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Abstract

The diversity of functions carried out by EF hand-containing calcium-binding proteins is due to various interactions made by
these proteins as well as the range of affinity levels for Ca2+ displayed by them. However, accurate methods are not
available for prediction of binding affinities. Here, amino acid patterns of canonical EF hand sequences obtained from
available crystal structures were used to develop a classifier that distinguishes Ca2+-binding loops and non Ca2+-binding
regions with 100% accuracy. To investigate further, we performed a proteome-wide prediction for E. histolytica, and
classified known EF-hand proteins. We compared our results with published methods on the E. histolytica proteome scan,
and demonstrated our method to be more specific and accurate for predicting potential canonical Ca2+-binding loops.
Furthermore, we annotated canonical EF-hand motifs and classified them based on their Ca2+-binding affinities using
support vector machines. Using a novel method generated from position-specific scoring metrics and then tested against
three different experimentally derived EF-hand-motif datasets, predictions of Ca2+-binding affinities were between 87 and
90% accurate. Our results show that the tool described here is capable of predicting Ca2+-binding affinity constants of EF-
hand proteins. The web server is freely available at http://202.41.10.46/calb/index.html.
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Introduction

Calcium signaling plays a major role in controlling most

biological systems and many cellular functions, such as fertiliza-

tion, motility, cell differentiation, proliferation and apoptosis,

which are directly or indirectly regulated by Ca2+ [1–3]. In

eukaryotes, there are elaborate mechanisms that are involved in

maintaining Ca2+ homeostasis [4]. A defect in any of the

components of the Ca2+ homeostasis/signaling system may have

disastrous consequences including cell death. Recently many

Ca2+-binding proteins have also been identified in bacteria and

viruses, raising the possibility that the prokaryotes may also have a

Ca2+ regulatory system, particularly in relation to host-pathogen

interactions [5,6].

Ca2+ is bound by a variety of proteins that are capable of

binding with different affinities [7–9]. Such calcium binding

proteins (CaBPs) can be classified into two categories, Ca2+ sensors

and buffers. The major function of the first category of CaBPs is to

sense the level of free intracellular Ca2+and then to activate a

suitable signaling pathway [10].

In general, CaBPs contain two well-defined Ca2+-binding

motifs: the EF hand and C2 domains [11]. The EF-hand motif

is the most frequently occurring Ca2+-binding motif in eukaryotic

systems [12]. There are more than 66 subfamilies [13] of EF–hand

proteins and 3000 EF-hand related entries in the NCBI Data Bank

[14]. An EF hand is composed of a typical helix-loop-helix

structural unit. This group is the largest and includes well-known

members, such as calmodulin, troponin C and S100B. These

proteins typically undergo a calcium-dependent conformational

change which opens a target binding site [13]. Proteins, such as

calbindin D9k do not undergo calcium-dependent conformational

changes [15–17].

EF-hand motifs are divided into two major structural groups: the

canonical EF-hands as seen in calmodulin (CaM) and the

prokaryotic CaM-like protein calerythrin, and the pseudo EF hands

exclusively found in the N-termini of S100 and S100-like proteins

[18]. In either structural group, a pair of EF-hand motifs or pseudo

EF-hand motifs forms a structural domain and is the minimum

requirement for Ca2+-dependent activation. In general, one of the

EF-hand motifs has a higher Ca2+-binding affinity than the other.

The canonical Ca2+-binding loop is characterized by a sequence of

12 amino acid residues. In an EF-hand loop the calcium ion is

coordinated in a pentagonal bipyramidal configuration. The six

residues involved in the binding are in positions 1, 3, 5, 7, 9 and 12;

these residues are denoted by X, Y, Z, -Y, -X and -Z.

In general, affinity constants of EF-hand domains for Ca2+ vary

from micromolar to millimolar, reflecting the diversity of functions

carried out by these proteins in a range of Ca2+ concentrations.

There is an increase in stability and change in conformation upon

binding Ca2+. Several residues found in an EF-hand loop are

highly conserved and contribute to the stabilization and proper

folding of the binding site. Factors such as biological environment

as well as the binding sequence have been shown to contribute to

the calcium-binding affinity of these proteins [18–21].
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A number of algorithms have been developed to computation-

ally identify EF hand-containing CaBPs and Ca2+-binding regions,

including statistical, machine learning and pattern search

approaches [22–24]. Recently, Franke et al. (2010) [24]proposed

a method to estimate Ca2+-binding affinity based on free energy

calculations using crystal structures of CaBPs. However, this

method has limited use due to unavailability of crystal structures in

complex with calcium for large number of CaBPs. Moreover, no

suitable method is available for the prediction of Ca2+-binding

affinity from primary sequence information. There was an early

attempt by Boguta et al (1988) [25] to estimate the binding affinity

of calcium for troponin C (TnC) superfamily proteins based on the

prediction of secondary structures. The results were convincing for

some proteins which follow a typical TnC pattern [25] but not for

any other protein family. Since it is not always possible to

experimentally determine Ca2+-binding properties of EF hand-

containing calcium-binding proteins, it is necessary to be able to

predict this property from primary sequence. In this report we

describe a method for computational prediction of Ca2+-binding

loops and their affinities for Ca2+from amino acid sequences. This

paper describes approaches to find a better correlation of sequence

to binding affinities in order to predict the sequence to function

(Ka) relationship.The results show that the tool (CAL-EF-AFi)

described here is accurate and provides useful information about

Ca2+-binding properties to experimental biologists for both

characterized and uncharacterized proteins.

Results

A few experimental methods based on biophysical techniques,

such as Isothermal titration calorimetry (ITC) surface plasmon

resonance (SPR) & fluorescence [26] are available for determina-

tion of Ca2+-binding parameters. However, these are expensive

and time consuming. To the best of our knowledge, no prediction

method has been developed so far that can be used to estimate

Ca2+-binding properties of a protein from primary sequence.

Therefore, a comprehensive study was carried out first to identify

Ca2+-binding EF loops and then their Ca2+-binding affinities. In

this study, we have constructed two support vector machines

(SVM), one for prediction of loop regions and the other for

estimation of binding affinity.

Position-specific scoring matrix
After obtaining position-specific scoring matrix (PSSM) scores

using equations (1) and (2) (described in Methods) for all the

sequences obtained from the literature, we calculated the

correlation coefficient between the experimental affinity constants

(Ka) and PSSM to be 0.61 (Figure S1 in File S1). While this

correlation is clearly positive, it was not possible to classify the

affinity of all the sequences solely using PSSM scores. Therefore, a

systematic attempt was made to first predict the presence of

canonical EF-hand loops from amino acid sequence and then

estimate the binding affinities qualitatively based on evolutionary

information using SVMs.

Amino acid composition distinguishes Ca2+-binding and
non-binding regions

A statistical analysis was carried out to determine which amino

acids are found unusually frequently in EF hand-motif sequences

using the entire PFAM EF-hand database. Glycine, glutamic acid,

asparagine, and especially aspartate have been determined to

occur more frequently in Ca2+-binding loop regions than in non-

binding regions at a 99.9% confidence level. Alanine, phenylal-

anine, leucine, and especially methionine are overrepresented in

non-binding regions (Figure 1). The relative frequency of amino

acids at each position is listed in Table S1 in File S1. The analysis

suggests that EF-hand Ca2+-binding loops have a specific amino

acid composition, and that it is possible to identify these loops from

the primary sequence.

Experimental determination of Ca2+-binding properties
of EhCaBPs

In order to validate the theoretical predictions, experiments

were carried out to determine qualitative and quantitative aspects

of the affinity of some EhCaBPs for Ca2+. Ca2+-binding properties

of these proteins were tested by 45Ca2+ overlay assay on western

blotted pure recombinant EhCaBP1, 3, 5, 6, and 7 proteins. All of

these proteins were found to bind 45Ca2+ as observed by

autoradiography (data not shown). ITC was used to determine

the molar stoichiometry of the binding of the cations to these

EhCaBPs, as well as the binding constants and associated

thermodynamic parameters (Table 1). The sequences and binding

affinities of these proteins were used in the validation dataset (D7)

for validation of the classifier’s efficiency on experimental data.

The raw data obtained after ITC experiments are provided in the

Figure S2 in File S1.

SVM models predict the presence of EF loop regions
Two different models were generated using both binary pattern

and amino acid composition (AAC) for loop identification. Both

AAC and binary pattern were calculated, and used as input for

classification of Ca2+-binding EF-hand loops and non-Ca2+-

binding 12-mers in EF-hand proteins using SVM. The models

were generated by using different types of kernels, such as

polynomial, radial basis function (RBF), and linear. The perfor-

mance of each kernel function was evaluated by five-fold cross

validation. During model generation, the RBF kernel showed the

best results.

The RBF kernel function using binary and AAC standalone

features most accurately predicted the presence of EF-loop

regions. An accuracy of 100% was achieved with D1 and D2.

The remarkable performance of binary and AAC is due to the

high conservation of sequence and structure among EF-hand loops

that have been used in this study. Normally, the default threshold

Figure 1. Amino acid composition of the 12-mer long Ca2+-
binding region (‘‘Interacting’’) and the non-binding region
(‘‘Non-Interacting’’) of EF-hand proteins.
doi:10.1371/journal.pone.0096202.g001
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value (0) was used for the SVM classifier to discriminate between

Ca2+-binding EF-hand loops and non-Ca2+-binding 12-mers in

EF-hand proteins. The sites with a prediction score close to 1 are

most likely to be an EF-hand calcium-binding loop region. All

performance measures and the learning parameters for the RBF

kernel are listed in Table 2.

Accessibility and hydrophilic (AC&HC)-based classifier
provides the best estimation of binding affinity

Various SVM models using a combination of features were

developed to estimate the affinity of Ca2+ for the EF-hand loop.

The predictions of binding constants were not as accurate as the

predictions of EF-hand loops due to the limited availability of

experimental data on binding constants and the high level of

diversity in amino acid sequence with relation to binding affinity.

In this study, we have developed a position-specific scoring

matrix for EF-hand loop regions and scored (equation [1] and

[2]) the sequences from the annotated data set using Perl scripts

developed in-house. Based on the PSSM scores, we classified

high (D3) and low (D4) binding groups for the 12-mer region to

train the classifier. The binding constants, obtained from the

literature (Table S2 in File S1), and data obtained from ITC

studies of EhCaBPs were used as the test dataset and validation

dataset (Table S3 in File S1) respectively. Since it is generally

believed that different physico-chemical properties contribute to

the structure and function of protein sequences, these properties

should also contribute to Ca2+-binding affinity. Therefore, we

have developed several SVM models (data not shown) to achieve

better accuracy using combinations of several amino acid

features, and have obtained the different physico-chemical

properties using the amino acid index database (http://www.

genome.jp/aaindex/).Only the best performing models are

discussed here.

For the 24-dimension input vectors consisting of accessibility

(AC) and charge (CC), the values of sensitivity, specificity and

accuracy were 90.97, 87.10, 90.30 and 90.91, 75.00, 84.21 for

training and test datasets respectively. We were also able to

achieve a Matthews’s correlation coefficient (MCC) of 0.78 for the

training datasets (D3 & D4) and 0.67 for the test (D5) dataset.

The classifier consisting of concatenated features of accessibility

(AC) and hydrophilic (HC) scores showed the best performance

when tested on the training and the test datasets, achieving an

MCC of 0.87 and 0.81 and an accuracy of 94.78 and 89.47 for

D3–D4 and D5 datasets, respectively. The superior performance

of this classifier compared to other hybrid models is also indicated

by its values for sensitivity and specificity of 95.83 and 91.00

respectively for the training dataset, and 81.82 and 100.0

respectively for the test dataset.

Several other hybrid models (AC&CC, AC&HC&HYC,

AC&HYC&CC and AC&HYC) were also generated with amino

acid features-based classifiers; however their performances were

not better than the AC&HC-based classifier. The list of figures of

merit of all the classifiers used can be found in Tables 3 and 4.

The quality of the performance of the AC&HC-based classifier

is also indicated by receiver operating characteristic (ROC) plots,

which we computed for all the models discussed in this study.

ROC is commonly used to evaluate the discrimination ability of a

classifier. If the area under the ROC curve is larger, it means the

classifier has better discrimination ability. We were able to achieve

an AUC of 0.97 with the training dataset and 0.903 with the

experimental datasets (D5 & D7) using the AC&HC-based

classifier (Figure S3 in File S1). A schematic representation for

the data input, algorithm implementation and experimental

strategy overview is shown in Figure S4 in File S1.
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Prediction of Ca2+binding of an independent dataset
After obtaining the best performing model, it was important to

evaluate the performance of this classifier on a dataset that has not

been used for training and testing. In order to check the unbiased

prediction efficiency of the model, in addition to the test dataset,

an independent dataset (D6) with 35 unique troponin C

superfamily binding sites (Boguta et al 1988) and 15 unique sites

(Table S4 in File S1) were tested using our classifier. The classifier

predicted 21 high binders (true positives), 19 low binders (true

negatives), and 10 high binders (false negatives) that were

predicted as low binding sites. When using the diverse datasets

and binding affinities obtained from different researchers working

under different experimental conditions, the overall accuracy

achieved was 80.0%.

The validation dataset
The performance of AC&HC-based classier was even better

when tested on the experimentally obtained binding affinities from

EhCaBPs. We achieved an accuracy of 90.91 and MCC of 0.83.

The performances of other classifiers for the validation dataset D7

are listed in table 5.

E. histolytica proteome analysis: Computational
prediction of Ca2+-binding properties of EhCaBPs

In this section, we used ‘CAL-EF-AFi’ to scan the E. histolytica

proteome in order to predict all Ca2+-binding canonical EF-hand

loops in this organism. A previous computational study [27]

showed that there are 27 CaBPs containing EF-hand motifs

present in E. histolytica. Our scanning results picked all the known

canonical EF hands with more than one EF-hand loop region.

Apart from the sequences used in the test dataset (Ehcabp1, 3, 5–

7); we also predicted the relative affinities of other EhCaBPs (8–

27). In total, we predicted 36 Ca2+-binding sites (Table S5 in

File S1) out of which 24 were predicted to be low-affinity

sequences and the remaining 12 sites were predicted to have high

affinity for Ca2+.

Comparison with existing methods
The performance of the classifier was compared with PFAM

based HMM profile search and Calpred [28] on the E. histolytica

proteome. In light of earlier bioinformatics studies by Bhatta-

charya et al. and availability of E.histolytica strain HM-1: IMSS for

wet lab experiments, we chose the E.histolytica proteome for

comparison. Although this is not a benchmark dataset, it was

important to validate our classifier’s accuracy to find EF-hand

containing Ca2+-bindingsites in large databases and proteomes. A

total of 41 EF-hand protein sequences were predicted using the

pattern search method whereas CAL-EF-AFi found 58 probable

sequences with 153 binding loops.

Based on the results obtained by PFAM pattern search, few of

the predictions with high threshold values (Table S6 in File S1)

appear to be false positives. Note that the tertiary structures of all

these proteins have not been determined yet, but lacks the number

of amino acids required to form a typical EF hand structural motif.

Similarly we scanned EhCaBPs with Calpred (using all the

modules available), which identified EF-hand proteins but

predicted false positives; all the residues in the full-length protein

sequence were predicted as calcium binding (site). To investigate

further we used sequences with known structures (D1 & D2) in

Calpred and found similar false-positive predictions here as well. A

thorough analysis (Table S6 in File S1) of the results from different

methods for the identification of EF-hand Ca2+-binding sites

suggests that the method proposed here to be most suitable for

prediction of Ca2+-binding sites and relative affinity constants and

is also useful for whole proteome scans.

Availability
CAL-EF-AFi is available at http://202.41.10.46/calb/index.

html and all the datasets used in the study as well as the proteome

scan results are available at http://202.41.10.46/calb/dataset.

html.

Discussion

In the current era of high-throughput next generation

sequencing, where a large amount of genomic data is generated

each day, prediction of gene functions and detailed annotation

have become key aspects of computational genomics. The focus of

this study is to annotate Ca2+-binding EF hand motif-containing

proteins and further classify these on the basis of their Ca2+-

binding affinities.

Different Ca2+-binding proteins display different levels of

affinities for Ca2+. The functions of these proteins in general

depend on their affinity constants for Ca2+. Ca2+-sensor proteins

such as calmodulin (CaM) display higher Ca2+ -binding affinities

for their C-terminal domains than for their N-terminal domains

[29]. Ca2+-buffer proteins, such as parvalbumin have high binding

affinity [30] and there is little or no change in their conformation

upon binding Ca2+. Hence it is possible to predict the probable

function of the proteins from Ca2+-binding properties.

Many computational methods have been developed ever since

identification of the first EF-hand domain as an approach for

prediction of Ca2+-binding sites. These methods were based on

similarity search, energy based calculations, Bayesian statistical

methods, machine learning approaches and graph theory [22,31–

33], where the input is either a primary amino acid sequence or a

three-dimensional structure. A comparison of CAL-EF-AFi with

the existing methods for identifying Ca2+-binding sites is not

suitable due to the dissimilarity in the prediction methods, input

type and the datasets. One of the recently published machine

learning approaches [28] to identify the calcium-binding region

showed poor performance when compared with CAL-EF-AFi

using a dataset of experimentally determined values. Some of the

other methods, such as CaPS uses pattern search where EF-hand

motif and Ca2+-binding loops are predicted on the basis of

Table 2. The Performance of SVM Models with different learning parameters on D1 and D2 dataset.

Features C g SN SP ACC MCC

Binary 8 0.008 100 100 100 1

AA 0.125 0.008 100 100 100 1

Using binary patterns and AA (amino acid) composition [c (g) (in RBF kernel), c: parameter for trade-off between training error & margin] where SN–sensitivity, SP–
specificity, ACC-accuracy, MCC–Matthews Correlation Coefficient.
doi:10.1371/journal.pone.0096202.t002
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patterns generated using a Hidden Markov Model based on

multiple sequence alignment of known EF-hand proteins. None of

these methods, however, were able to predict the binding affinity

of the identified Ca2+-binding motifs. We have trained the

classifier using the sequences of EF hand motif binding and non-

binding regions so that it could identify the Ca2+-binding region in

the EF-hand motif.

The performance of the classifier was also tested by analysing

the complete proteome of E. histolytica. Based on the scan results we

found all of the reported Ca2+-binding proteins, and also identified

new probable Ca2+-binding sites. Our tool appeared to give better

results in terms of identification of CaBPs as it identified more

proteins including all known CaBPs. Other methods, such as

PFAM-based HMM profile search and Calpred showed a

significant number of false predictions. Our results, using all of

the sequences in the test (D5) affinity estimation data set, suggest

that the PSSM scores and experimental binding affinities are

broadly correlated. In our study, we have classified proteins on the

basis of relative binding affinity for Ca2+ in a semi-quantitative

manner. There are a number of reasons that a precise quantitative

analysis is still intractable. For one, a 12-mer motif alone does not

determine the affinity since there may be contributions from other

parts of the protein. Also, there is a cooperative involvement of

more than one EF-hand loop in the binding of Ca2+. This may be

particularly important as a pair of EF hands occur together [14].

Two EF-hand motifs in a pair (with very few exceptions) are

related by an approximate two-fold rotational axis, forming a

hydrophobic cavity opening which is likely to influence the

binding affinity. Since these properties are difficult to factor in a

model, our efforts are limited to classification of high and low

binders rather than predicting precise binding affinities.

Our initial datasets contained 19 binding sites with experimen-

tal binding affinity data. In order to circumvent the problems

associated with limited data, we have generated training datasets

based on the evolutionary information (PSSM) scores. A similar

approach, where artificial datasets have been used in SVM, has

been successful in greatly improving predictions [34,35]. In these

studies, researchers have mainly generated negative datasets

artificially for SVM classification. Our test data set with 19

sequences, independent dataset with 50 sequences and the

validation data set with 11 sequences representing experimentally

determined affinity data have shown extremely good results.

The results from the test and validation datasets, which includes

relative affinities of several EF-hand proteins, suggest that our

proposed model based on the PSSM method for estimation of

binding affinity can help researchers to predict site-specific binding

affinity. Experimental determination of such binding affinity is a

limiting factor in Ca2+-binding proteins because of the expense

involved and time required carrying out the experiments. As

mentioned above, the successful performance of the model with

regards to prediction and estimation is attributed to the accurate

training of the classifier on a small number of training examples

and the use of PSSM generated datasets.

CAL-EF-AFi can therefore be used to accurately and precisely

scan proteomes of organisms for potential Ca2+-binding sites of

EF-hand proteins and estimate their probable relative binding

affinities. Given the success of our classifier on the E. histolytica

proteome scan, we expect its wider use in analysing proteomes of

other organisms.

In conclusion, we have developed a unique method, CAL-EF-

AFi for identification and estimation of Ca2+-binding sites and

relative affinity. The program requires only the protein sequence

for the prediction without prior knowledge of structural or

biochemical information. The results predicted by the theoretical
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model were validated by experimental studies. Variation from the

EF-hand consensus sequence can be used to predict qualitative

Ca2+-binding features. However, this may not be sufficient to

understand the overall characteristics of CaBPs. The EF-hand

motifs assemble to form a lobe (one partner affects the binding

affinity of the other) and the Mg2+ affinities are not considered in

this work due to limitation of experimental data available to date.

Future plans include developing an even better algorithm with

more information available from the literature. We hope that an

increase in the availability of experimental data will help generate

a more robust model.

Material and Methods

Expression, Purification and Preparation of Metal-free
Protein Solutions

Five different EhCaBPs (EhCaBP1, 3, 5, 6, and 7) were

overexpressed and purified as described earlier [36,37]. In order to

obtain accurate measurements of Ca2+-binding energetics, it was

essential to have the protein in its apo-form with no contamination

of Ca2+ in the buffers. Hence, all of the buffers used for isothermal

titration calorimetry (ITC) were decalcified using Chelex 100 resin

(Bio-Rad). Decalcified ITC buffer (100 mMNaCl and 50 mM

Tris-Cl, pH 7.0) was prepared by treatment with Chelex 100 resin

(Bio-Rad). Each protein solution was treated with 5 mM EGTA

and 2 mM EDTA to remove Ca2+ and Mg2+. The EDTA/EGTA

bound to metal ions were removed from protein solution using

Amicon ultra centrifugal filter devices (Millipore), through

extensive buffer exchange (decalcified). Before the ITC experi-

ment, the sample cell and injection syringe of the ITC machine

(Microcal Inc.) were extensively cleaned using the decalcified

buffer.

Isothermal Titration Calorimetry (ITC)
All ITC experiments were performed on a MicroCal VP-ITC

microcalorimeter at 25 C. Samples were decalcified, centrifuged,

and degassed prior to titration. A typical titration consisted of

injecting 2-ml aliquots of 10–20 mM CaCl2 solution (diluted from

1 M standard CaCl2 solution supplied by Sigma-Aldrich Chem-

icals) into 100–200 mM protein solution after every 3 min to

ensure that the titration peak returned to the baseline prior to the

next injection. A total of 70 injections were carried out. Aliquots of

concentrated ligand solution were injected into the buffer solution

(without the protein) in a separate ITC run, to subtract the heat of

dilution. Two sets of titrations were carried out for each protein: (i)

apo-EhCaBP in 50 mM Tris-Cl, pH 7.0 and 100 mMNaCl and

(ii) holo-EhCaBP in 50 mM Tris-Cl, pH 7.0 and 100 mMNaCl.

The ITC data were analysed using the software ORIGIN

(supplied with Omega Microcalorimeter). The amount of heat

released per addition of the titrant was fitted to the best least

squares model as given by Wiseman et al. (1989). For each

titration, the stoichiometry (n), association constant (Ka), and

enthalpy change (DH) were obtained directly from the ITC data,

and the changes in Gibbs free energy (DG), and entropy (DS), as

well as the overall binding affinity or dissociation constant (Kd)

were calculated according to Equations a, b, and c.

DG~RT ln Ka ðaÞ

DG~DH{TDS ðbÞ

Table 4. The Performance of SVM Models on test dataset D5.

Features SN SP ACC MCC

AC&CC 90.91 75.00 84.21 0.67

AC&HC 81.82 100 89.47 0.81

AC&HC&HYC 72.73 87.50 78.95 0.6

AC&HYC&CC 90.91 75.00 84.21 0.67

AC&HYC 90.91 75.00 84.21 0.67

The Performance of SVM Models on test dataset D5 (experimental binding affinities obtained from literature) with different learning parameters.
doi:10.1371/journal.pone.0096202.t004

Table 5. The Performance of SVM Models on validation dataset with experimentally derived binding affinity from EhCaBPs (D7).

Features SN SP ACC MCC

AC&CC 83.33 60 72.73 0.45

AC&HC 100 80 90.91 0.83

AC&HC&HYC 83.33 80 81.82 0.63

AC&HYC&CC 83.33 60 72.73 0.45

AC&HYC 66.67 60 63.64 0.27

The Performance of SVM Models on validation dataset with experimentally derived binding affinity from EhCaBPs (D7)with different learning parameters on various
hybrid models [c (g) (in RBF kernel), c: parameter for trade-off between training error & margin] where SN–sensitivity, SP–specificity, ACC-accuracy, MCC–Matthews
Correlation Coefficient, AUC/ROC-Area under curve/ Receiver Operating Curve.
doi:10.1371/journal.pone.0096202.t005
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Kd~1=Ka or Kd~1=
ffiffiffiffi
K
p

1K2K3:::::: ðcÞ

Dataset for EF loop predictions
To predict the presence of EF-hand loops and estimate their

affinities for Ca2+, the calcium-binding amino acid sequence

pattern at PROSITE [38](http://prosite.expasy.org/

PDOC00018) was used to retrieve sequences of the EF-hand

family. In total 1379 different sequences were obtained. To further

validate the reviewed sequences we used structures of proteins co-

crystallized with calcium from the Protein Data Bank [39] (PDB,

http://www.rcsb.org/pdb/). In total 1261 chains with EF-hand

motifs were found. Once these sequences were downloaded, CD-

HIT [40] was used to remove redundant sequences having more

than 60% similarity. The PDB IDs are included in the

supplementary data in File S1 (Tables S7–S10 in File S1) along

with the sequences retrieved. We chose a relatively high because

the aim of the study was to identify the binding loop, which is a

highly conserved 12-residue sequence. With less than a 60%

threshold, the numbers of sequences available for classification

were not sufficient. The sequence classifications were also carried

out using thresholds of 90%, 70%, 60%, 50% of CD-HIT data is

also shown in Table S11 in File S1. Finally a dataset of 100 12-

mer calcium-binding loop sequences for the positive training

dataset (D1) was generated. Similarly a negative training dataset

was built with 141 (D2) 12-mer sequences extracted from non-

binding regions of EF-hand proteins.

Dataset for binding affinity predictions
For the estimation of binding affinity, a novel method was

developed on the basis of PSSM score pattern in which calcium-

binding loops were classified into two groups. Based on the

correlation obtained between the PSSM scores and experimental

binding affinity (Figure S1 in File S1) a positive dataset with high

PSSM scores (D3) (.5) consisting of 144 12-mer sequences and a

negative dataset (D4) with low PSSM scores (,5) containing 124

sequences were generated using the sequences obtained from

PROSITE [38].

To test the proposed model based on PSSM scores we used 19

EF loop sequences for which binding affinities were known from

the literature (Table S2 in File S1) as Test dataset (D5). To

evaluate the performance of this classifier on a dataset that has not

been used for training and testing, an independent dataset (D6) of

binding affinity observations was obtained from Boguta et al

(1988) [25]and recently published literature. After removing

redundant EF-loop sequences, 50 unique sequences were obtained

from recently published data and the Ka values listed in Boguta

et al (1988) [25].Furthermore, to check the performance and

reliability of the classifier, we chose to perform ITC experiments

on available EhCaBPs, to test our predictions on the datasets

obtained from literature. We were able to obtain Ka values of

EhCaBP1, 3, 5, 6, and 7; in total we listed affinities for 11 sites

used here as a validation set (D7). The details of ITC experiments

and results are also provided in supplementary datasets in File S1

as D5, D6 and D7 with their experimental binding affinities

classified on the basis of a thorough review of published papers

that reported the binding constants. The classification details with

supportive binding constants are listed under ‘‘Author’s Note’’ in

Tables S2–S4 in File S1.

Statistical Analysis
The expected (Exp) frequencies of amino acid residues were

calculated from the average residue usage from the 1379 different

sequences obtained from PROSITE [38]. The expected frequency

for an amino acid residue of type A at position i will be Exp =

(NA/N) M, where NA = total number of amino acid residues of

type A in the analysed set of sequences, excluding position i,

N = total number of all amino acid residues in the analysed set of

sequences, excluding position i, and M = total number of

sequences, i.e., the sum of ith positions in the analysed set of

sequences. The expected frequencies for residues were calculated

similarly. For each amino acid residue at a given position, the

deviation of the observed (Obs) values from the Exp values was

estimated by the x2 criterion according to the formula (Obs – Exp)
2/Exp. For each residue or codon, the x2 value was estimated

separately with one degree of freedom. The sums of all 20 (61) x2

values for each residue (codon) at the given position gave the total

deviation for the given position with 19 (60) degrees of freedom.

To evaluate the range of differences between the C-terminal

regions and the neighbouring fragments, a pairwise comparison

between them was performed. For this purpose, each position in

the sequence was treated as a set containing 20 groups of data and

the difference between them was calculated by the x2 criterion

using the following formula:

XK

i~1

½(mi=M{ni=N)2MN=(mizni)�

where mi and niare frequencies of amino acid residues in the two

positions of the sequence under comparison, M and N are total

numbers of amino acid residues in the compared positions, and K

is equal to 20 because each position may be occupied by any of 20

different amino acids. At a significance level ,0.001, Obs was

considered to be different from Exp if the x2 exceeded 10.8, 43.8

and 99.6 for one, 19 and 60 degrees of freedom, respectively.

Generation of a position-specific scoring matrix
In this study, a simple position-specific scoring matrix (PSSM)

was generated from the amino acid composition (AAC) of the

calcium-binding loops in canonical EF hands. The standard amino

acid frequencies, which show how often each residue was found in

each site in the binding loop, was taken from Marsden et al., 1990

[41]. In this matrix, every column can be interpreted as a discrete

probability distribution of the amino acid residues at that position

and the values in the matrix can be inferred as probabilities of a

given amino acid occurring at a given position. Therefore, for a

sequence of length m, the product of the relative frequencies from

the matrix corresponding to each amino acid in each position of

the sequence is the probability of discovering such a sequence in

the EF-hand loop. We generated two different scoring matrices,

one with simple relative frequency of amino acids and the other

with log likelihood frequency for the position-specific scoring

matrix [42–44]. The log ratio matrix was generated using equation

1 and 2.

Sij~qzbPi=nzb ð1Þ

Msij~ log (Sij=Pi) ð2Þ
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Where Sij is the probability of amino acid i at position j in matrix

S, q is the observed counts of amino acid type i at position j, Pi is

the probability of amino acid type i, b is the pseudo count which is

considered here as square root of the total number of training

sequences and n is the number of training sequences. In equation

(2) Msij represents the foreground model (representing true

homology) and Pi is the background model (chance that a match

occurs at random). The background probability or the chance of

amino acid match occurrence at random was calculated using the

BLOSUM62 substitution matrix [45].

Support Vector Machine training for classification
SVM is a machine learning tool that is being extensively used

for classification and optimization of complex problems. It is

particularly attractive to biological sequence analysis due to its

ability to handle noise, large datasets, large input spaces and high

variability [46,47]. In this study all of the SVM models have been

developed using libSVM [48]. Parameter selection was carried out

using grid search so that the classifier can accurately predict

unknown test data from the model. In the radial basis function

(RBF) kernel, there are two parameters, C and g, but it is not

known a priori what values of these two parameters are best for a

given problem [48]. To obtain the best parameters, a grid search

was carried out using cross validation. A Perl script was written in-

house to check combinations of features in an iterative manner

using CUDA based libSVM [49]. A descriptive flowchart of the

feature selection algorithm is provided in Figure S4 in File S1.

Five-fold cross-validation
A standard five-fold cross-validation technique was used to

evaluate the performance of models, where the data set was

randomly divided into five sets. The classifier was trained on four

sets and the performance was assessed on the remaining fifth set.

The process was repeated five times so that each set could be used

once for testing. Finally, the average of the five sets was calculated

as the measure of the performance of the classifier.

SVM model using binary and amino acid composition
features

In this method, a Perl program was written to generate a

window with 12 amino acids for negative and positive patterns.

These sequence patterns were converted into binary patterns,

where a pattern of length L was represented by a vector of

dimension L621 and each amino acid in that pattern was

represented by a 21-feature vector (e.g. Asp by

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,X) containing 20 amino ac-

ids and a dummy X. Each sequence of twelve amino acids was

represented by 252 input vectors during model generation. The

binary profile has been used in a number of existing methods

[50,51]. The second feature used was AAC with an input vector of

20X12 dimensions. AAC is the fractional occurrence of each

amino acid in the protein sequence.

Fi~Total number of Amino acid Length of the protein

Where i can be any of the amino acids.

Feature extraction and model generation for binding
affinity estimation

It has been observed in different studies [52,53] that SVM

performs well when combinations of two or more features are used

as input vectors. Hence, hybrid models have been developed using

one or more combinations of features. After testing combination of

features using CUDA-based libSVM [49] the best performing

features were used for developing various SVM models. Feature

selection was carried out by scanning amino acid indices and by

performing 5-fold cross validation using the in-house CUDA

script. The four best performing amino acid properties used

further for analysis were net charge [54](CC), hydrophobicity [55]

(HYC), hydrophilicity [56] (HC) and accessibility [57] (AC) which

were thus used for further analysis. Only the better performing

models(AC&CC, AC&HC, AC&HYC, AC&HC&HYC, and

AC&HYC&CC), which use combinations of the four best

performing amino acid properties, are discussed in this study.

Classifier performance metrics
The performance of our method was computed and tested using

the following figures of merit. As mentioned above, the

performance has been evaluated by five-fold cross validation as

follows:

1) Sensitivity (or recall) is the coverage of positives i.e. the

percent of correctly predicted Ca2+-binding 12-mers and

correct estimation of their affinity.

Sensitivity~½TP=(TPzFN)�|100

2) Specificity is the coverage of negatives, that is, the percent of

correctly predicted Ca2+ non-binding 12-mers and correct

estimation of their affinity.

Specificity~½TN=(TNzFP)�|100

3) Accuracy is the percentage of correctly predicted positives and

negatives.

Accuracy~½(TPzTN)=(TPzFPzTNzFN)�|100

4) MCC – Matthews’s correlation coefficient is the statistical

parameter to assess the quality of the prediction and account

for unbalancing in data [58]. An MCC equal to 1 is regarded

as a perfect prediction, whereas that equal to 0 indicates a

completely random prediction.

MCC~(TP)(TN){

(FP)(FN)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPzFN)(TPzFP)(TNzFP)(TNzFN)

p

[TP = true positive; FN = false negative; TN = true negative;

FP = false positive]

5) AUC (Area under the ROC Curve) – Receiver Operating

Curve (ROC) and AUC were computed using SPSS software.

It generates ROC curves and calculates AUC by ranking the

decision values.

Supporting Information

File S1 File S1 includes the following: Figure S1. a) Plot of

affinity vs. PSSM for the test data set (D5). The calculated

correlation coefficient obtained was 0.61 using [41] amino acid
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frequencies. Figure S2. The isothermal titration calorimetric

analysis of Ca2+-binding to apo-EhCaBPs.ITC experiments were

carried out as described under ‘‘Materials and Methods’’. Plot of

heat absorbed/released (In kcal mol21) per injection of CaCl2 as a

function of molar ratio of Ca2+: protein at 25uC is shown. For all

titrations, the top panels represent the raw data (power: time) and

the bottom panels represent integrated binding isotherms. The

solid line represents the best nonlinear fit to the experimental data.

Binding isotherm for A: EhCaBP3; B: EhCaBP4; C: EhCaBP5; D:

EhCaBP6 and E: EhCaBP7. Thermodynamic parameters ob-

tained are summarized in Table 1. Figure S3. ROC plots of

AC&CC, AC&HC, AC&HC&HYC, AC&HYC&CC and

AC&HYC for the datasets D5–D7 set. Receiver operating

characteristic (ROC) plot used for depicting relative trade-offs

between true positive and false positives. The corresponding AUC

value of each model is shown in brackets. Figure S4. Schematic

representation of the procedure for model development and

feature selection for EF-hand loop region prediction and

estimation of binding affinity and its web implementation. The

procedure is explained in detail in the ‘‘Methods’’ section. A). A

group of sequences with known EF-hand structural motifs were

downloaded and further classified into two groups after removing

redundant sequences using CD-HIT. The sequences were further

converted into binary and amino acid composition (AAC) profiles

for SVM input. Models were generated using LIBSVM and were

tested on all the datasets (D3–D6) and further validated by

scanning the E. histolytica proteome. B). Non-redundant sequences

of EF-hand loops from known structures were classified into two

groups on the basis of scores obtained from position-specific

scoring metrics. The sequences were then converted into binary,

AAC and different amino acid indices patterns. We have

generated both standalone and combinations of features (2, 3, 4,

5) using a Perl script written in-house. The input vectors were

trained using LIBSVM and cudized LIBSVM and selected on the

basis of their performance on experimental datasets using 5-fold

cross validation accuracy threshold .70 %. The best performing

models selected from screening were further validated using three

different experimentally derived datasets on EF hand motifs. The

final step involved web implementation of the best (AC&HC)

model. Table S1. The x2 value for each amino acid residue is

estimated with one degree of freedom and significance level

P = 0.001. The Sx2 values are estimated with 19 degrees of

freedom and significance level P,0.001. The expected (Exp) and

observed (Obs) values and the corresponding x2 values for amino

acid residues and the Sx2 values for those positions that do not

reach 10.8 and 43.8 (for one and 19 degrees of freedom,

respectively) are given more significance. Table S2. Test Dataset:

Summary of EF hand loops obtained from the literature and their

macroscopic binding constant along with CAL-EF-AFi predictions

(D5). The classification details with supportive binding constants

are listed under ‘‘Author’s Note’’. (Red-colored affinities are the

false negative affinity predictions, and turquoise-colored sequences

are the false negative EF loop predictions). Table S3. Indepen-

dent dataset (D6) summary of EF hand loops obtained from

Boguta, et al., 1988 [59]. The table contains average binding

constants of Ca2+ for troponin C superfamily (TnC) proteins from

experimental data reported by various laboratories. The classifi-

cation details with supportive binding constants are listed under

‘‘Author’s Note’’. (Red-colored affinities are the false positive

predictions). Table S4. Validation dataset summary of EF-hand

loops obtained from ITC studies of CaBPs from E. histolytica and

their macroscopic binding constant according to CAL-EF-AFi’s

predictions (D7). The classification details with supportive binding

constants are listed under ‘‘Author’s Note’’ (Red-colored affinities

are the false positive predictions). Table S5. Predictions of

putative EF hand-containing calcium-binding protein and their

calcium-binding affinities from the E. histolytica proteome. Table
S6. The performance and comparison of CAL-EF-AFi with

PFAM and Calpred on the E. histolytica proteome. Listed are the

sequences predicted by CAL-EF-AFi followed by PFAM-based

HMM model prediction and CalPred’s predictions. (Legends for

CAL-EF-AFi’s prediction: number of Ca2+-binding loop sequence

prediction, residue number followed by sequence and SVM scores;

Legends for PFAM predictions: red-colored region is the loop

region predicted, followed by the E-value for the sequence;

Legends for CalPred predictions: X: Non-Binding region C:

Calcium Binding region). Table S7. Calcium-binding EF-hand

protein sequences in FASTA format at 60% sequence redundancy

with EF-hand loop region residues labeled in lower case letters.

(D1). Table S8. The list of 12-mer sequences from non-binding

regions of calcium-binding EF-hand proteins greater than 60%

sequence redundancy. Table S9. The training data used for

estimation of binding affinity were taken from the RCSB based on

PSSM scores obtained from the EF-hand loop region. The positive

dataset (D3) consisted of one hundred forty four 12-mer sequences

and there were 124 sequences in the negative dataset (D4). Table
S10. The redundant set of PDB ids of EF hand-containing

calcium-binding proteins. The sequences taken from the RCSB

were further processed using CD-HIT and the list if the sequences

with different threshold are listed in Table S11. Table S11. The

sequence-wise classification of data obtained from PROSITE and

RCSB- The data was further processed by using CD-HIT at 90%,

70%, 60%, 50% sequence redundancy cutofffor classification of

EF-hand loop Ca2+-binding and non-binding region.
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