DEFORMATIONS OF PICARD SHEAVES AND MODULI OF PAIRS

V. BALAJI AND P. A. VISHWANATH

0. Introduction. Let C be a smooth projective curve of genus $g \ge 3$ and let $M(2, \xi)$ denote the moduli space of stable vector bundles V of rank 2 and det V $\cong \xi$. For $d := \deg \xi$ odd, let \mathscr{U}_{ξ} denote the universal bundle on $C \times M_{\xi}$. The Picard sheaf \mathscr{W}_{ξ} on M_{ξ} is defined as

$$\mathscr{W}_{\xi} := p_{\ast}(\mathscr{U}_{\xi})$$

where $p: C \times M_{\xi} \to M_{\xi}$ is the canonical projection. Note that for $d \gg 0$, \mathscr{W}_{ξ} is locally free.

Our aim in this paper is to study the variations of the Picard bundle \mathscr{W}_{ξ} on the moduli space M_{ξ} for deg $\xi \gg 0$ ($d \ge 4g - 2$, to be precise) and deg ξ odd. A detailed investigation of the variations and the cohomology of the Picard bundle on the Jacobian of the curve was done by G. Kempf in a foundational paper [K]. In our study we make extensive use of the constructions of Thaddeus in [T]. Along the way we also get local and global Torelli-type theorems for the moduli spaces of stable pairs considered in [T].

More precisely, if P_{ω} denotes the moduli spaces of pairs of rank 2, degree d, and fixed determinant, stable with respect to the weight $\alpha \in (\max(0, (d/2) - \omega - 1), ((d/2) - \omega))$, we have the following.

THEOREM 1. Let C be a smooth curve of genus $g \ge 3$. Then for all P_{ω} ($\omega \ge 1$), the Weil-Griffiths intermediate Jacobian $J^2(P_{\omega})$ associated to the third cohomology $H^3(P_{\omega}, \mathbb{Z})$, is canonically isomorphic to the Jacobian, J(C), of C. That is, we have an isomorphism

$$J(C) \cong J^2(P_{\omega})$$

of abelian varieties.

THEOREM 2. If C is a smooth curve of genus $g \ge 4$ and if deg $V = d \ge 2g - 2$ for $(V, s) \in P_{\omega}$, then we have

$$h^i(P_{\omega}, \mathcal{T}_{P_{\omega}}) = \begin{cases} 4g - 3 & i = 1\\ 0 & i = 0, 2. \end{cases}$$

Received 25 May 1993. Revision received 13 June 1994.