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Abstract

Entamoeba histolytica is the etiological agent of human amoebic colitis and liver abscess, and causes a high level of
morbidity and mortality worldwide, particularly in developing countries. There are a number of studies that have shown a
crucial role for Ca2+ and its binding protein in amoebic biology. EhCaBP5 is one of the EF hand calcium-binding proteins of
E. histolytica. We have determined the crystal structure of EhCaBP5 at 1.9 Å resolution in the Ca2+-bound state, which shows
an unconventional mode of Ca2+ binding involving coordination to a closed yet canonical EF-hand motif. Structurally,
EhCaBP5 is more similar to the essential light chain of myosin than to Calmodulin despite its somewhat greater sequence
identity with Calmodulin. This structure-based analysis suggests that EhCaBP5 could be a light chain of myosin. Surface
plasmon resonance studies confirmed this hypothesis, and in particular showed that EhCaBP5 interacts with the IQ motif of
myosin 1B in calcium independent manner. It also appears from modelling of the EhCaBP5-IQ motif complex that EhCaBP5
undergoes a structural change in order to bind the IQ motif of myosin. This specific interaction was further confirmed by the
observation that EhCaBP5 and myosin 1B are colocalized in E. histolytica during phagocytic cup formation.
Immunoprecipitation of EhCaBP5 from total E. histolytica cellular extract also pulls out myosin 1B and this interaction
was confirmed to be Ca2+ independent. Confocal imaging of E. histolytica showed that EhCaBP5 and myosin 1B are part of
phagosomes. Overexpression of EhCaBP5 increases slight rate (,20%) of phagosome formation, while suppression reduces
the rate drastically (,55%). Taken together, these experiments indicate that EhCaBP5 is likely to be the light chain of myosin
1B. Interestingly, EhCaBP5 is not present in the phagosome after its formation suggesting EhCaBP5 may be playing a
regulatory role.
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Introduction

Entamoeba histolytica is the etiological agent of amoebiasis

(intestinal as well as extra-intestinal), which results in a high level of

morbidity and mortality worldwide, particularly in developing

countries [1,2]. A number of studies have shown that Ca2+ and its

binding proteins are centrally involved in amoebic pathogenesis

and that cytolytic activity can be blocked by Ca2+ channel blockers

or treatment with EGTA [3]. Genomic analysis of E. histolytica
indicates the presence of 27 genes encoding multiple EF-hand

calcium-binding proteins (CaBPs) [4]. The presence of such a large

number of CaBPs suggests that this organism has a complex and

extensive calcium signalling system [4].

One of the Ca2+ sensing proteins of E. histolytica, EhCaBP1,

has been extensively characterised, both structurally and func-

tionally. EhCaBP1 was found to be involved in cytoskeleton

dynamics and is associated with phagocytic cup formation in a

Ca2+ independent manner [5,6]. The binding of Ca2+ to

EhCaBP1 is necessary for the transition of phagocytic cups to

phagosomes [7]. EhCaBP1 is recruited to phagocytic cups by the

novel protein kinase EhC2PK [8]. The crystal structure of

EhCaBP1 shows an unusual trimeric arrangement of EF-hand

motifs [9]. The structure of the N-terminal lobe of EhCaBP1

displays a similar trimeric organization of EF-hand motifs as

observed in the full length molecule. Lowering the pH to below

physiological levels was shown to cause a trimer to monomer

transition [10]. Moreover, various metal ions have been shown to

impart flexibility and plasticity to the EF-hand motifs of EhCaBP1

[11].

We (and others) are systematically investigating the structure-

function relationship of other calcium binding proteins of E.
histolytica as well in order to understand their roles in amoebic

biology and pathogenesis. Recently, an NMR structure of the

calmodulin-like calcium-binding protein EhCaBP3 has been
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reported [12]. The N-terminal half of the molecule displays a

structure similar to that of CaM, but no structure was derived for

the C-terminal half of the molecule [12]. EhCaBP3 was found to

be involved in the regulation of phagocytosis and cytoskeleton

dynamics [13]. In addition to the studies of EhCaBP1 and

EhCaBP3, we have collected (reported) preliminary crystallo-

graphic data of EhCaBP2 [14].

Sequence analysis of the calcium binding protein 5 from E.
histolytica (EhCaBP5) indicates that its size (16.3 kDa) and

secondary structural arrangement are similar to those of CaM

like proteins but it also suggests the presence of two calcium

binding loops in two separate lobes. In CaM like proteins, two

functional calcium binding EF-hand motifs usually exist side by

side, and participate in calcium dependent target binding. The

possible existence of two calcium binding sites in two separate

lobes in EhCaBP5 prompted us to study the structure and function

of this protein.

We previously crystallized EhCaBP5 [15], and here we report

the structure determination and results from functional studies of

this protein. We have determined the crystal structure in the

calcium bound state at 1.9 Å resolution and have shown that

EhCaBP5 interacts with the unconventional myosin (myosin 1B),

by surface plasmon resonance (SPR). This interaction was further

confirmed by a pull down assay and cellular co-localization using

confocal microscopy. The results suggest that EhCaBP5 is

involved in phagosome formation through interaction with myosin

1B. We conclude that phagocytosis in E. histolytica is regulated by

a number of CaBPs including EhCaBP5 that regulates cytoskeletal

dynamics and phagocytic cup formation with the help of myosin

1B, a process not observed in any other organism.

Results

Structure of EhCaBP5
Molecular replacement with several calmodulin like proteins

failed to give any solution, even though EhCaBP5 is, for example,

29% identical to potato calmodulin [16]. Instead, Se-Met labelled

EhCaBP5 crystals were used to provide experimental phases and

determine the structure (see Methods for details). There is only one

molecule present in the asymmetric unit. The final refined

structure contains 131 residues, one calcium ion, 40 waters and

3 acetates; six residues from the N-terminus could not be modelled

due to missing electron density.

Overall, the molecule is divided in two globular lobes, where

each lobe has four alpha helices connected by loops. The N-

terminal lobe has one EF-hand motif with a calcium ion bound to

the loop between two helices. The C-terminal lobe has two small

anti-parallel beta strands along with four loops (Fig. 1A). Signature

residues of an additional EF-hand motif are found in the C-

terminal lobe (residues87 to 98). In the crystal structure these

residues form a loop between two helices similar to that of a typical

EF-hand but density for Ca2+ is not observed. Consistent with the

crystals structure, only one site in EhCaBP5 was found to bind

Ca2+ by ITC [17]. Taken together, these results suggest that the

C-terminal lobe of EhCaBP5 cannot bind Ca2+. Nevertheless, the

overall conformation of the Ca2+ bound N-terminal lobe is similar

to that of the Ca2+ free C-terminal lobe, with an r.m.s.d.of 1.9 Å

between these lobes.

Calcium coordination in the EF-hand motif of EhCaBP5
The coordination of Ca2+ observed in the EhCaBP5 crystal

structure has only been seen in essential light chains (ELC) of

myosin [18,19] and a calmodulin mutant [20]. In EhCaBP5, the

Ca2+ is coordinated by one carboxyl oxygen each of residues

Asp16, Asp18, and Asp20, the hydroxyl oxygen of Tyr22, and two

water molecules (instead of one, as observed in CaM). The extra

water also binds to the 12th position glutamate of the EF hand

loop; this residue is usually critical in directly coordinating Ca2+,

but, in EhCaBP5, it is too far away, at a distance of about 4.1 Å,

and cannot directly coordinate instead it coordinates the Ca2+ via

the intervening water molecule (Fig. 1B). Overall, the Ca2+coor-

dination geometry is octahedral in EhCaBP5, instead of being

pentagonal bipyramidal as is typically found in CaM. The

octahedral geometry is more similar to that of Mg2+ coordinating

in other calmodulin like proteins and essential light chain proteins.

Comparison with calmodulin and myosin essential light
chains (ELC)

Among calcium binding proteins, EhCaBP5 displays the highest

sequence similarity with potato CaM, with approximately 29%

sequence identity. Moreover, EhCaBP5 is composed of two

globular lobes similar to that of CaM. EhCaBP5, however, differs

from CaM regarding lobe composition. The central linker of

EhCaBP5 is not a straight helix, but is broken in the middle,

resulting in four separate helices in each lobe (Fig. 1A). Both lobes

interact with each other and appear as they are one over another.

These differences may help explain the failure of the molecular

replacement method for solving the EhCaBP5 structure as

described above.

There is also a striking difference between the (Ca2+ bound) EF-

hand motifs of EhCaBP5 and that of CaM. The CaM EF-hand

motif (for example that in PDB code 1RFJ) [16] adopts an open

conformation after binding of Ca2+, whereas the Ca2+ bound EF

hand motif of EhCaBP5 is in a closed conformation. The r.m.s.d.

between these EF-hand motifs is indeed relatively large, at 2.38 Å,

and the interhelical angles of the EF-hand motifs of EhCaBP5 and

CaM are 64.3 degrees and 89.3 degrees respectively, indicative of

the closed and open conformations respectively (Fig. 2A).

The overall structure of EhCaBP5 is more similar to that of the

essential light chain (ELC) of myosin than to CaM. Both EhCaBP5

and the ELCs have two 4-helix globular lobes connected by a

small loop. Comparison with other Ca2+ binding proteins and

Author Summary

Entamoeba histolytica is the etiologic agent of amoebiasis,
a major cause of morbidity and mortality in developing
countries. The genome of this organism encodes 27 EF-
hand containing calcium binding proteins suggesting an
intricate Ca2+ signalling system that plays crucial role in
phagocytosis and pathogenesis. Calcium binding protein-5
(EhCaBP5) is one of these CaBPs that displays sequence
similarity with Calmodulin (CaM) but has only two possible
calcium binding EF-hand loops in two separate domains.
Interestingly crystal structure of EhCaPB5 showed more
structural similarity with essential light chain (ELC) of
myosin than that of CaM. The binding studies of EhCaBP5
with IQ motif peptides of myosins, showed that it interacts
with IQ motif of unconventional Myosin IB. A number of
experiments were carried out to show that EhCaBP5
indeed binds myosin IB and that this binding is Ca2+

independent. We also show here that EhCaBP5 participates
in erythrophagocytosis and that its role in phagocytosis is
different from that of EhCaBP3, another myosin 1B
interacting calcium binding protein of E. histolytica. Our
results presented here and in a number of other reports
point towards a unique phagocytic pathway involving a
number of calcium binding proteins in E. histolytica.

CaBP5 Interacts with Myosin IB and Involved in Phagosome Formation.
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ELC structures shows that the Ca2+ bound EF-hand motif of

EhCaBP5 is particularly similar to that of squid myosin ELC [18]

(rmsd = 1.6 Å) and to that of physarum myosin ELC [19] (rmsd

= 1.3 Å), adopting a closed conformation in each structure

(Fig. 2B). In these two ELC structures, as well as in EhCaBP5,

only one bound Ca2+ is seen in the N-terminal lobe. The closed

EF-hand motif of squid ELC is due to the presence of an extra

turn in the first helix and additional stabilizing interactions with

the RLC [18]. In contrast, the EF-hand of the Physarum ELC

structure lacks this extra helical turn, and in fact has a fully

canonical loop structure, but is still observed in a closed state [19].

Such an unconventional mode of Ca2+ binding (combination of

closed EF-hand motif and canonical residues) also occurs in

EhCaBP5. Also note that the conformation of the Ca2+ bound EF-

hand motif of EhCaBP5 is very similar to that of the first EF hand

motif of the trapped intermediate state of a CaM mutant (rmsd

= 1.08 Å; Fig. 2B); in this mutant, the EF-hand motif is locked in a

closed conformation by a disulphide bond, even though Ca2+ is

bound [20].

Sequence alignment suggests that the residues of the first and

second helices of the EhCaBP5 EF-hand motif are more

hydrophobic than those in CaM and Physarum ELC. The

extensive hydrophobic interaction between these two helices could

be the reason for the observed closed state of the lobe and water

mediated Ca2+coordination or intermediate state in EhCaBP5.

This indicates that Ca2+ binding energy is not sufficient to open

the hydrophobic pocket.

EhCaBP5 interacts with myosin 1B
We tested whether EhCaBP5 can bind peptides representing IQ

motif derived from myosin sequences as EhCaBP5 resembles

ELC’s, and since one of the two IQ motifs of myosin II binds ELC.

Fig 1. Structure of EhCaBP5. (A) Overall structure of Entamoeba histolytica calcium binding protein-5 (EhCaBP5) at 1.9 Å resolution, shown as a
ribbon diagram. All of the alpha helices (a1 to a8) are in blue, the small antiparallel b-sheet (b1 and b2) is represented in pink, and the bound Ca2+ is
shown as a red sphere. (B) Ca2+ coordination of EhCaBP5: The unconventional mode of Ca2+binding by the EF hand motif of EhCaBP5 (see text for
details).
doi:10.1371/journal.ppat.1004532.g001

Fig 2. Structural comparison. A) Alignment of the Ca2+ bound EF-hand motif of EhCaBP5 (blue) with that of Potato CaM (pink, pdb code 1RFJ).
The r.m.s.d. of alignment is 2.38 Å. The interhelical angles of the EF-hand motifs of EhCaBP5 and CaM are 64.3 Å and 89.3 Å, respectively, indicative in
turn of the closed and open conformations. (B) Alignment of the Ca2+ bound EF-hand motif of EhCaBP5 (blue) with that of squid ELC (yellow, pdb
code 1QVI), physarum ELC (green, pdb code 2BLO), and a mutant CaM (pink, pdb code 1Y6W). The rmsd’s of the alignments are1.6 Å, 1.3 Å and
1.08 Å, respectively.
doi:10.1371/journal.ppat.1004532.g002
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E. histolytica genome encodes two myosins, myosin 1B and myosin

II, containing one and two IQ motifs respectively. SPR was

employed to carry out binding assays using the IQ motif peptide

from myosin 1B and from ELC binding IQ motif of myosin II.

The results indicate that EhCaBP5 does not bind the myosin II IQ

motif while it does interact with the IQ motif from myosin 1B

(Kd = 2.4 nM) (Fig. 3A). To check the role of Ca2+ in this

interaction, we performed this experiment in absence of Ca2+. The

result showed binding with Kd of 5.4 nM, suggesting that it takes

place even in the absence of Ca2+ but with reduced affinity

(Fig. 3B). The binding of EhCaBP5 to myosin 1B IQ motif peptide

is very specific, as neither BSA (Fig. 3B) nor EhCaBP3 (Figure S1)

was found to interact with immobilized IQ motif peptide. It is

possible that EhCaBP3 interacts with myosin 1B through non IQ

motif region. This binding seems to be stronger than CaM-Myo1c

IQ motif interaction [21].

In order to further confirm the interaction between EhCaBP5

and myosin 1B, we carried out co-immuno precipitation using

immobilized anti-EhCaBP5 antibody from the total cell lysate.

The antibody precipitated myosin 1B along with EhCaBP5 even

in the presence of EGTA confirming that Ca2+ is not required for

EhCaBP5 to bind myosin 1B (Fig. 4).

Localization of EhCaBP5 in E. histolytica
Immunofluorescence was used to investigate the localization of

EhCaBP5 in proliferating amoebic cells. The results are shown in

Fig. 5. EhCaBP5 was found in the cytoplasm and no fluorescence

signal was observed in the nucleus unlike EhCaBP3. Since myosin

1B was shown to be involved in erythrophagocytosis [22], further

experiments were carried out to investigate whether EhCaBP5 is

also involved in phagocytosis. We monitored EhCaBP5 localiza-

tion during RBC uptake by E. histolytica to check the involvement

of EhCaBP5 in phagocytosis. EhCaBP5 and myosin 1B were

found in phagocytic cups based on analysis of fluorescence signals

(Fig. 6A, upper panel). Interestingly while myosin 1B was also

found in the phagosomes (denoted by asterisk) as expected,

EhCaBP5 was not seen, suggesting that EhCaBP5 is involved in

the initiation phase of phagocytosis (Fig. 6A, lower panel).

Enrichment of actin was also observed in the phagocytic cups,

as expected, and the superimposition of both EhCaBP5 and actin

signals suggested that both proteins are co-localized in the

phagocytic cups (Fig. 6B). The results clearly show that EhCaBP5,

myosin 1B and actin are all colocalized in phagocytic cups. To

check whether actin and EhCaBP5 also interact in vitro, we

performed a co-sedimentation assay using F-actin and EhCaBP5.

No significant amount of EhCaBP5 was observed in the pellet

fraction containing F-actin unlike EhCaBP3, suggesting that

participation of EhCaBP5 in phagocytosis follows a different path

than that of EhCaBP3. The results together clearly showed that

EhCaBP5 is involved in amoebic phagocytosis by directly

interacting with IQ motif of myosin 1B.

Down regulation of EhCaBP5
The results shown so far suggest strongly that EhCaBP5 is

involved in amoebic phagocytosis. In order to show if it is

required, we determined erythrophagocytosis levels in cells where

EhCaBP5 expression was down regulated by specific antisense

RNA [23]. The vector used and details of different constructs are

shown in Fig. 7A. The level of EhCaBP5 was significantly (62%)

reduced on tetracycline addition in the cells carrying antisense

construct (EhCaBP5AS) as compared to the cells carrying only the

vector (Fig. 7B). This effect was specific as a control coactosin

levels were monitored and the amount of coactosin did not

change. EhCoactin is F-actin stabilizing protein, recently we have

shown that overexpression of this protein results in arrest of

phygocytic cup formation [24]. EhCaBP5 gene was over expressed

using the cloned gene in the sense orientation (EhCaBP5S) the

amount of EhCaBP5 increased by 25% in the presence of 10 mg/

ml of tetracycline (Fig. 7C). E.histolytica cells carrying all these

constructs were then checked for erythrophagocytosis using a

spectrophotometric assay. Cells expressing EhCaBP5 antisense

RNA (that is, in the presence of tetracycline) displayed reduced

(55%) rate of phagocytosis as compared with cells carrying only

the vector in the presence of tetracycline and the cells carrying

EhCaBP5 antisense construct in the absence of tetracycline. On

over expression of EhCaBP5 with the help of a sense construct, an

increase of nearly 20% in erythrophagocytosis was observed as

compared to cells without tetracycline or vector containing cells in

the presence of tetracycline (Fig. 7D). Phagocytic cup formation

also showed similar pattern as that of phagocytic rates. The results

are shown in Fig. 8. Cup formation was reduced and delayed in

cells expressing anti-sense RNA. A few cups were seen only after

10 min of incubation with RBC in antisense cells. In control cells

generally cups were visible within a minute after addition of RBC.

Fig 3. Binding of EhCaBP5 with IQ motif. SPR Sensograms representing interaction between myosin 1B IQ motif peptide (IQKAWKGYRNRKR) and
EhCaBP5 in presence of Ca2+ (3A) and absence of Ca2+ (presence of 5 mM EGTA) (3B). Different concentrations of CaBP5 were injected onto the
sensor chip to calculate the dissociation constant (Kd). BSA was also injected at concentration 750 nM (Fig. 3B, grey colour).
doi:10.1371/journal.ppat.1004532.g003
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We also tested if EhCaBP5 is needed in the recruitment of

myosin 1B. This was done by imaging myosin 1B in actively

phagocytosing cells that are expressing anti-sense RNA of

EhCaBP5. There was no significant effect on myosin 1B staining

in cells with reduced concentration of EhCaBP5 that is in presence

of tetracycline in antisense construct carrying cells suggesting that

EhCaBP5 is not needed in myosin 1B recruitment (Fig. 9).

Model of the EhCaBP5-IQ motif complex
A theoretical model of the EhCaBP5-Myosin 1B IQ motif

complex was generated using molecular docking simulations in

order to predict conformational consequences of peptide binding

as well as the details about the interaction between the protein and

myosin 1B IQ motif peptide. The EhCaBP5 C-terminal domain

adopts a more open conformation in the peptide bound model

compared to native EhCaBP5 in absence of the peptide. It appears

from our model that EhCaBP5 accommodates the IQ-motif

peptide in the cleft, and N- and C-terminal lobes of EhCaBP5

move apart to wrap around the peptide. The model suggest that

N-terminus of the peptide may interacts with the C-terminal lobe

of EhCaBP5, and the C-terminus of the peptide binds to the N-

terminal domain of EhCaBP5 (Fig. 10A). Probable interface

residues of EhCaBP5 that may involve in interaction are F-15,

G-17, E-27, S-30, R-33, M-39 and D-117 with that of R-731,

Fig 4. Interaction of EhCaBP5 with myosin 1B. Total (800 mg) E. histolytica lysate was incubated with Sepharose-anti-CaBP5 antibody conjugate
for 6 h at 4uC with shaking. The beads were then washed and the bound material was then eluted and analysed by western blotting followed by
immunostained with anti-myosin 1B antibody raised in rabbit. The blot was reprobed with anti-CaBP5 antibody raised in mice. The total input lysate
was also probed for the presence of EhCaBP5 and myosin 1B by their respective antibodies.
doi:10.1371/journal.ppat.1004532.g004

Fig 5. Immunolocalization of EhCaBP5 in E. histolytica. Trophozoites grown for 48 h were transferred to pre-warmed coverslips for 10 min at
37uC. The cells were then fixed with 3.7% paraformaldehde/PBS, permeabilized with 0.1% triton X-100/PBS and then stained with anti-EhCaBP5
antibody followed by secondary antibody Alexa 488. Hoechst was used to stain the nuclei. Bar represents 10 mm. Magnification 60X.
doi:10.1371/journal.ppat.1004532.g005
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G-729, N-732, K-725, K-728 and R733 of the myosin peptide

(Fig. 10B).

Comparison of Apo and complex structure of EhCaBP5
Superimposition of the native EhCaBP5 structure on the

EhCaBP5-IQ motif model (Fig. 10C) indicates no global change

upon peptide binding. The conformations of the N-terminal

domains of the crystal structure and the Rosetta docked model are

nearly identical, with an r.m.s.d. of 0.072 Å. The simulations,

however, yielded about 15 degree reorientation of the C-terminal

domain related to N-terminal domain, compared to the native

structure, to accommodate the peptide resulting in a stretching out of

the central loop connecting the two domains (Fig. 10C). This has led

to a change in overall length from 47.7 Å to 55.1 Å between native

and peptide bound structures respectively. Moreover, the r.m.s.d.

between the C-terminal domains of the native crystal structure and

peptide bound model is 0.601 Å, reflecting greater predicted

conformational changes within the C-terminal domain, as compared

to within the N-terminal domain, upon binding of the peptide. These

changes result in reorientations of the helices that help the molecule

to have an open conformation needed to bind the peptide.

Model validation
The model described above was validated by performing SPR

experiments using mutated/altered residues of IQ motif peptide

(sequence provided in material & methods section). Initially we

mutated first two residues of peptide (IQ to AA) but we could not

find any significant change in Kd value. Further we mutated

Arg731, Arg733 and Arg735 to Asp. The dissociation constant of

mutated peptide with EhCaBP5 was calculated to be 4.1 mM as

against 0.64 nM was observed with native peptide (Fig. 11). The

observed dissociation constant shows that mutant IQ motif peptide

binds to EhCaBP5 with less affinity and hence these positively

charged residues Arg731, Arg733 and Arg735 are possible key

amino acids that are involved in interaction and affinity with

EhCaBP5, as indicated by the model.

Discussion

One of the major interpretations of our structural studies is that

the three-dimensional conformation of EhCaBP5 is more similar

to that of myosin’s ELC than to that of CaM, This was an

unexpected finding as EhCaBP5 displays relatively high sequence

Fig 6. Distribution of EhCaBP5, myosin 1B and actin in E. histolytica during erythrophagocytosis. (A) Co- localization of EhCaBP5 and
myosin 1B in E. histolytica cells during erythrophagocytosis. Cells were grown for 48 h and incubated with RBCs for 10 min at 37uC. The cells were
then fixed and immunostained with anti- EhCaBP5 and anti-myosin 1B antibodies followed by Alexa-488 (green) and Alexa-555 (red) secondary
antibodies. Arrow head depicts the co- localization of CaBP5 and myosin 1B in the phagocytic cup (upper panel) and an asterisk mark shows the
absence of EhCaBP5 in the phagosome. (B) Co-localization of EhCaBP5 with F-actin. Trophozoites were stained with anti-CaBP5 antibody and TRITC-
phalloidin (red) was used to stain the F-actin. The secondary antibody used for EhCaBP5 was Alexa-488 (green). Bar represents 10 mm. (DIC,
differential interference contrast).
doi:10.1371/journal.ppat.1004532.g006
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similarity with CaM. This conformational similarity with ELCs is

clearly seen on inspection as described in results and from the

structure based alignment using the Dali server [25]. The most

striking aspect of this similarity between EhCaBP5 and ELCs, but

not with CaM, is that the EF-hand motifs of EhCaBP5 and ELCs

are closed even in Ca2+ bound form.

The EhCaBP5 EF-hand motif remains in a closed conformation

after Ca2+ binding even though the Ca2+ coordinating residues are

canonical. The closed EF-hand motif conformation of EhCaBP5

can bind to the heavy chain and can stabilize the closed state of the

whole N-terminal lobe through cooperative interactions with or

without calcium. In CaM, the decrease in energy resulting from

the binding of Ca2+ compensates for the increase in energy

accompanying the conformational change that opens up the

hydrophobic pocket. However, there are more hydrophobic

residues on the helices of EhCaBP5 than on the helices of CaM

and there are two calcium binding loops in CaM compared to the

one site in EhCaBP5; these features cause an increase in the

energy that would be needed to open the hydrophobic cleft of

EhCaBP5. This is apparently not surmounted by binding of Ca2+

with the pocket remaining closed and the helices remaining

stationary, the glutamate at the 12th position of the EF-hand motif

is positioned too far to coordinate the Ca2+. As a result, the Ca2+

bound EF-hand motif of EhCaBP5 is trapped in a so called

intermediate state [20]. Our modelling of EhCaBP5 with myosin

1B IQ motif peptide suggests that EhCaBP5 adopts an extended

conformation when it binds to myosin. Calmodulin like light chain

of Mlc1p bound to IQ4 peptide of Myo2p also adopts an extended

conformation, and it was expected that the extended conformation

could mediate the formation of ternary complexes during protein

localization and/or partner recruitment [26]. Therefore we expect

that the extended conformation of EhCaBP5 with bound IQ motif

may also allow for interactions with other molecular partners

during various cellular processes.

The observation that the structure of EhCaBP5 resembles that

of ELCs, expands the opportunity for studying this myosin heavy

chain binding class of proteins. The importance of ELCs in

regulating the function of myosins is well known. However, most

of these studies have been carried out in just a few systems, notably

mammalian, drosophila and C. elegans. Recently, one of myosin II

light chain (CaBP20 or EAL50546) was identified [27] but there

has been little information about ELCs and their regulatory role in

myosin function in E. histolytica, especially on cellular myosin

involved in phagocytic cup formation, and our functional studies

of EhCaBP5 begin to address this issue.

A number of evidences suggest that the binding partner of

EhCaBP5 is myosin 1B but not myosin II. Assays using purified

molecules as well as cell extract based assays and cellular

Fig 7. Down regulation of EhCaBP5 reduces the rate of phagocytosis. (A) Schematic representation of sense and anti-sense construct.
EhCaBP5 was cloned in sense and anti-sense orientation in BamH1 and Kpn1 site of pEhHyg-TetR-O-CAT vector. (B, C) Western blot analysis of anti-
sense (B) and Sense EhCaBP5 (C). Thirty microgram of lysate from sense and forty microgram of anti-sense cells in presence and absence of
tetracycline were loaded to each lane. HM1 was used as a positive control and coactosin as a loading control. (D) RBC uptake assay performed with
cells expressing sense and anti-sense constructs in the presence and absence of tetracycline. The experiment was repeated three times
independently in triplicates. Comparisons were made with respect to cells vector alone or cells without addition of tetracycline. Statistical significance
was determined by paired- t test. P-values for ** is P,0.001, #P.0.05.
doi:10.1371/journal.ppat.1004532.g007
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colocalization have been used to demonstrate this interaction.

Over-expression and suppression of EhCaBP5 also influences the

rate of phagocytic cup formation. Since EhCaBP3 was also shown

to bind myosin 1B, it is important to compare differential role of

these two myosin 1B binding proteins. Our imaging experiments

clearly showed that these two myosin 1B binding proteins have

different specific functions, though overall both participate in

phagocytosis. While EhCaBP3 stays on the phagosomes even after

separation from membrane, EhCaBP5 is found till phagosomes

are getting closed, but absent in phagosomes after separation.

EhCaBP5 is not involved in recruitment of myosin 1B while

EhCaBP3 is [13] and EhCaBP3 does not bind to IQ motif (Figure

S1). Moreover, EhCaBP3 binds F-actin and myosin 1B in the

presence of Ca2+ [13], unlike EhCaBP5 that does not bind F-actin

and does not require Ca2+ for interacting with myosin 1B.

Furthermore, EhCaBP3 is also present inside the nucleus [13], a

feature not displayed by EhCaBP5. These observations indicate

both these calcium binding proteins are functionally different and

that myosin 1B may be using different ELCs (or binding proteins)

for carrying out different functions. Taken together, our structural

studies show that EhCaBP5 resembles ELCs, and the functional

studies indicate that it is likely to be the ELC of myosin 1B. E.
histolytica has only two myosin in spite of high motility and

tremendous high rate of phagocytosis. Other organisms, such as

Fig 8. Erythrophagocytosis of cells overexpressing EhCaBP5 antisense and sense RNA constructs in the presence and the absence
of tetracycline. Amoebic cells overexpressing EhCaBP5S and EhCaBP5AS with and without tetracycline were incubated with RBC for 10 min. The
cells were then stained with Alexa 488(EhCaBP5) and myosin 1B (red). Solid arrow depicts the phagocytic cup and asterisk shows the phagosome.
(scale bar, 10 mm; DIC, differential interference contrast).
doi:10.1371/journal.ppat.1004532.g008
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Fig 9. Erythrophagocytosis of amoebic cells overexpressing EhCaBP5 antisense RNA in presence of tetracycline. Amoebic cells were
incubated with RBC for 15 min. The cells were then stained with Alexa 488 (EhCaBP5) and myosin 1B (red). Solid arrow heads represent the closure of
phagocytic cup. (scale bar, 10 mm; DIC, differential interference contrast).
doi:10.1371/journal.ppat.1004532.g009

Fig 10. Protein-peptide Interaction. A) Rosetta-docked lowest energy model of EhCaBP5 (grey ribbon) bound with an IQ motif (yellow ribbon for
backbone and sticks for side chains). B) Schematic representation of the contacts between EhCaBP5 and the peptide. The interaction shown by
dotted orange lines are the non-bonded interactions, in which the width of the striped line is proportional to the number of atomic contacts. A blue
line between any two residues indicates hydrogen bond interactions. C) Superimposition of the native EhCaBP5 crystal structure on the model of
peptide-bound EhCaBP5 shows a predicted 15u rotation of the C-lobe relative the N-lobe upon binding of the peptide.
doi:10.1371/journal.ppat.1004532.g010
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human has about 40 different myosin heavy chain genes,

Dictyostelium discoideum, a closely related free living protist,

encodes thirteen [28].

Therefore it is intriguing to understand how E. histolytica
carries out all functions using only two myosins. We suggest that

myosin 1B uses these two proteins as light chains to carry out

different functions. If this is true then this helps partly to explain

myosin paradox in E. histolytica.

The mechanism by which it dissociates from myosin before

phagosomes are closed is not clear. Particularly it is difficult to

explain at present given the slow dissociation rate of bound IQ

motif peptide, and the role of Ca2+ in this process. It is possible

that other yet unknown regulatory proteins may be involved in this

process. In this report we have attempted to delineate the function

of the calcium binding protein EhCaBP5 using both structural and

cellular approaches and showed that it is a myosin 1B binding

protein and participates in phagocytosis. EhCaBP5 is one of a

number of growing calcium binding proteins (EhCaBP1, Eh-

CaBP3, EhC2PK) that have been recently identified to be

involved in amoebic phagocytosis suggesting that Ca2+ has an

important signalling role in phagocytosis.

Materials and Methods

Preparation of selenomethionine labelled protein
Since the structure of EhCaBP5 (accession number EAL46660)

could not be solved by molecular replacement [15], selenium-

labelled protein was prepared to obtain phases. For preparation of

selenium-labelled protein, E. coli BL21 (DE3) cells containing

EhCaBP5 plasmid were grown overnight in LB media. Cells were

harvested by centrifugation at 4000 rpm for 10 minute. Harvested

cells were washed with selenomethionine medium (Molecular

Dimensions) twice, to take out residual LB medium, and then was

suspended in the same media for inoculation for the further

culture as described before [29]. For protein expression and

purification we have followed same protocol as describe earlier for

native protein [15].

Crystallization
Crystals of EhCaBP5 selenomethionine labelled protein were

grown in similar conditions as were crystals of native EhCaBP5

[15].

Data collection, processing and structure determination
SeMet- EhCaBP5 crystals were soaked in cryoprotectant

solution consisting of 2.8 M sodium acetate, 0.1 M Bis-Tris

pH 5.5, and 20% glycerol. A single crystal was picked up in a

cryo-loop and flash frozen in liquid nitrogen. A single wavelength

anomalous dispersion (SAD) diffraction dataset was collected to

1.9 Å resolution at the Se edge (l= 0.9788 Å) on a MARCCD

165 detector at the DBT-BM14 beamline of the European

Synchrotron Radiation Facility (ESRF, France). The peak dataset

was then indexed, integrated, and scaled using the HKL2000 [30].

Data collection statistics are shown in Table 1. The crystal

belonged to space group C2 with unit cell parameters a = 70.55 Å,

b = 44.45 Å, c = 47.73 Å, a = 90u, b = 108.9u, c = 90u. Assuming

Fig 11. Model Validation. SPR Sensogram represents the binding of Native IQ motif peptide (green) and Mutant IQ-M2 peptide (red) to EhCaBP5
immobilized surface.
doi:10.1371/journal.ppat.1004532.g011
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one molecule of EhCaBP5 per asymmetric unit, the crystal volume

per unit of protein mass 2.32 Å3/Da [31], which corresponds to a

solvent content of 47.3%. The sequence of EhCaBP5 consists of

four SeMet residues and the positions of the Se atoms were

determined using SHELXD program (correlation coefficient, CC

all/weak: 34.7/25.4; Patterson figure of merit, PATFOM 12.33)

[32]. The initial phases were computed and partial model was

built with SHELXE program as part of the HKL2MAP package

[33,34]. This partial model was used as a starting point for

iterative automated model building and rebuilding along with

sequence docking using Auto Build program in Phenix software

[35], the remaining parts of the structure including side chains

were modeled manually. The model was refined using the

program REFMAC5 [36] and iterative manual rebuilding of the

model was performed in COOT [37]. One Ca2+ atom was

identified and included in the refinement. The translation-

liberation-screw (TLS) displacement parameters were determined

and TLS restrained refinement was performed [38]. For the final

model, the Rwork is 18.7% and Rfree is 22.1%. The structure has

good electron density (Figure S2) and stereochemistry as indicated

by program PROCHECK [39] with 96.1% of residues lying in the

most favoured regions of the Ramachandran plot. The final

refinement statistics are shown in Table 1. The refined model of

EhCaBP5 and structure factors was deposited in the Protein Data

Bank under the accession code 4OCI.

Surface plasmon resonance (SPR)
The E. histolytica genome codes for two myosin, myosin I

(accession number EAL48894) and myosin II (accession number

EAL51645). Myosin I has one IQ motif and myosin II has two IQ

motifs. To check the interaction between EhCaBP5 and myosin

IQ motifs, we commercially synthesized (obtained) peptides of IQ

motif of myosin 1B (unconventional myosin) (IQKAWK-

GYRNRKR) and second IQ motif of heavy chain myosin (myosin

II) (LQACARAFAARKHFS), which is expected to bind to ELC.

For the binding study we used Biacore T200 apparatus (Biacore,

GE Healthcare) at National Institute of Plant and Genome

Research New Delhi, India. A total of 2000 resonance units (RU)

of peptides were immobilized on a research grade S series CM4

sensor chip in 10 mM sodium acetate, pH 5.0 according to the

manufacturer’s amine coupling kit. After peptide immobilization,

the surface was blocked with 1 M ethanolamine at pH 8.5,

followed by regeneration using 50 mM NaOH. The interaction

experiments were performed using buffer containing 10 mM

HEPES pH 7.4, 150 mM NaCl and 0.2 mM Calcium chloride.

We also performed interaction experiment in absence of Ca2+ and

supplementing 5 mM of EGTA in the above buffer. Binding

experiments were carried with different concentrations (125,250,

500, 750, 1000, and 2000 nM) of EhCaBP5 in running buffer and

injected at the rate 20 mL/min. For control we took bovine serum

albumin (BSA) and EhCaBP3 at concentration 750 nM. The

Table 1. Crystallographic data-collection statistics.

X-ray source ESRF BM14 Beamline

Wavelength (Å) 0.9788

Space Group C2

Cell parameters (Å, u) a = 70.5; b = 44.4, c = 47.7

a= 90, b= 108.9, c= 90

Resolution range (Å) 20–1.9

B-factor Wilson plot (Å2) 25.6

Mosaicity range (u) 0.61–0.87

Total Reflections 63546

Unique Reflections 21006

Completeness (%)a,b 98.7 (92.3)

Redundancy 3.0 (2.8)

Mean I/s (I) 23.9 (2.13)

Rmerge(%)b,c 7.5 (88.8)

ShelxDd: Data used (Å) 2.4

PAT figure of merit (FOM) 12.33

Refinement statistics

Resolution range (Å) 20–1.9

Reflections used for refinement (all) 9684

Reflections used for Rfree 1212

Rcryst(%)e 22.1

Rfree (%) 18.7

r.m.s.d. bond lengths (Å) 0.010

r.m.s.d.bond angles (u) 1.371

aData completeness treats Bijvoët mates independently.
bStatistics for the highest resolution bin (1.9–1.93 Å) are given in parentheses.
cRmerge =ghklgi|I(hkl)i|2,I(hkl).|/ghklgi,I(hkl)i..
dSubstructure determination parameters are from ShelxD.
eRcryst =ghkl||Fo(hkl)|2k|Fc(hkl)||/ghkl|Fo(hkl)|, where Fo and Fc are observed and calculated structure factors.
doi:10.1371/journal.ppat.1004532.t001
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association kinetics for EhCaBP5 was monitored for 300 seconds

and dissociation was monitored for the next 300 seconds.

To validate EhCaBP5-IQ motif complex model, we obtained

commercially synthesized two mutated Myosin 1B IQ motif

peptide IQ-M1 A*A*KAWKGYRNRKR (where IQ is mutated to

AA) and IQ-M2 IQKAWKGYD*ND*KD* (Where R is mutated

to D). The EhCaBP5 was immobilized on sensor chip up to 500

resonance units and native myosin 1B IQ motif peptide and

mutated IQ motif peptide were passed as analyte at concentration

of 25, 50, 75, 100 and 125 mM. The data were recorded at 25uC
and data analysis was performed using Biacore T2000 SPR

Kinetics evaluation software.

Growth conditions, transfection and selection
E. histolytica stain HM1: IMSS and the transformants were

maintained and grown in TYI-S-33 medium as described before

[40]. Hygromycin (Sigma) were added at 10 mg ml21 for

maintaining transgenic cell lines as indicated. Transfection was

performed by electroporation. Mid-log phase cells were harvested

and washed first by PBS and then cytomix buffer (10 mM

K2HPO4/KH2PO4 (pH 7.6), 120 mM KCl, 0.15 mM CaCl2,

25 mM HEPES (pH 7.4), 2 mM EGTA, 5 mM MgCl2). The

washed cells were then re-suspended in 0.8 ml of cytomix buffer

containing 4 mM adenosine triphosphate, 10 mM glutathione and

200 mg of plasmid DNA. The suspension was then subjected to

two consecutive pulses of 3,000 V cm 21(1.2 kV) at 25 mF (Bio-

Rad, electroporator). The transfectants were initially allowed to

grow without any selection for 48 h. Selection was carried out by

adding hygromycin B (10 mg ml21).

Cloning of EhCaBP3S and EhCaBP3AS
pEhHYG-tetR-O-CAT shuttle vector was used for cloning of

sense and anti-sense constructs. The CAT gene of pEhHYG-tetR-

O-CAT [41] was excised using KpnI and BamHI and EhCaBP5

gene was inserted in its place in either the sense or the antisense

orientation. The sequences of oligonucleotides used for making the

above stated constructs are provided below,

CaBP5_sense_FP-59CGGGGTACCATGCAAAAACACAAT-

GAAGAC-39

CaBP5_sense_RP-59GCGGGATCCTTACTTGAAAACAGT-

CATTAATTG-39

CaBP5_anti sense_FP-59CGCGGATCCATGCAAAAACACA-

ATGAAGAC-39

CaBP5_ anti sense _RP-59CCGGGTACCTTACTTGAAAA-

CAGTCATTAATTG-39

Standard molecular techniques were used for making all these

constructs. These clones were transfected as indicated above.

Immunofluorescence labelling
Amoebic cells were labelled as described previously [5]. Cells

grown at 37uC for 48 h were first washed with PBS and then with

incomplete TYI-S-33 medium. The cells were then resuspended in

the same medium and were allowed to grow on coverslips at 37uC
for 10 min followed by fixation with 3.7% formaldehyde for

30 min, washed with warm 16PBS and permeabilized with 0.1%

Triton X-100 for 5 min. Additional treatment using chilled

methanol (220uC) for 3 min was carried out for staining myosin

1B. Permeabilized cells were then washed with PBS and quenched

with 50 mM NH4Cl for 30 min at 37uC, followed by blocking

with 1% BSA-PBS for 1 h. The cells were then stained with

primary antibody for 1 h followed by Alexa Fluor 488 conjugated

or TRITC conjugated anti-mouse secondary antibodies.

F-actin was labelled with phalloidin using a similar protocol as

above except the methanol step was omitted. Antibody dilutions

used were: EhCaBP5 at 1:200, EhCaBP1 at 1:200, phalloidin

(Sigma; 1 mg/ml) at 1:250, myosin 1B at 1:150, anti-rabbit or

mice Alexa 488 (Molecular Probes, Catalogue No. A-11008 or A-

11001) at 1:200, anti-rabbit or mice Alexa 555 (Molecular Probes,

Cat. No. A-21428 or A-21422) at 1:300. The preparations were

further washed with PBS and mounted on a glass slide using

DABCO [1, 4-diazbicyclo (2, 2, 2) octane (Sigma) 10 mg/ml in

80% glycerol]. The edges of the coverslips were sealed with nail-

paint to avoid drying. Confocal images were visualized by using an

Olympus Fluoview FV1000 laser scanning microscope.

RBC uptake assay
To quantify the red blood cells (RBC) ingested by amoebae, the

colorimetric method of estimation was followed with little

modifications [42]. Briefly, 16107 RBCs were washed with PBS

followed by TYI-S-33 and then incubated with 16105 amoebae

for different time points at 37uC in 0.5 ml culture medium. The

amoebae and erythrocytes were pelleted and non-engulfed RBCs

were lysed with cold distilled water and

Centrifuged at 1000 g for 2 minutes. This step was repeated

twice, followed by resuspension in 1 ml formic acid to burst

amoebae containing engulfed RBCs. The optical density of the

samples was determined by a spectrophotometry at 400 nm using

formic acid as the blank.

Immunoprecipitation
Immunoprecipitation was carried out as described previously

[13]. Briefly, CNBr-activated Sepharose-4B beads (Pharmacia)

were conjugated with anti-EhCaBP5 antibody. Crude immuno-

globulins were collected from the immunized serum using 40%

ammonium sulphate and subsequently dialysed in coupling buffer

(bicarbonate buffer). Usually, 10 mg immunoglobulin protein was

added per gram of CNBr-activated Sepharose-4B beads. The resin

was mixed gently for 18 h at 4uC. The conjugated Sepharose

beads were incubated with E. histolytica lysate for 6 h at 4uC. The

beads were then washed thrice with wash buffer (10 mM Tris-Cl

(pH 7.5), 150 mM NaCl, 1 mM imidazole, 1 mM magnesium

acetate, 2 mM b-ME and protease inhibitor cocktail). Ca2+ and

EGTA were maintained throughout the process as required. After

incubation the beads were washed sequentially with 60 mM Tris-

Cl (pH 6.8), 100 mM NaCl and with 60 mM Tris-Cl (pH 6.8).

The pellet was suspended in 26 SDS polyacrylamide gel

electrophoresis (PAGE) buffer and boiled for 5 min followed by

centrifugation for 5 min. The proteins were then analysed by

western blotting.

Modelling and docking of EhCaBP5 with IQ motif
Analysis of the crystal structure showed that the conformation

of the Ca2+ bound EF-hand motif of EhCaBP5 resembles that of

myosin ELC, the coarse grained model of the EhCaBP5-peptide

complex was obtained using the crystal structure of squid

myosin, which contains its ELC and associated IQ motif-

containing heavy chain (PDB ID-3I5G) [18]. The peptide bound

conformation of EhCaBP5 was obtained by employing the

flexible superimposition protocol of RAPIDO structural align-

ment software [43]. The course grained complex model of

CaBP5-IQ motif used as the starting structure was then used for

the molecular docking simulations with the IQ motif peptide

using Rosetta FlexPepDock web server [44]. The Rosetta

FlexPepDock protocol optimizes the protein-peptide complex

using Monte-Carlo algorithm along with energy minimization

[45]. In this study we used 200 models for refinement and chose

the best model based on their Rosetta generic full-atom energy

CaBP5 Interacts with Myosin IB and Involved in Phagosome Formation.

PLOS Pathogens | www.plospathogens.org 12 December 2014 | Volume 10 | Issue 12 | e1004532



score (Figure S3). The images were prepared using Pymol [46]

visualisation software.

Supporting Information

Figure S1 EhCaBP3 was run on myosin 1B IQ motif
immobilized surface at concentration of 750 nM. The

curve indicates that EhCaBP3 does not interact to myosin 1B IQ

motif as the curve is closer to baseline.

(TIF)

Figure S2 Electron density map of representative are of
EhCaBPs at 1.5 s cut-off.
(TIF)

Figure S3 Modelling of EhCaBP5 and IQ motif using
FlexPepDock. A) Shows the top 10 peptides superimposed at the

binding site. B) A plot of the 200 models created by FlexPepDock,

showing Rosetta score (y-axis) vs. RMSD from the reference

structure (x-axis); rmsBB - RMSD is calculated only for peptide

backbone heavy atoms.

(TIF)
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