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Background. Mitochondrial encephalomyopathies are a heterogeneous group of clinical disorders generally caused due to
mutations in either mitochondrial DNA (mtDNA) or nuclear genes encoding oxidative phosphorylation (OXPHOS). We analyzed
the mtDNA sequences from a group of 23 pediatric patients with clinical and morphological features of mitochondrial
encephalopathies and tried to establish a relationship of identified variants with the disease. Methodology/Principle

Findings. Complete mitochondrial genomes were amplified by PCR and sequenced by automated DNA sequencing.
Sequencing data was analyzed by SeqScape software and also confirmed by BLASTn program. Nucleotide sequences were
compared with the revised Cambridge reference sequence (CRS) and sequences present in mitochondrial databases. The data
obtained shows that a number of known and novel mtDNA variants were associated with the disease. Most of the non-
synonymous variants were heteroplasmic (A4136G, A9194G and T11916A) suggesting their possibility of being pathogenic in
nature. Some of the missense variants although homoplasmic were showing changes in highly conserved amino acids (T3394C,
T3866C, and G9804A) and were previously identified with diseased conditions. Similarly, two other variants found in tRNA
genes (G5783A and C8309T) could alter the secondary structure of Cys-tRNA and Lys-tRNA. Most of the variants occurred in
single cases; however, a few occurred in more than one case (e.g. G5783A and A10149T). Conclusions and Significance. The
mtDNA variants identified in this study could be the possible cause of mitochondrial encephalomyopathies with childhood
onset in the patient group. Our study further strengthens the pathogenic score of known variants previously reported as
provisionally pathogenic in mitochondrial diseases. The novel variants found in the present study can be potential candidates
for further investigations to establish the relationship between their incidence and role in expressing the disease phenotype.
This study will be useful in genetic diagnosis and counseling of mitochondrial diseases in India as well as worldwide.
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INTRODUCTION
Mitochondria are keys to many a cellular processes. One of the most

important mechanisms is oxidative phosphorylation (OXPHOS)

resulting in the production of cellular energy in the form of ATP.

The OXPHOS system consists of five multiprotein complexes (I–V)

and two mobile electron carriers (coenzyme Q and cytochrome c)

embedded in the lipid bilayer of the inner mitochondrial membrane

[1,2]. The mitochondrial genome encodes 13 essential polypeptides

of the OXPHOS system and the necessary RNAs machinery (two

ribosomal RNAs and 22 transfer RNAs). The remaining structural

proteins and those involved in import, assembly and mitochondrial

DNA (mtDNA) replication are encoded by the nuclear DNA and are

targeted to the mitochondria.

Disorders of mitochondrial origin are a heterogeneous group of

diseases commonly manifesting in tissues with high-energy demand,

for example, muscle, nerve, and eye. Mutations in respiratory chain

protein subunits encoded by either mitochondrial DNA (mtDNA) or

nuclear DNA are responsible for such diseases [3]. Mutations in

mtDNA are more common than in nuclear DNA because the former

mutates 10–17 times faster than later. The reason for high mutation

rate is the absence of chromatin and histones. Also the continuous

generation of reactive oxygen species (ROS) and the lack of efficient

repairing mechanism further increases the mutation rate [4].

Diagnosis of mitochondrial disorders depends on a combination

of approaches including clinical analysis, measurement of re-

spiratory chain enzyme activities and morphological analysis.

Genetic diagnosis involves the analyses of mutations; mostly those

known as primary mutations (disease associated) of mtDNA.

Pathogenic mtDNA point mutations are present either in tRNA or

in protein coding regions. A number of human genetic diseases of

mitochondrial origin have been elucidated [5,6]. An mtDNA

mutation can inherit maternally or arise sporadically. Most of the

pathogenic mtDNA mutations are heteroplasmic (a mixture of

both mutant and wild type mtDNA in the same cell or tissue) and

the disease manifestations or clinical expression depends on the

ratio of mutant to wild type mtDNA [7]. However, in case of

Leber’s hereditary optic neuropathy (LHON) and non-syndromic

sensoneural hearing loss, the mutations are almost homoplasmic

and only a few cases of heteroplasmy have been observed [8–10].

Recent studies have shown that majority of mutations associated

with mitochondrial diseases remain unidentified occurring either

in mtDNA or nuclear DNA [11]. Mostly the diagnosis is based on
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primary mutations for diseases like LHON, Leigh’s disease,

NARP, MELAS etc. However, in majority of the cases, no

primary mutations are being detected even if the patient has

typical signs of mitochondrial disorder. Recent studies have shown

the role of secondary mutations and involvement of other rare or

novel mtDNA variants in mitochondrial encephalomyopathies

[12–17]. The existence of unique and new variants specific to

particular populations makes the diagnosis more complicated.

Several researchers are analyzing the complete mtDNA

sequences in mitochondrial disorders and have reported a variety

of new variants whose mechanism of involvement in the disease is

not well established. [13–15]. These variants may be found either

in protein coding region, in tRNA or very rarely in rRNA genes

and are considered to be rare or secondary. A few of these variants

have been found in more than one case. Hence, further evidence

of these secondary, rare or novel variants is acceptable and it

becomes necessary to explore more mtDNA sequences in patients

with mitochondrial disorders to establish the relationship of each

variant with the disease.

In the present study, we explored the mtDNA sequences of 23

patients (children) with clinical and morphological features of

typical mitochondrial dysfunction and efforts were made to

establish the relationship of each variant with the disease. Also,

this study is aimed to establish a genetic diagnosis mechanism for

mitochondriopathies particularly relevant to Indian subcontinent

and may also be applicable to other populations.

MATERIALS AND METHODS

Patients and families
A group of 23 pediatric patients clinically diagnosed for

mitochondrial disorders were studied. Out of these, 6 were

diagnosed with Leigh’s syndrome or Leigh’s like syndrome, one with

MELAS and one with chronic progressive external opthalmoplegia

(CPEO). The remaining 15 patients had undefined mitochondrial

myopathies or encephalopathies. All the patients had the classical

clinical features such as stroke like episodes, neuropathy, seizures,

ataxia, optic atrophies, etc. The primary clinical diagnosis was based

on high blood and serum lactate levels following the rules of Berner

et al. 2002 [18]. No histopathology was done because of not getting

the skeletal muscle biopsies due to some ethical issues. The Magnetic

Resonance Imaging (MRI) findings were also taken into consider-

ation. Detailed laboratory findings are shown in table 1. Respiratory

chain enzyme analysis was done for 14 patients using either primary

lymphocytes or established lymphoblast cell lines (Table 2). Majority

of the subjects were below the age of 10 years except patient 8 and

patient 9 whose ages were 12 and 19 years respectively.

The present study was conducted in accordance with the

Helsinki Declaration of 1975, as revised in 2000. Blood samples

were collected by the expert physicians of three major hospitals in

India (namely KEM hospital, Mumbai, Wadia Hospital for

children, Mumbai and P.D. Hinduja hospital, Mumbai). A written

consent was obtained from parents of all patients included in the

study. It is to be noticed that there were no familial relations

among the 23 pediatric patients studied.

Cells
In majority of the patients, primary lymphocytes isolated by Ficoll-

Hypaque gradients were used for respiratory chain enzyme (RCE)

analysis. However, in 6 patients due to less sample volume available,

RCE was performed with lymphoblast cell lines established using

Epstein bar virus (EBV) transformation. The cells were maintained

in RPMI 1640 medium (Gibco BRL) supplemented with 10% (v/v)

heat inactivated fetal bovine serum (Gibco BRL).

Respiratory Chain enzyme analysis and Rotenone

sensitivity
Activities of respiratory chain enzymes viz., NADH dehydroge-

nase (Complex I), Succinate dehydrogenase (Complex II),

Succinate cytochrome C reductase (Complex II+III), and

ubiquinol Ferricytochrome C oxidoreductase (Complex III) were

determined spectrophotometrically using methods of Trounce et.

al [19]. The cytochrome C oxidase (Complex IV) activity was

determined by using cytochrome C oxidase kit (Sigma, USA) as

per manufacture’s instructions. Mitochondrial complex I activity

was taken as the rate sensitive to rotenone inhibition (10 mM).

Results were expressed as citrate synthase ratios to correct for any

differences in sample preparation. For each assay, results are

interpreted as the mean of three independent experiments.

Extraction and PCR amplification of DNA
Total genomic DNA was extracted from the blood using DNeasy

tissue kit (Qiagen, Germany). The entire mitochondrial genome was

amplified in 1–3 kb overlapping fragments using a subset of 24

primer pairs as described earlier [20]. The PCR reaction mixture

consisted of 16 reaction buffer, 2 mM of primers, and 125 mM of

dNTPs, 0.1 mg of template DNA and 1 unit of AmpliTaq gold DNA

polymerase (Applied Biosystems, USA). The standardized PCR

conditions were: initial denaturation at 95uC for 2 minutes, 35 cycles

Table 1. Laboratory findings of children with mitochondrial
disease.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Disorder Patients
Age
(years)

CSF lactate
(mg/dl)

Blood Lactate
(mg/dl)

Encephalopathy P1 7 28.8 ND

P3 0.3 22.0 ND

P4 7 ND 26.2

P10 4 ND 26.2

P11 6 14 16.7

P12 1 47.4 ND

P15 0.6 High ND

P17 9.5 18.7 20.2

P19 2.5 17.1 29.8

P20 3 20 ND

P23 1.8 High ND

Leigh’s disease P2 2.5 46.7 47.5

P5 0.7 18.25 ND

P6 4 36.1 ND

P14 1 Normal ND

P18 1 39.4 ND

P22 7 26.2 ND

Mitochondrial cytopathy P7 1.8 High ND

P13 7 26.2 31.0

P16 2 ND ND

P21 7 29 ND

CPEO P8 19 15 ND

MELAS P9 12 26 27

ND = not determined, CSF = cerebrospinal fluid; CPEO = chronic progressive
external opthalmoplagia, MELAS = Mitochondrial encephalopathy lactic acidosis
and stroke like episodes. Normal range for CSF and Blood lactate is 10.8-
18.9 mg/dl.
doi:10.1371/journal.pone.0000942.t001..
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of denaturation at 94uC for 45 seconds, annealing at 60uC for

45 seconds, extension at 72uC for 90 seconds and a final extension at

72uC for 10 min. mtDNA was amplified by 22 overlapping PCR

fragments of 800 base pairs to .1 kb. To detect the amplified DNA,

10 ml of PCR product was electrophoresed on a 1% agarose gel and

visualized by ethidium bromide staining. The use of large PCR

products excluded the possibility that nuclear pseudogenes present

will complicate the analysis [21]. The presence of deletions was

excluded by long-range PCR (Expand Long PCR, Roche,

Germany) in the blood DNA.

DNA sequencing and Variant identification
Excess primers and dNTPs were removed from the PCR amplified

DNA fragments using 0.5 unit of shrimp alkaline phosphatase

(Amersham pharamacia, USA) and 2 units of Exonuclease I

(Amersham). The fragments were then cycle sequenced using

Bigdye terminator cycle sequencing kit with a thermostable

thermsequenase II DNA Polymerase. The products were pre-

cipitated using salt/ethanol to remove all unincorporated dye

labeled terminators, and the pellet was diluted in formamide

loading dye and analyzed with an ABI 3730 sequencing

Table 2. Activities of oxidative phosphorylation enzyme complexes in patient and control lymphoblast cell lines.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Enzyme Complexes

Patient I II II+III III IV CS

Patient 1 9.7* 14 24.33 62.91 333.7 319.43

Patient 2 20.2865.55* 12.7862.84 22.8464.08 56.84 612.35 227.9635.48 289.8768.54

Patient 3 28.4 14.1 24.85 59.91 188.7* 293.09

Patient 4 24.5665.74* 12.9861.36 21.2462.55 70.57614.0 372.34644.88 325.50612.0

Patient 5 12.3* 12.77 23.0 63.10 362.1 328.77

Patient 6 13.8464.36* 12.7861.64 39.7266.8 62.78629.89 299.76 51** 292.62 633.84

Patient 7 12.84* 13.0 25.00 35.10* 228.4 322.01

Patient 9 8.5* 12.33 23.10 52.33 140.4** 330.41

Patient 10 12.8462.0** 13.3661.36 24.9264.08 64.19612.28 414.00653.13 317.31613.0

Patient 12 34.0 11.97 23.98 56.10 247.1 299.80

Patient 13 10.3* 13.75 24.87 39.13* 235.3 311.23

Patient 14 36.0 13.36 25.50 59.10 340.8 301.43

Patient 19 8.23* 12.47 26.00 65.10 351.2 318.09

Controls (n = 3) 48.4065.23 12.8862.42 25.1664.30 64.4068.86 379.59646.81 276.15615.5

Mitochondrial complex I activity was taken as the one that is rotenone sensitive. Specific enzyme activities shown as nmol/min/mg protein. I; NADH-DB oxidoreductase,
II; Succinate-DB oxidoreductase, II+III; Succinate Cytochrome C reductase, IV; Cytochrome C oxidase, CS; Citrate synthase. ** and * indicate P values that are stastically
significant (p,0. 05 and p,0.005). SD6 was calculated for only five cell lines.
doi:10.1371/journal.pone.0000942.t002..
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Figure 1. Ethidium Bromide stained polyacrylamide gels of PCR amplified products encompassing heteroplasmic variants G4812C, A4136G,
A9194G, A10149T and T11916A analyzed by PCR-RFLP in patients and their respective mothers. Mutation G4812C causes a loss of Dde I site and
hence shows a single band after digestion whereas wild type fragment shows 2 bands (bp). Variant A4136G creates an Nla III site and after digestion
results in two bands of 43 bp and 107 bp. The heteroplasmic mutation has three bands (43 bp, 107 bp and 150 bp) as shown. Similarly other variants
e.g. A9194G (creates Hha I site), A10149T (creates Dde I site) and T11916A (creates Rsa I site) and all result in 3 bands after digestion and separation on
12% PAGE. The homoplasmic mutations should yield only 2 bands lacking the wildtype band after separation on PAGE.
doi:10.1371/journal.pone.0000942.g001
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instrument (Applied Biosystems, USA). Both forward and reverse

primers were used for sequencing.

Sequence data was analyzed for mutations by ABI software

(SeqScape version 2.1) and also confirmed by BLASTn program.

All the nucleotide sequences were compared with the revised

Cambridge reference sequence (CRS) [22] and with those present

in two mitochondrial databases; MITOMAP (http://www.mito-

map.org) and Human mitochondrial genome database (http://

www.genpat.uu.se/mtDB). When the genomic change was located

in an encoding region, we used the Mitoanalyzer programme

(http://www.cstl.nist) to determine whether the mutation trig-

gered any amino acid change in the polypeptide sequence. All the

identified variants were also tested in patient’s mothers to find out

whether they are maternally inherited or are of de novo origin.

Analysis of heteroplasmy
We considered heteroplasmic variants as those producing double

peaks in the electropherograms. All heteroplasmic variants present

in protein coding regions, were further confirmed by PCR/RFLP

(restriction fragment length polymorphism) analysis. RFLP was

performed for only those variants that do create a restriction site.

However, some variants did not create any restriction site; hence

heteroplasmy for such variants was considered on the basis of

double peaks in the sequence electropherograms. For RFLP,

amplified DNA was digested in a 50-ml-reaction volume with 5U

of restriction enzyme. The mixture was incubated at 37uC for

3 hr, electrophoresed on a 12% Polyacrylamide gel (PAGE) in 26
Tris acetate buffer (TAE) buffer and visualized with ethidium

bromide staining (Fig. 1). Enzyme digestion analysis was applied to

patients and their respective maternal relatives. Densitometry was

used to calculate the amount of wild type and mutated DNA.

Bioinformatics analysis
To understand the consequences of these mutations upon the

structure and interaction of protein subunits, we plotted the

hydropathy indices for a moving 9-residue window for both the

wild type and mutant polypeptides using Kyte-Doolittle hydrop-

athy plot analysis (http://www.gcat.davidson.edu/rankarin/kyte-

doolittle.htm) [23]. Kyte-Doolittle plot predicts the possible

structure of a protein. Further, the membrane-spanning regions

of these proteins were predicted from the SPLIT 4.0 server

(http://split.pmfst.hr/split/4/). The purpose of this server is to

predict the trasmembrane (TM) secondary structures of mem-

brane proteins using the method of preference functions.

Table 3. Novel and known mtDNA substitutions in patients with mitochondrial encephalomyopathies.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Patient Mutation Gene affected Amino acid change Disease association MITOMAP/mtDB Status

P1 T4216C ND1 Tyrosine-Histidine LHON P. M

G4812C ND2 Valine-Leucine Novel Not known

P2 T11916A * ND4 Phenylalanine-Tyrosine Novel Not known

P3 T4216C ND1 Tyrosine-Histidine Known P. M

P4 T3866C ND1 Isoleucine-Threonine LHON P. M

P5 2074 del-A 16SrRNA Not applicable Novel Not known

A10149T ND3 Methionine-Valine Novel Not known

P6 C4640A ND2 Isoleucine-Methionine LHON Provisional

G15812A Cytochrome b Valine-methionine LHON Secondary

15943 del –T tRNA threonine Not applicable Novel Not known

P7 G5783A * tRNA cysteine Not applicable Myopathy; Deafness Provisional

P8 A10149T * ND3 Methionine-leucine Novel Not known

P9 A3243G * tRNA leucine Not applicable MELAS Confirmed pathogenic

P10 T3394C ND1 Tyrosine-Histidine LHON/NIDDM Unclear

P12 G3736A ND1 Valine-Isoleucine Novel Not known

C8309T* tRNA lysine Not applicable Novel Not Known

P13 G5783A * tRNA Cysteine Not applicable Myopathy; Deafness Provisional

P14 A9194G* ATPase 6 histidine-Aspargine Novel Not known

P16 T654G 12S rRNA Not applicable Novel Not known

T2248C 16S rRNA Not applicable Novel Not known

A15924G tRNA threonine Not applicable LIMM P. M

P17 G9804A COX III Alanine-threonine LHON Provisional

P18 A4704T ND2 Methionine-Leucine Novel Not known

P19 A4136G* ND1 Tyrosine-Cysteine LHON Provisional

P22 G5783A* tRNA cysteine Not applicable Myopathy; Deafness Provisional

G7269A COX I Valine-methionine Novel Not known

P23 T8424C ATPase 8 leucine-proline Novel Not known

Asterisks (*) indicate the variants that are heteroplasmic. ND1, ND2, ND3, ND4 and ND5 are subunits of NADH dehydrogenase (Complex-I). COX-I and COX-III are the
subunits of Cytochrome C oxidase (Complex-IV), AD/PD is Alzeimer’s Disease and Parkinsons’s Disease. Provisional status indicates that only one group has reported the
mutation as pathologic. P.M. (point mutation / polymorphism) status indicates that some published reports have determined the mutation to be a non-pathogenic
polymorphism. mtDB is Human Mitochondrial genome database (http://www.genpat.uu.se/mtDB).
doi:10.1371/journal.pone.0000942.t003..
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Secondary structures of tRNAs were accessed by using the

RNA2 programme at the following website: http://www.genebee.

msu.su/services/rna2_reduced.html.

RESULTS
We sequenced the mitochondrial genomes of 23 patients with

probable encephalopathy and identified a total of 27 significant

variants or mutations. Out of these, 12 are novel mutations and

remaining 15 are already known mutations associated with

mitochondrial diseases (Table 3). Those variants, which do not

cause any amino acid change and already reported as polymorph-

isms in databases, were not considered to be significant and were

excluded from further analysis (data not shown). The site of these

mutations are as follows: 16 in the protein coding regions (out of

which 12 are present in subunits of mitochondrial complex-I genes),

3 in ribosomal RNA, 3 in tRNA coding genes, 2 in complex IV, 1 in

cytochrome b and 2 in complex-V genes (ATP synthase). Only one

primary disease associated tRNA mutation A3243G was observed in

a MELAS patient. Most of the mutations were specifically present in

only one case, except G5783A, T4216C and A10149T. Variant

G5783A was found in three patients (P7, P13, and P22), whereas

variant T4216C (P1 and P3) and variant T10149A (P5 and P8) were

found in two cases each. None of the novel variants were found in

any of the 105 control mtDNA sequences from Indian population

(http://www.mitomap.org and www.genpat.use/mtDB). A few of

the known variants viz., T3394C, T3866C, A4136G, T4216C,

C4640A, G5460A, G5783A and G9804A (Table 3) were found to be

associated with the disease earlier (MITOMAP). Amongst these,

variants T3394C, T3866C, A4136G, T4216C and G9804A [in

COX III subunit] are considered to be secondary in Leber’s

hereditary optic neuropathy (LHON) [12,24–26]. Patients harboring

variants A4136G, C4640A, and G9804A did not have LHON but

other clinical symptoms of mitochondrial disease were evident. The

visual acuity of these patients was not affected. Variant T3866C

caused extended imbalance in hydrophobicity of mutant ND1

peptide generated with the Kyte-Doolittle algorithm (as evident from

its hydropathy plot). This substitution not only substantially reduced

the hydrophobicity of extramatrix coil but also influenced the

contiguous intra membrane helical domain (Fig. 2). The hydropathy

plot was not significantly altered by other variants (data not shown).

Variant T4216C occurred to a considerable extent in controls

and there are evidences of association of this with LHON (https://

www.mitomap.org), however its pathogenicity is not established

and there are many controversies. Other homoplasmic variants

(e.g. G3736A, A4704T, and G7269A) even though novel did not

fulfill all the pathogenicity criteria (not present in MITOMAP and

Human mitochondrial genome databases (www.genpat.uu.se/

mtDB)). Hence, these might not be significant in terms of

pathogenicity and were classified as polymorphisms.

In the present study, some of the variants occurred either singly

or in association with other known or novel variants in protein

coding or tRNA genes (Table 3). In certain cases, more than one

secondary pathogenic variant was found in a single patient (For

example, P6 harboring 3 provisionally pathogenic variants:

C4640A, G15812A and novel 15943del-T). This typical combi-

nation of mtDNA variants (two of them associated with

mitochondrial disorders earlier) found in P6 was not found in

any of the control mtDNA sequences. This explains that

Figure 2. Kyte-Doolittle Hydropathy Plot of wild type and mutated NADH Dehydrogenase Subunits (ND1). Mutation T3866C (Isoleucine-Valine)
showing a significant decrease in hydrophobicity at amino acid position 187 in the ND1 protein. SPLIT 4.0 plots predicting Tran membrane regions
and alterations in them due to mutation T3866C. Black line is indicative of wild type whereas red line indicates the mutated polypeptide.
doi:10.1371/journal.pone.0000942.g002
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mitochondrial disease can occur due to more than one variant in

the mitochondrial genome and may produce a typical clinical

phenotype that complicates the diagnosis.

We also observed six heteroplasmic variants viz., G5783A in

three cases (P7, P13 and P22), C8309T in one case (P12), G4136A

in one case (P19) and T10149A in two cases (P5 and P8). The

novel variants T11916A (P2) and A9194G (P14) were found singly.

We performed PCR-RFLP analysis for most of the heteroplasmic

nucleotide changes (Fig. 1). Unfortunately, due to very less amount

of DNA available, we could not estimate the accurate percentage

of heteroplasmy by densitometry to repeat the digestion of DNA.

Out of these heteroplasmic variants, mutation G5783A in Cys-

tRNA and A4136G (TyrRCys) are already listed in the

MITOMAP. The former being reported from patients with

encephalomyopathy and cardiomyopathy [15] and the latter from

LHON cases [27]. However, in our study, the patient (P19)

harboring A4136G variant did not have LHON but had typical

symptoms of mitochondrial disease with brain involvement.

Another heteroplasmic variant T10149A was found associated

with two cases (Table 3, Fig. 1).

Two novel variants were observed in ATPase subunits, one

heteroplasmic A9194G in ATP6 (P14) and other homoplasmic

T8424C in ATP 8 subunit (P23). The novel tRNA mutation

C8309T found in one case (P12) alters the structure of tRNA

lysine to a higher extent (Fig. 3). The mutation A9194G changes

highly conserved histidine residue to arginine and mutation

T8424C changes a conserved leucine to proline (Fig. 4).

All the variants reported in present study were maternally

inherited because they were also detected in the mtDNA of their

respective mothers. The mothers were asymptomatic and do not

express the disease phenotype. However, in some cases (n = 6), the

other family members or siblings were also showing the disease

symptoms. Moreover, the variants were not located in the

pseudogenes of the nuclear genome because the primers used for

PCR reaction did not amplify the nuclear product when the DNA

from rho zero cells (kindly provided by Dr. Taylor, New Castle,

UK) were used.

DISCUSSION
Complete mitochondrial genome sequencing of patients with

childhood encephalopathies allowed us to detect mtDNA variants

that can be associated with the disease. We located heteroplasmic

mutations in the tRNA genes of five children, one of which is novel

C8309T in Lys-tRNA and the other in Cys-tRNA (G5783A) in

three patients. One patient had the common MELAS mutation

(A3243G). In addition, we found several mutations (A4136G,

C4640A, T3394C, G9804A, A9194G) in protein coding region

that have been previously reported from LHON and related

disorders.

We believe that the mutations A4136G, A9194G and T11916A

are the cause of encephalopathy in the patients P18, P2 and P14

respectively. A complex-I deficiency was evident in patients

harboring A4136G and T11916A variants (Table 2). These three

mutations were absent in 105 healthy control sequences.

Alignment of ND1, ND3 and ATPase 6 sequences from various

species revealed highly conserved nature of tyrosine; phenylala-

nine and histidine at these positions in all mammals and other

eukaryotes (Fig. 4). Furthermore, these mutations were hetero-

plasmic in blood which is typical characteristic of pathogenic

mutations in mtDNA. The heteroplasmy levels were clear from the

RFLP patterns (Fig. 1). The higher percentage of mutant DNA in

Figure 3. Changes in the secondary structure of tRNA lysine caused by variant C8309T identified in Patient-13. The free energy of the cloverleaf
structure is significantly increased in the mutated tRNA lysine.
doi:10.1371/journal.pone.0000942.g003
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the proband might explain the severity of clinical phenotypes.

However, the pathogenic relevance of variant A10149T is difficult to

establish because it is satisfying only a few criteria of pathogenicity

such as heteroplasmic nature in blood, a change in moderately-

conserved methionine to leucine in ND4 subunit of complex-I

(Fig. 4), and is absent in controls. On the other hand, it did not

segregate with the clinical phenotype because it occurred in two

patients with different clinical findings and its association with rRNA

deletion (in P3) or tRNA variant (in P9) might be modulating the

phenotype of these two patients. Therefore, A10149T can be

classified as a variation of unknown pathogenic relevance. However,

our present analysis showed that it does not belong to the common

polymorphisms associated with Indian populations [28,29].

The pathogenic relevance of some homoplasmic variants

(T3394C, T3866C, C4640A and G9804A) is also unclear. The

patients harboring these mutations did not have LHON but had

symptoms of typical childhood encephalopathies. The significance

of homoplasmic variations in mtDNA remains uncertain, though

several homoplasmic mutations have been implied in disease

processes. The high degree of polymorphic variability is a major

disadvantage in assessing the pathogenicity of a new base change.

In addition, polymorphisms might be relatively rare and might co-

segregate with disease, confounding identification of the patho-

genic mutation. There are exceptions to the rules of classical

pathogenic mtDNA mutations, which are defined as a category of

human, maternally inherited disorders characterized by a homo-

plasmic mtDNA pathogenic mutation with variable penetration

and stereotypic clinical expression. These disorders include

LHON, mitochondrial non-syndromic sensorineural hearing loss,

and a form of mitochondrial hypertrophic cardiomyopathy [8].

Recently, a non-synonymous homoplasmic mitochondrial DNA

mutation was reported to be associated with severe COX

deficiency, multiple neonatal deaths and Leigh’s syndrome [30].

Homoplasmic mitochondrial tRNA variants are considerably

under-estimated as a cause of mitochondrial disorders, and they

may indeed play a greater role in the development of

cardiomyopathy than previously reported [31]. Further analysis

of more patients will be helpful to prove the association of

Figure 4. Evolutionary conservation of novel and known amino acid changes in the studied patients. The mtDNA sequences for ND1, ND2, ND3,
ND4, COX 3, ATPase 6 and ATPase 8 protein subunits of different mammalian species were converted to protein sequence by Gene Runner software.
The amino acid sequences were aligned by Clustal6programme. Accession numbers for the mtDNA sequences used for alignment are: Human
(NC_001807), Gorilla (NC_001645), Chimpanzee (NC_001643), Orangutan (NC_001646), Bovine (NC_006853), Dog (NC_002008), Pig (NC_000845), Rat
(NC_001665), and Mouse (NC_005089).
doi:10.1371/journal.pone.0000942.g004
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T3394C, T3866C, C4640A and G9804A mutations/polymorph-

isms with mitochondrial diseases. However, the complex I defect

in such patients can be possibly because of some unknown

mutations in nuclear genes encoding OXPHOS proteins and

assembly factors.

Interestingly, we found three tRNA mutations (A3243G,

G5783A and C8309T) in 5 out of 23 patients i.e. 21.7% of

studied patient group out of which G5783A was present in 3

patients (13.07% of patient group). Thus, it can be confirmed that

this mutation is a potential pathogenic mutation. Our results are in

agreement with earlier studies which showed mitochondrial tRNA

mutations in 18% of encephalomyopathic cases [32].

Given the clinical features and the absence of mtDNA deletions

in the above studied patients, the novel as well as known disease

associated mtDNA variants which we have identified may well

play a direct or indirect role in causing the disease. Two or more

variants in the same patient might also have a role in explaining

the diversity of clinical phenotypes. In addition, we found many

other known polymorphisms which were non-significant and non-

pathogenic so were excluded from our analysis. Some of these

variants define Indian population specific haplogroup (e.g.

A10398G, C10400T) found in 80% of the controls and other

mutations (A8860G, A8701G, A4769G, A1438G, A15326G,

C7028T, C12705T) were found in nearly 50% of the control

mtDNA sequences. However, a different genetic mitochondrial

background can further determine the phenotype or as previously

known that environmental factors could interact with genetic factors

(mitochondrial or nuclear or both) amplifying their effect [33,34].

In conclusion, complete mitochondrial genome sequencing

allowed us to detect both novel and already known variants in

children who presented with unexplained encephalopathy and

combination of neuromuscular/non-neuromuscular defects with

OXPHOS defects. The known mutations identified in this study

were already described in association with diseases in one or more

cases. Hence, our study further strengthens their involvement in

disease and potential pathogenicity which could be correlated in

future with diagnosis of the mitochondrial diseases. The novel

variants found in present study can be potential candidates for

further studies to establish the relationship between their incidence

and their role in determining disease. However, we were left with 7

children who did not have any pathogenic (confirmed, provisional

or disease-associated polymorphisms) mutations in mtDNA,

suggesting that the likelihood of nuclear gene mutations in

children with a mitochondrial encephalopathy may be even

higher than that of mtDNA mutations. Hence, the effect of nuclear

genetic factors or nuclear genes encoding mitochondrial proteins

cannot be ignored.

ACKNOWLEDGMENTS
The authors thank Dr. Rajesh Udani (P. D. Hinduja Hospital, Mumbai,

India) and Dr. Shilpa Kamat (Wadia hospital for Children, Mumbai) and

Dr. Mamta Muranjan (King Edwards Memorial Hospital, Mumbai) for

providing the patient samples. We are grateful to patients and their families

for their participation in this study. We thank Mali A and Sarang Satoor

for technical help.

Author Contributions

Conceived and designed the experiments: AW SB. Performed the

experiments: AW SA NH. Analyzed the data: AR AW. Contributed

reagents/materials/analysis tools: YS MP CS SB. Wrote the paper: AW.

REFERENCES
1. Janssen RJ, van den Heuvel LP, Smeitink JA (2004) Genetic defects in the

oxidative phosphorylation (OXPHOS) system. Expert Rev Mol Diagn 4:

143–156.

2. Smeitink J, van den Heuvel L, DiMauro S (2001) The genetics and pathology of

oxidative phosphorylation. Nat Rev Genet 2: 342–352.

3. Shoffner JM, Bialer MG, Pavlakis SG, Lott M, Kaufman A, et al. (1995)
Mitochondrial encephalomyopathy associated with a single nucleotide pair

deletion in the mitochondrial tRNALeu (UUR) gene. Neurology 45: 286–292.

4. Martorell L, Segues T, Folch G, Valero J, Joven J, et al. (2006) New variants in

the mitochondrial genomes of schizophrenic patients. Eur J Hum Genet 14:

520–528.

5. Simon DK, Johns DR (1999) Mitochondrial disorders: clinical and genetic

features. Annu Rev Med 50: 111–127.

6. DiMauro S, Andreu AL (2000) Mutations in mtDNA: are we scraping the
bottom of the barrel? Brain Pathol 10: 431–441.

7. DiMauro S, Moraes CT (1993) Mitochondrial encephalomyopathies. Arch
Neurol 50: 1197–1208.

8. Carelli V, Giordano C, d’Amati G (2003) Pathogenic expression of homoplasmic

mtDNA mutations needs a complex nuclear-mitochondrial interaction. Trends
Genet 19: 257–262.

9. Hutchin TP, Cortopassi GA (2000) Mitochondrial defects and hearing loss. Cell

Mol Life Sci 57: 1927–1937.

10. Zhadanov SI, Atamanov VV, Zhadanov NI, Oleinikov OV, Osipova LP, et al.

(2005) A novel mtDNA ND6 gene mutation associated with LHON in
a Caucasian family. Biochem Biophys Res Commun 15: 1115–1121.

11. Liang MH, Wong LJ (1998) Yield of mtDNA mutation analysis in 2,000

patients. Am J Med Genet 5: 395–400.

12. Abu-Amero KK, Bosley TM (2006) Mitochondrial abnormalities in patients

with LHON-like optic neuropathies. Invest Ophthalmol Vis Sci 47: 4211–4220.

13. Sarzi E, Brown MD, Lebon S, Chretien D, Munnich A, et al. (2007) A novel
recurrent mitochondrial DNA mutation in ND3 gene is associated with isolated

complex I deficiency causing Leigh syndrome and dystonia. Am J Med Genet A
143: 33–41.

14. Da Pozzo P, Cardaioli E, Radi E, Federico A (2004) Sequence analysis of the

complete mitochondrial genome in patients with mitochondrial encephaloneur-
omyopathies lacking the common pathogenic DNA mutations. Biochem Biophys

Res Commun 324: 360–364.

15. Feigenbaum A, Bai RK, Doherty ES, Kwon H, Tan D, et al. (2006) Novel

mitochondrial DNA mutations associated with myopathy, cardiomyopathy,

renal failure, and deafness. Am J Med Genet A 140: 2216–2222.

16. Pereira C, Nogueira C, Barbot C, Tessa A, Soares C, et al. (2007) Identification
of a new mtDNA mutation (14724G.A) associated with mitochondrial

leukoencephalopathy. Biochem Biophys Res Commun 354: 937–941.

17. Fauser S, Luberichs J, Besch D, Leo-Kottler B (2002) Sequence analysis of the
complete mitochondrial genome in patients with Leber’s hereditary optic

neuropathy lacking the three most common pathogenic DNA mutations.
Biochem Biophys Res Commun 295: 342–347.

18. Bernier FP, Boneh A, Dennett X, Chow CW, Cleary MA, et al. (2002)
Diagnostic criteria for respiratory chain disorders in adults and children.

Neurology 59: 1406–1411.

19. Trounce IA, Kim YL, Jun AS, Wallace DC (1996) Assesssment of mitochondrial

oxidative phosphorylation in patient muscle biopsies, lymphoblasts and

transmitochondrial cell lines, Methods Enzymol. 264: 484–509.

20. Rieder MJ, Taylor SL, Tobe VO, Nickerson DA (1998) Automating the

identification of DNA variations using quality-based fluorescence re-sequencing:
analysis of the human mitochondrial genome. Nucleic Acids Res 26: 967–973.

21. Parfait B, Rustin P, Munnich A, Rotig A (1998) Co-amplification of nuclear
pseudogenes and assessment of heteroplasmy of mitochondrial DNA mutations.

Biochem Biophys Res Commun 247: 57–59.

22. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, et al.

(1999) Reanalysis and revision of the Cambridge reference sequence for human

mitochondrial DNA. Nat Genet 23: 147.

23. Kyte, Jack, Doolittle, Russell F (1982) A Simple Method for Displaying the

Hydropathic Character of a Protein. J Mol Biol 157: 105–132.

24. Brown MD, Torroni A, Reckord CL, Wallace DC (1995) Phylogenetic analysis

of Leber’s hereditary optic neuropathy mitochondrial DNA’s indicates multiple
independent occurrences of the common mutations. Hum Mutat 6: 311–325.

25. Brown MD, Voljavec AS, Lott MT, Torroni A, Yang CC, et al. (1992)
Mitochondrial DNA complex I and III mutations associated with Leber’s

hereditary optic neuropathy. Genetics 130: 163–173.

26. Matsumoto M, Hayasaka S, Kadoi C, Hotta Y, Fujiki K, et al. (1999) Secondary

mutations of mitochondrial DNA in Japanese patients with Leber’s hereditary

optic neuropathy. Ophthalmic Genet 20: 153–160.

27. Howell N, Kubacka I, Xu M, McCullough DA (1991) Leber hereditary optic

neuropathy: involvement of the mitochondrial ND1 gene and evidence for an
intragenic suppressor mutation. Am J Hum Genet 48: 935–942.

28. Palanichamy MG, Sun C, Agrawal S, Bandelt HJ, Kong QP, et al. (2004)
Phylogeny of mitochondrial DNA macrohaplogroup N in India based on

complete sequencing: implications for the peopling of South Asia. Am J Hum

Genet 75: 966–978.

Childhood Encephalomyopathies

PLoS ONE | www.plosone.org 8 September 2007 | Issue 9 | e942



29. Rajkumar R, Banerjee J, Gunturi HB, Trivedi R, Kashyap VK (2005)

Phylogeny and antiquity of M macrohaplogroup inferred from complete mt
DNA sequence of Indian specific lineages. BMC Evol Biol 5: 26.

30. McFarland R, Clark KM, Morris AA, Taylor RW, Macphail S, et al. (2002)

Multiple neonatal deaths due to a homoplasmic mitochondrial DNA mutation.
Nat Genet 30: 145–146.

31. Taylor RW, Giordano C, Davidson MM, d’Amati G, Bain H, et al. (2003) A
homoplasmic mitochondrial transfer ribonucleic acid mutation as a cause of

maternally inherited hypertrophic cardiomyopathy. J Am Coll Cardiol 41:

1786–1796.
32. Uusimaa J, Finnila S, Remes AM, Rantala H, Vainionpaa L, et al. (2004)

Molecular epidemiology of childhood mitochondrial encephalomyopathies in

a Finnish population: sequence analysis of entire mtDNA of 17 children reveals

heteroplasmic mutations in tRNAArg, tRNAGlu, and tRNALeu(UUR) genes.

Pediatrics 114: 443–450.

33. Marchington DR, Poulton J, Sellar A, Holt IJ (1996) Do sequence variants in the

major non-coding region of the mitochondrial genome influence mitochondrial

mutations associated with disease? Hum Mol Genet 5: 473–479.

34. Kovalenko SA, Tanaka M, Yoneda M, Iakovlev AF, Ozawa T (1996)

Accumulation of somatic nucleotide substitutions in mitochondrial DNA

associated with the 3243 A to G tRNA(leu)(UUR) mutation in encephalomyo-

pathy and cardiomyopathy. Biochem Biophys Res Commun 222: 201–207.

Childhood Encephalomyopathies

PLoS ONE | www.plosone.org 9 September 2007 | Issue 9 | e942


