A =max{\ >0: Q,l?%n intersects {2 =0 at A}.

Remark 3.9. Since QEW()\) is analytic in A, both the above sets contain only a finite
number of elements and, hence, A, ,, and A,  are finite. Also, note that if Qg’n()\) >0

for some A, then A must be in [A;, /\j,’m] We denote this interval by Sy, ».

m,n’
Theorem 3.10. Given m and n, all the intersection points of 1., and pso, are con-
tained in the set Sy, U Sm—1,n U Sm—2n.

Proof. Suppose 1., and o, intersect at A;. Consider the equations

/
0
=y + (1 + Q — Mr11 — pan(N)r12)y = 2Qy, M = cot aq,

y(0)
y/(l) . a1 A2 + by
y(].) o Cl)\Q + d1 '

(3.3)

For A € R and psgy,(A), the system has eigenvalues 20 ,(A) < 21 ,(A) < ---. Fix XA = Aq.
Then 20, (A1) < 21,,(A1) < ... and there exists a positive integer M7 = M (A1), where

_dl
Cl)\l

Qu (A1) < < 41,0 (A1),

such that the eigenfunction y; of 2;,(A\1) has [ zeros if | < M; and | — 1 zeros if
I > M, [6, Theorem 3.1]. Since A1, p1m(A1) = p2n(A1) and yy,, satisfy (1), we have
21.n (A1) =1 for some Iy > 0.

Downloaded from http:/www.cambridge.org/core. IP address: 49.207.57.148, on 26 Oct 2016 at 10:26:15, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.
http://dx.doi.org/10.1017/50013091504000720


http://dx.doi.org/10.1017/S0013091504000720
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms

546 T. Bhattacharyya and J. P. Mohandas

Case 1. m < Ny, where Ny = Ny(u1m(A1)). Then
(1a) if m < My, then lp = m;
(Ib) if m = My, then lp = m or m + 1;
(1c) if m > My, then lg = m + 1.

We prove (1la). The proofs of (1b) and (1c) are similar. Let m < M;. Suppose that
lo # m. If lp < M, then y;, has Iy zeros. Since the dimension of the eigenspace for
2iy.n (A1) is one, y;, = cy1m, where c is a constant. Thus, the number of zeros of y;, and
Y1m is the same, which is not possible. Similarly, for Iy > M;, we will find a contradiction.

(la) m < Mj. So 2, n (A1) = 1. By construction
O 1.0(A1) < QA1) = 1< 2 (M),

where £25,,(A1) < £27,,(A1) < -+ are the eigenvalues of the Dirichlet problem (3.1)
[6, Theorem 3.1]. From Remark 3.9 we see that A\; € Sy, .

(Ib) m = M;. In this case 2, ,(A) =1 or 241, (A1) = 1. It then follows from the
inequality
Q}‘r)z—l,n(Al) < Qlo,”(Al) =1< QB,n()\l):

where lp = m or m + 1, that Ay € Sy, .
(1c) m > My. Here 2,41, = 1. We also have
2010 (A) < (A1) =1< 20 (A1)
Hence, A1 € Sy n-
Case 2. m > N;. The following subcases can be proved as in case 1.
(2a) If m < My, then lp = m — 1 such that A\; € Sy—1 .
(2b) If m = My +1, then lo =m — 1 or m, and A\; € Sp,—1 -

(2¢) f m> My +1,thenlp=m—1orm. If [y =m —1, then Ay € Sjy_a,. If lg =m,
then A\ € Si—1n-

Let A2 be another intersection point of 1, and psa,. By fixing Az and ua,(A2) in (3.3),
the eigenvalues of the equation can be arranged as 20, (A2) < 21,,(A2) < ---, and there
exists a positive integer M7 (A2) such that the eigenfunction of 2 ,,(A2) has I zeros if | <
M;i(X2) and I—1 zeros if | > Mj()2). Now, as above, if m < Ny, where Ny = Ny (1, (A2)),
then Ao € Sy, and if m > Ny, then Ag is in Sp,—1, or Sy—2,. Thus, the theorem
follows. O

Corollary 3.11. The eigencurves 1, and s, intersect at at most a finite number

of points.
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Proof. Suppose that there are infinitely many points of intersection. Then, by Theo-
rem 3.10, these points lie in a bounded set. Since p1,, and ps, are analytic, g1, = pon.
Therefore, 1, intersects w1y for k > N(n), which is impossible. O
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