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A system of ordinary differential equations,
n

��y � q y � � r y , j � 1, . . . , n , 0.1Ž .Ýj j j k jk jž /
k�1

� �with real valued and continuous coefficient functions q , r is studied on 0, 1j jk
subject to boundary conditions

y� 0Ž .j � �T� cot � and b y 1 � d y 1 � e � c y 1 � a y 1 0.2Ž . Ž . Ž . Ž . Ž .Ž .j j j j j j j j j jy 0Ž .j

T � �for j � 1, . . . , n. Here E � e e ��� e is an arbitrary n � n matrix of real1 2 n
� �T n Ž .numbers and � � a d � b c � 0. A point � � � ��� � � � satisfying 0.1j j j j j 1 n

Ž .and 0.2 is called an eigen�alue of the system. Results are given on the existence
and location of the eigenvalues and completeness and oscillation of the eigenfunc -
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1. INTRODUCTION

This paper is aimed at two of the many generalizations of the theory of
Sturm�Liouville equations,

� � ��y � qy � �ry on 0, 1 . 1.1Ž .

One involves �-dependent boundary conditions of the form

a � � b y i � c � � d y� i ,Ž . Ž . Ž . Ž .i i i i

T 4� �0 � a b c d � R , i � 0, 1, 1.2Ž .i i i i

in place of the usual condition for which a � c � 0. Roughly, the theoryi i
Ž .is in two parts. One concerns ‘‘Sturm’’ e.g., oscillation and comparison

� �theory, for which we refer to 10 and the references therein. The other
Ž .concerns ‘‘Liouville’’ e.g., completeness and expansion theory via the

spectral decomposition of a self-adjoint operator on a Hilbert or a Pon-
� � Ž . Žtryagin space. We refer to 20 for an approach in L � where � is a2

.partly atomic measure and for many references. Further approaches in
suitably weighted spaces of the form L 	 � k, perhaps for more general2

� �differential equations and boundary conditions, can be found in 15, 16
and the references therein. We remark that if the boundary condition at
x � 0 is independent of � and r � 0, then k � 1 and L 	 � is a Hilbert2

Ž . Žspace resp. Pontryagin space of index 1 if � � a d � b c � 0 resp.1 1 1 1 1
.� 0 . Both signs are of physical relevance. A Pontryagin space situation

Ž � �also arises if the weight function is indefinite cf. 7, 13 for applications of
.indefinite weights .

The second generalization of Sturm�Liouville theory that we shall
embrace deals with a ‘‘multiparameter’’ system of differential equations
Ž . n Ž0.1 involving an eigenvalue � � � . Standard self-adjoint usually sepa-

.rated boundary conditions are imposed for each equation, and ‘‘Sturm’’
Ž .and ‘‘Liouville’’ theories as above are known for a variety of so-called

� Ž .�definiteness conditions: for example, if det r x is of one sign for alljk j

� � Ž . �x � 0, 1 , then 0.1 is called ‘‘right definite.’’ We refer to the books 1, 18,j

�19 for various aspects of the theory, developed in either Cartesian or
tensor products of L spaces. We remark that these spaces are endowed2

Ž .with various inner products, leading to either Hilbert as cited or Pontrya-
Ž � �.gin spaces cf. 12 .

Ž .Our goal here is to consider multiparameter systems 0.1 subject to
Ž . Ž . Žboundary conditions 0.2 generalizing 1.2 for i � 1. Using similar meth-

.ods, we could also consider �-dependent boundary conditions for i � 0.
� �We are aware of only two papers on this topic, 3, 14 . Browne and

Sleeman considered a natural generalization of right-definiteness, using an
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Ž .abstract approach based on a tensor product H of L � spaces of the2
type used by Walter in the case n � 1. A spectral decomposition was
obtained via the joint spectral measure of certain operators � in H, butk

Ž .these operators are rather indirectly related to the original data in 0.1
and the boundary conditions. Here we shall apply abstract methods in
tensor products of L 	 � spaces, to deal with various different definite-2
ness conditions. We remark that even if the analogue of � � ad � bc in

� �just one boundary condition is of opposite sign from the situation in 14 ,
Žthen the Hilbert space tensor product setting is replaced by a Krein not

.Pontryagin space K. In principle the analysis then involves commuting
self-adjoint operators in K , and their theory is not well developed. We
have therefore taken a route involving fundamental symmetries, enabling
us to consider operators in a Hilbert or Pontryagin space instead.

In Section 2 we set up our assumptions and the various definiteness
conditions in terms of quadratic forms in a Cartesian product of spaces
L 	 � with Hilbert or Pontryagin space inner products. The passage to2
tensor products is carried out in Section 3, along with the main complete-
ness results. Section 4 details the special case n � 2; our definiteness
conditions are then expressible in a simpler way in terms of the original
data. As a consequence of our abstract setting, we are able to generalize

� �our work on a special right-definite case in 3 , and we give results on the
location and asymptotics of eigenvalues as well as the oscillation of
eigenfunctions.

2. PRELIMINARIES

In the notation of the Abstract, the system can be suitably scaled to
make � � �1, and we shall assume that this scaling has been done. As aj
referee pointed out, one could in fact choose each � � 1, but that wouldj

Ž .change the e and hence the V �see 2.2 . We have chosen to make usejk jk

Žof established work involving ‘‘definiteness conditions’’ cf. Definitions 2.2
.and 2.3 on the V , accepting the possibility that some � � �1, ratherjk j

than proceeding ab initio. See also Remark 4.2.
After a possible reordering of the equations we may then assume that

there is a positive number n 
 n such that � � 1 for j 
 n and0 j 0
2� �� � �1 for j � n . Consider n copies of L 0, 1 	 �, each with twoj 0

different inner products. For j � 1, . . . , n let K be the vector space directj
2� �sum L 0, 1 	 � with two inner products defined by

1
Y, Z � yz � 	� ,Ž . j� H

0
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where

zyY � , Z �ž / ž /�	

Ž .belong to K . For j 
 n , we shall need only the . , . inner product. Wej 0 �
shall omit the subscript j when there is no chance of confusion. Note that

Ž .K is a Hilbert space K under . , . and a Pontryagin space K ofj j� � j�
Ž .index 1 under . , . . All topological concepts on K will be understood� j

Ž .with respect to the . , . inner product.�
� �Let AC be the subspace of L 0, 1 consisting of absolutely continuous2

functions. We introduce two linear functionals on AC by

P y � b y 1 � d y� 1 and Q y � a y 1 � c y� 1 ,Ž . Ž . Ž . Ž . Ž . Ž .j j j j j j

for y � AC.

For each j, k � 1, . . . n one can then consider the unbounded operators Tj
and the bounded operators V on K ,jk j

� � 2 � �D T � Y � K : y , y � AC , �y � q y � L 0, 1 ,Ž . �j j j

y� 0 � cot � y 0 , 	 � �Q yŽ . Ž . Ž . 4j j

and

�y� � q y �y� � q yj j
T Y � � 2.1Ž .�j b y 1 � d y 1 P yž / ž /Ž . Ž . Ž .j j j

Ž .for Y � D T , whilej

r yjkV Y � for Y � K , 2.2Ž .jk je 	ž /jk

Ž .where the coefficients come from the Abstract; in particular e � e .jk j k
Ž . Ž .Then the system 0.1 , 0.2 is equivalent to

n

T � V � Y � 0, j � 1, . . . , n , 2.3Ž .Ýj jk k jž /
k�1

Ž .where Y � D T . The operators T are densely defined for all j � 1, . . . , n.j j j

LEMMA 2.1. The operators T are selfadjoint for j 
 n in K and forj 0 j�
j � n in K .0 j�

Proof. For j 
 n , the T are Hilbert space operators and the self-ad-0 j

Ž � �.jointness was proved by Fulton see 16 . For j � n , let J be the0 j
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Ž .fundamental symmetry of the Krein space K given by J y, � �j� j
Ž .y, �� . For X, Y � K , the operator J satisfiesj� j

J 2 � I , X, Y � J X, Y � X, J Y , X, Y � J X, Y .Ž . Ž .Ž . Ž . Ž .� �j j j j� � �

2.4Ž .

˜ ˜Ž . Ž .Define a Hilbert space operator T on K by 2.1 for Y � D T wherej j� j

˜ � � 2 � �D T � Y � K : y , y � AC , �y � q y � L 0, 1 ,�ž /j j j

y� 0 � cot � y 0 , 	 � Q y .Ž . Ž . Ž . 4j j

˜ ˜Ž . Ž . Ž .Then D T � J D T and T Y � T J Y for Y � D T . Now the result ofj j j j j j j
˜ ˜� �Fulton in 16 applies to the operator T . Thus T � T J is self-adjoint inj j j j

K , so T is self-adjoint in K .j� j j�

The bounded operators V are hermitian because r are real-valuedjk jk
Žand e are real. The corresponding quadratic forms taken with respect tojk

the Hilbert space inner product for j 
 n and the Pontryagin space inner0
. Ž .product for j � n are denoted by � . For Y � Y , . . . , Y , we set0 jk 1 n

Ž . Ž . Ž . � Ž .� Ž . Ž .� Y � � Y , 
 Y � det � Y , and 
 Y � the cofactor of � Yjk jk j 0 jk 0 jk jk

Ž .in 
 Y . The definiteness assumptions we shall consider with respect to0
the Hilbert and Pontryagin inner products are as follows. In the next
section we shall relate them to Krein space definiteness conditions. Let

� � � 4U � Y � K : Y � 1 and U � U � ��� � U .j j j j 1 n

Ž .DEFINITION 2.2. Uniform Right Definiteness URD .

For some � � 0 and for each Y � Y , . . . , Y � U, 
 Y � � .Ž . Ž .1 n 0

2.5Ž .

Ž .DEFINITION 2.3. Uniform Ellipticity UE .

For some � � 0 and for each j, k and Y � U, 
 Y � � . 2.6Ž . Ž .0 jk

LEMMA 2.4. The quadratic forms t and � can be expressed asj jk

1 1def 22 2�² : 	 	 	 	t Y � T Y , Y � y � q y � y 0 cot � � � D y ,Ž . Ž . Ž .� H Hj j j j j j j j j j j
0 0

for Y � D T ,Ž .j j

where � � 1 for j 
 n , � � �1 for j � n and0 0

y 1�a b b c Ž .jj j j j�D y � y 1 y 1 .Ž . Ž . Ž . �j j j j b c �c dž / y 1Ž .j j j j j
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Moreo�er,

1 2 2	 	 	 	� Y � r y � � e 	 for all Y � K .Ž . Hjk jk j jk j j
0

Proof. The expression for � follows from the definition. For t , wejk j
write

1 1 2� � �	 	t Y � � y y � q y � b y 1 � d y 1 c y 1 � a y 1 ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .H Hj j j j j j j j j j j j j
0 0

with � for j 
 n and � for j � n . On simplification, using a d � b c0 0 j j j j

� �1 or �1 depending on j, this is equal to the expression displayed
above for t .j

Remark 2.5. The above expression for t is valid throughout the formj
Ž � � .domain of T see 9 for details .j

Ž .A strengthening of 2.6 is uniform left definiteness. Both uniform elliptic-
Ž � �ity and left definiteness arise in a variety of natural problems see 18 and

. � �the references therein and in several forms 4 .

Ž .DEFINITION 2.9. Uniform Left Definiteness ULD .

UE holds and for some � � 0 and for each j and Y � U with Y � D T ,Ž .j j

t Y � � . 2.7Ž . Ž .j

3. A KREIN SPACE FORMULATION

Let K be the Hilbert space tensor product of the spaces K , . . . , K� 1� n�
and let K be the tensor product of the K for j 
 n and K for� j� 0 j�

Ž .j � n . The inner products on K and K will be denoted by . , . and0 � � �
Ž . Ž .. , . , respectively. If n � n, then K is a Krein and not a Pontryagin� 0 �
space. Its fundamental symmetry is J � �n J , where, for notationaljj�1

simplicity, we let J be the identity on K for j 
 n . The operator J nowj j 0
Ž .satisfies an analogue of 2.4 . For any j � 1, . . . , n and any operator, say A,

˜Ž .on K or on the Krein space K , A will denote the Hilbert spacej �
Ž . Ž . Ž Ž ..operator AJ or AJ on the domain J D A respectively JD A . Hencej j

˜if 1 
 j 
 n , A � A.0
The operators T and V induce in a natural way operators T † and V †

j jk j jk

on K. Note that V † and V † commute whenever j � r, and hence we canjk r s

define the n � n determinant

† � det V . 3.1Ž .0 jk
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Henceforth, we shall assume that  is one to one. This assumption could0
Ž � �. †be weakened cf. 12 . The cofactor of V in  is denoted by  . Forjk 0 0 jk

each k � 1, . . . , n, let the unbounded operator  be the closure ofk
	 n † n Ž †. � Ý  T on domain D � � D T . The following lemmaDk j�1 0 jk j j�1 j

gives equivalent formulations of URD, UE, and ULD in terms of  . Wek
use 
 0 to denote uniform positive definiteness.

LEMMA 3.1. The operators  are densely defined and self-adjoint in K ,k �
Ž . Ž . Ž .and 2.5 , 2.6 , and 2.7 are equi�alent to

 
 0, 3.2Ž .0

 
 0, for j, k � 1, . . . , n , 3.3Ž .0 jk

and

3.3 together with T 
 0 on D T , 3.4Ž . Ž .Ž .j j

respecti�ely.

˜Proof.  is bounded and self-adjoint on K , and hence so is  on0 � 0
˜ n ˜ † n ˜ †K . Consider the operator  �  J � Ý  T J � Ý  T J �� k k j�1 0 jk j j�1 0 jk j j

n ˜ ˜† ˜ ˜†Ž .Ý  T with domain JD  . Note that all  and T are denselyj�1 0 jk j k 0 jk j

� �defined and self-adjoint on K under UE 12 . Hence  is densely� k
defined and self-adjoint on K by an argument similar to the proof of�
Lemma 2.1.

˜�Ž . �Next note that for all decomposable tensors Y, det V Y, Y �jk �
˜�Ž . � Ž . � � Ž .det V Y, Y � 
 Y . By 4 , 
 Y � � � 0 is thus equivalent to  
 0.jk � 0 0 0

Ž . Ž .This in turn is the same as  
 0, which shows that 2.5 and 3.2 are0
equivalent. The other conclusions follow similarly.

Ž . Ž . Ž .Let PCI K resp. K be the set of all operators on K resp. K ,� � � �
which have self-adjoint, positive, compact inverses. As a consequence of
Lemma 3.1,  has a positive bounded inverse under URD. In the next0
lemma, we use linear transformations of the eigenvalues given by

n
�� � 	 � , for m � 1, . . . , n ,Ým m k k

k�1

� �where the n � n matrix 	 is non-singular.m k

LEMMA 3.2. Under ULD and UE, there are non-singular linear transfor-
Ž .mations of the eigen�alues, such that under ULD, each  � PCI K andk �

under UE, after an additional translation of each � by � , the  are boundedj k
Ž .below and  � � � PCI K for some � � 0.k 0 �
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˜Ž .Proof. First note that an operator A � PCI K if and only if A ��
Ž .PCI K . The first assertion then follows by appealing to Theorem 3.3 of�

˜� �5 , with  there replaced by  in our case.n k
˜Ž .The ellipticity condition 3.3 assumes the form  
 0 in the Hilbert0 jk

� �space K , and then Theorem 2.5 in 12 implies the second conclusion.�

ŽFor k � 1, . . . , n, having applied the transformation of Lemma 3.2 and
. �1omitting primes , we define B �   when ULD or UB holds. Theo-k k 0

� � � �rem 6.1 of 5 and Theorem 3.2 of 12 show that the eigenvalues of the
Ž . Ž .system 0.1 , 0.2 are equivalent to

Y � � B Y, 0 � Y � K , k � 1, . . . , n.k k �

Hence the non-zero multiparameter eigenvalues under ULD or UE are
the componentwise reciprocals of the joint eigenvalues of the operators
�1 .k 0

When URD holds, we let � � �1 . Then the multiparameter eigen-k 0 k
Ž .values are the joint eigenvalues of � � � , . . . , � because the system1 n

Ž . Ž .0.1 , 0.2 is equivalent to

� Y � � Y, 0 � Y � K , k � 1, . . . , n.k k �

Ž . Ž .THEOREM 3.3. i When ULD holds, B � B , . . . , B is a commuting1 n
tuple of compact operators in K . Moreo�er, the eigen�alues of the system�
Ž . Ž .0.1 , 0.2 are the non-zero eigen�alues of B and are real with finitek

Ž . Ž .multiplicity and with no accumulation points. The eigen�ectors of 0.1 , 0.2
generate decomposable tensors forming a set S of joint eigen�ectors of the B ,k
complete in K .�

Ž .ii In the UE case, all but finitely many of the joint eigen�alues of the
Ž . noperator tuple B , . . . , B are in R . Moreo�er, there is a �ector space direct1 n

sum decomposition K � F 	 G where F is finite-dimensional and in�ariant�
under each B and the set S of joint eigen�ectors of B is complete in G.k k

Ž . Ž .iii When URD holds, � � � , . . . , � is a commuting tuple, and its1 n
joint eigen�ectors are complete in K .�

˜ ˜�1˜Ž .Proof. i Consider the operators B �   which were introducedk k 0
� �for Hilbert spaces in 5 . It is known that under the ULD assumption, the

˜ Ž � �.B are commuting compact operators see 5, Theorem 4.2 . In the Kreink
space formulation, using the fact that the fundamental symmetry J is an

˜ �1idempotent, we have B equal to   � B . Thus B is a commutingk k 0 k
compact operator tuple. Suppose the non-singular eigenvalue transforma-

˜1�2Ž .tions of Lemma 3.2 have been performed. Let D � D  under thek k
� �inner product � , � given byk

˜1�2 ˜1�2� �x , y �  x ,  y , k � 1, . . . , n , x , y � K .ž /k k k ��
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Then complete orthonormal bases for the D , k � 1, . . . , n, may be chosenk
Ž � � .from the set S see again 5 and recall that  is one-one . Since D is0 k

dense in K , the set S is complete in K .� �

Ž . Ž . � �ii The proof is similar to that of i , replacing 5, Theorem 4.2 by
� � Ž12, Theorem 3.1 and translating each � by an � � 0 if necessary seej

˜ ˜.Lemma 3.2 . Then D is defined via  � � , and the existence of F andk k 0
� �G as stated follow from 12 .

˜Ž .iii Under URD, we consider  , which is a bounded self-adjoint0
� �operator on K . Equip K with the inner product � , � , which is defined� � 0

by

˜� �X, Y �  X, Y , X, Y � K .Ž .0 0 ��

˜�1˜ �1Then the set of joint eigenvectors of � �   �   forms a com-k 0 k 0 k
plete orthonormal basis in K with respect to the inner product above�
Ž � �.see 19, Theorem 6.5.4 .

Hence in all of the above cases, the multiparameter eigenvectors are
complete in the specified spaces.

Remark 3.4. From the above proof, we note that the joint eigenvectors
� �are also orthogonal in the inner product � , � under ULD or UE and ink

� �the product � , � under URD.0

4. THE TWO-PARAMETER CASE

Ž . Ž .In this section we consider the problem 0.1 , 0.2 with n � 2, assuming
Ž .
 Y � 0 for Y � 0. This problem has been studied under the conditions0

� � � � � �E � I , � � 0 and det r � 0 for all y , y � L 0, 1 in 3 , providing2 j i j 1 2 2
existence, location, asymptotics, and perturbation of the eigenvalues � j
and oscillation of the eigenfunctions y . Here we generalize and extend thei

� �results of 3 . By continuity of the r , definiteness of 
 implies uniformjk 0
definiteness, so after an affine transformation of the eigenvalues, UE

� �holds 4 . In the sequel, we shall assume that this transformation has been
performed. Sign-definiteness of r and e is a consequence of the UEjk jk
condition, as follows.

Ž . j�k Ž . � �LEMMA 4.1. For each j and k, �1 r x � 0 for x � 0, 1 andjk
Ž . j�k�1 � e � 0. In particular, s � �e �e are distinct positi�e numbersj jk j j1 j2
for j � 1, 2.

Proof. If Y � Y � Y is a decomposable tensor, then the cofactor of1 2

Ž . Ž . Ž . j�kŽ Ž . 	 	 2 .� Y in 
 Y is �1 r y � � e 	 . Since UE holds, there is ajk 0 jk j j jk j
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� � 0, such that
j�k 2	 	�1 r y � � e 	 � � for all y and 	 .Ž . Ž .ž /jk j j jk j j j

Thus,
j�k � ��1 r y � � for all y � L 0, 1Ž . Ž .jk j j 2

and
j�k 2	 	�1 � e 	 � � for all 	 � �.Ž . j jk j j

Ž . j�k Ž . � � Ž . j�kThis is equivalent to �1 r x � 0 for x � 0, 1 and �1 � e � 0.jk j jk
0 0Ž . Ž .Positivity in the final contention is then immediate. Now let U � � .1 1

Ž .Evidently,  U � det E U. So since  is one-one, we have det E � 0,0 0
and distinctness of s follows.j

Remark 4.2. It follows that, after transformation as above, UE dictates
the sign of each � e . By allowing � to take both signs we increase thej jk j
possibilities for the e .jk

Our method of analysis will depend on the following lemma, which will,
in particular, enable us to define the eigencurves.

1 Ž . 1 Ž .LEMMA 4.3. There are two sequences � � � � � � ��� and20 1 21 1
2 Ž . 2 Ž .� � � � � � ��� of differentiable, monotone increasing functions of20 1 21 1

� and two sequences of eigenfunctions y and y such that for each integer1 1k 2 k
Ž i Ž .. Ž . Ž .k � 0 the pair � , � � and the function y satisfy 0.1 , 0.2 with1 2 k 1 jk

n � 2.
Moreo�er, the deri�ati�es of �i are gi�en by2 k

d�1 � Y d�2 � YŽ . Ž .2 k 11 1k 2 k 21 2 k� � and � � , 4.1Ž .
d� � Y d� � YŽ . Ž .1 12 1k 1 22 2 k

where

yjkY � � D T .Ž .jk jž /	

Ž .Proof. First rewrite 2.3 for j � 2 in the form

V�1T � � V�1V � � Y � 0 4.2Ž .Ž .22 2 1 22 21 2 2

involving self-adjoint operators V�1T and V�1V on K with a new inner22 2 22 21 2
Ž . Ž . � �product defined by . , . � . , V � . Applying the results of 6 , we22 22

Ž 2 . 2 Ž .obtain � , � eigencurves with eigenvectors Y � and with1 2 j 2 j 1

d�i
2 j �1 2 2 2 2 2 2� � V V Y , Y � Y , Y � �� Y �� Y . 4.3Ž .Ž . Ž . Ž . Ž .22 21 2 j 2 j 2 j 2 j 21 2 j 22 2 j22 22d�1
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Ž � �.Strictness of the inequalities follows from the standard theory cf. 10 .
For the other derivative, one has to carry out a similar analysis for j � 1
with the roles of � and � interchanged and then take the reciprocal.1 2

The graphs of the functions � j obtained in the above lemma for2 k
j � 1, 2 and k � 1, 2, . . . are called the eigencur�es.

Remark 4.4. In the special case when the matrix E is the identity we
Ž .obtain, for Y � D T ,j j

1 2�� Y � r y � e a y 1 � c y 1Ž . Ž . Ž .Ž . Ž .jk j jk j jk j j j j� j

r y if j � kŽ .jk j

2 2� � y 1Ž .� j j
r y � if j � k ,Ž .j j j 2� c � � dŽ .j j j

Ž .by virtue of the end condition at 1. When inserted into 4.1 , these
� �expressions coincide with the formulae obtained in 3 by ordinary differ-

ential equation methods.

The following two quantities and the asymptotic results following them
are useful in analyzing the eigencurves

M � sup �r x �r x : 0 
 x 
 1 andŽ . Ž .� 4j j1 j2

m � inf �r x �r x : 0 
 x 
 1 for j � 1, 2.Ž . Ž .� 4j j1 j2

LEMMA 4.5. All M and m are finite andj j

�1 � �2 �Ž . Ž .2 m 1 2 n 1
lim � M for m � 0 and lim � m for n � 01 2� �� �� � ��1 11 1

�1 �Ž .2 m 1
lim � m for m � 0 and1�� ���1 1

�2 �Ž .2 n 1
lim � M for n � 02�� ���1 1

�1 � �2 �Ž . Ž .20 1 20 1� 4 � 4lim � max s , M and lim � min s , m1 1 2 2� �� �� � ��1 11 1

�1 � �2 �Ž . Ž .20 1 20 1� 4 � 4lim � min s , m and lim � max s , M ,1 1 2 2� �� ��� � ���1 11 1

where s are defined in Lemma 4.1.j
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Proof. The M and m are finite because the r are continuous onj j jk
� �0, 1 and hence are bounded. Consider the first equation, i.e., j � 1 in
Ž .2.3 . It is equivalent to the Hilbert space equation

˜ ˜ ˜T � � V � V Y � 0 for Y � K .ž /1 1 11 12 1 1 1�

˜ ˜Since V 
 0 and �V 
 0, it follows that the eigencurve corresponding11 12
to �1 has two asymptotic directions forming � C1, where C1 is the cone of2 l l l
� satisfying

def1 ˜ ˜0 � � � � sup inf � V � � V Y, YŽ . ž /ž /l 1 11 2 12 ��Y�E �Udim E�l

for l � 1, 2, . . . .

˜Ž � � .See the discussion following Lemma 6.3 in 6 . The spectrum of � V �1 11
˜� V is2 12

˜ ˜� � V � � V � � � e � � e� 4Ž .ž /1 11 2 12 1 1 11 2 12

� � r x � � r x : 0 
 x 
 1 ,� 4Ž . Ž .1 11 2 12

so

� 1 � � inf � r x � � r x : 0 
 x 
 1 for all l � 1, 2, . . .� 4Ž . Ž . Ž .l 1 11 2 12

and

� 1 � � min � � e � � e , inf � r x � � r x : 0 � x � 1 .� 4� 4Ž . Ž . Ž . Ž .0 1 1 11 2 12 1 11 2 12

Ž .Hence the results follow. The case j � 2 in 2.3 is similar.

Ž . � 4 � 4LEMMA 4.6. i If 
 is positi�e, then max s , M � min s , m .0 2 2 1 1

Ž . � 4 � 4ii If 
 is negati�e, then max s , M � min s , m .0 1 1 2 2

Proof. Suppose 
 is positive. By virtue of Lemma 2.4, we have0

	 	 2 	 	 2
 Y � r y � � e 	 r y � � e 	Ž . Ž . Ž .Ž . Ž .0 11 1 1 11 1 22 2 2 22 2

	 	 2 	 	 2� r y � � e 	 r y � � e 	Ž . Ž .Ž . Ž .12 1 1 12 1 21 2 2 21 2

� �for all y , y � L 0, 1 and all 	 , 	 � �. Choosing 	 � 	 � 0 we get1 2 2 1 2 1 2
Ž . Ž . Ž . Ž .r y �r y � r y �r y , which gives m � M . Similarly choosing11 1 12 1 21 2 22 2 1 2

� 4y � 0 � 	 gives m � s . Thus m � max s , M . Choosing y � y � 02 1 1 2 1 2 2 1 2
and y � 0 � 	 gives, respectively, s � s and s � M . The case of 
1 2 1 2 1 2 0
negative is analogous.

We are now ready for our basic existence and uniqueness result.
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Ž . Ž .THEOREM 4.7. The system 0.1 , 0.2 has countably many two-parameter
Ž .eigen�alues. For each non-negati�e integer pair n � n , n , there is a unique1 2

n Ž .eigen�alue � on the n th eigencur�e of equation i i � 1, 2 .i

Proof. We give the proof for 
 positive. The proof for the other case0
is similar. For any k, we have

d�1 � YŽ .2 k 11 1k� � from Lemma 4.3
d� � YŽ .1 12 1k

2�r y � � e c y 1 � a y 1Ž . Ž . Ž .Ž .11 1k 1 11 1 1k 1 1k� 2��r y � � e c y 1 � a y 1Ž . Ž . Ž .Ž .12 1k 1 12 1 1k 1 1k

2�m �r y � s �� e c y 1 � a y 1Ž . Ž . Ž . Ž .Ž . Ž .1 12 1k 1 1 12 1 1k 1 1k� 2��r y � � e c y 1 � a y 1Ž . Ž . Ž .Ž .12 1k 1 12 1 1k 1 1k

� 4� min s , m .1 1

� 4 2Similarly max s , M � d� �d� for any l. Thus by Lemma 4.6, if we plot2 2 2 l 1
�1 and �2 against � , then these two curves meet exactly once, say at2 n 2 n 11 2

n 1 Ž n. 2 Ž n. n� . We denote the point � � � � � by � . Then it follows that1 2 n 1 2 n 1 21 2

Ž n n. Ž . Ž . Ž .� , � satisfy 0.1 and 0.2 with eigenfunctions given by y x �1 2 1
Ž n. Ž . Ž n.y x, � and y x � y x, � . To complete the proof, we note that1n 2 2 n1 2

Ž .two eigencurves from the same equation say i � 2 cannot intersect. For
if they did, then the strict inequalities in Lemma 4.3 would be violated. So

Ž 1 2 .to each pair of eigencurves � , � there corresponds the unique2 n 2 n1 2neigenvalue � .
�1� �T Ž .By changing the � origin to �E d �c d �c , we may and shall1 1 2 2

assume in what follows that d � d � 0. We define the continuous cone1 2
C for 
 � 0 to be the cone of all points in the first quadrant of thec 0
�-plane such that m 
 � �� 
 M and for 
 � 0 to be the cone of all2 2 1 1 0
points in the third quadrant of the �-plane such that m 
 � �� 
 M .1 2 1 2
The discrete cone C consists of the two raysd

� 4 � 4� � 0, � � max s , M � and � � 0, � � min s , m �� 4 � 41 2 1 1 1 1 2 2 2 1

for 
 � 00

and the two rays

� 4 � 4� � 0, � � min s , m � and � � 0, � � max s , M �� 4 � 41 2 1 1 1 1 2 2 2 1

for 
 � 0.0
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The union of C and C will be denoted by C. The asymptotic spectrum,c d
1 � � �denoted by AS, is the closure in S of the set �� � : � is an eigenvalue

Ž . Ž .4 1of the system 0.1 , 0.2 , where S denotes the unit circle.
� �The following result is a generalization of 3, Theorem 5.1 to the

definiteness conditions used here.

THEOREM 4.8. If the r are absolutely continuous then, in the abo�ejk
notation, AS � C � S1.

Proof. Let AS denote the set of accumulation points of the sequencesd
Ž0, n2 . � Ž0, n2 . � Žn1, 0. � Žn1, 0. �� � � and � � � . From Lemma 4.5 and the definition of

C , we see thatd

AS � C � S1. 4.4Ž .d d

n � n �Now let AS be the set of accumulation points of � � � for n , n � 0.c 1 2
� �By 10, Theorems 3.6, 5.3 the eigenvalues of the one parameter problem

Ž . Ž . Ž .in � given by 0.1 , 0.2 with j � 1 and � � 	� for fixed 	 have1 2 1
Ž 2 .asymptotics, to order o n , the same as for �-independent boundary

Ž Ž . Ž .. 2 Ž � �.conditions, i.e., of the form � � c 	 � o 1 n see 2 . A similar1
� �statement holds for � if � � 0. The argument of 11, Corollary 6.3 can2 1

1 Ž .now be used directly to show that AS � C � S , and together with 4.4c c
this completes the proof.

Although Theorem 4.7 resembles Klein’s oscillation theorem, it says
nothing directly about eigenfunction oscillation. To obtain a genuine
oscillation theorem, we proceed as follows. By the oscillation count of an

Ž . Ž . Ž .eigenvalue � of 0.1 , 0.2 we mean the pair n � n , n , where n is the1 2 i
� �number of zeros of y in 0, 1 . Thus each eigenvalue has a uniquei

oscillation count, and the following result addresses the extent to which
the converse is true. Define

Q as the closed cone1

�2 T T� , � � 0 : s � � s � � , � � 0 : e � � 0 
 e �� 41 2 1 2 1 2 1 2½ 5�1

and

Q as the open cone3

�2 T T� , � � 0 : s � � s � � , � � 0 : e � � 0 � e � .� 41 2 1 2 1 2 1 2½ 5�1

2 � 4Since R � Q � Q is a disjoint union of two cones, we define Q1 3 2
Ž .respectively Q to be the one which intersects the second quadrant4
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Ž . � Žn1, 0. Žn1, 1.respectively fourth quadrant . Let N � min n : � � Q and �1 1 2 4 2

4 � Ž0, n2 . Ž1, n2 . 4� Q and N � min n : � � Q and � � Q .1 2 2 1 3 1 1

THEOREM 4.9. Suppose 
 � 0. With the exceptions below, each oscilla-0
tion count corresponds to one eigen�alue.

Ž .i There are always infinitely many double oscillation counts.
Ž . Ž .ii If s � M , then for n � N , 0, n is a sequence of double1 1 2 2 2

oscillation counts corresponding to exactly two eigen�alues �Ž0, n2 . and �Ž1, n2 ..
There are infinitely many other double oscillation counts, but only finitely
many triple oscillation counts.

Ž . Ž .iii Similarly, if s � m , then for n � N , n , 0 is a sequence of2 2 1 1 1

double oscillation counts corresponding to exactly two eigen�alues �Žn1, 0. and
�Žn1, 1.. In this case, too, there are infinitely many other double and finitely
many triple oscillation counts.

Ž .iv If both of the abo�e situations occur, so s � M � m � s , then1 1 2 2
only finitely many other double and triple oscillation counts exist, all corre-
sponding to eigen�alues �n with n � N .j j

Ž .v At most one oscillation count corresponds to four eigen�alues, and
four is the maximum possible number.

Remark 4.10. A similar result holds when 
 � 0, involving redefined0
indices N and N .1 2

Remark 4.11. When M � s � s � m , examples can be constructed1 1 2 2
with an infinite number of triple oscillation counts.

Ž .Proof of Theorem 4.9. We first note that y has n respectively n � 1in
� � T Ž . �zeros in 0, 1 if e � � 0 respectively � 0 . This follows from 3, Lemmai

� Ž T . Ž . Ž .4.1 with � replaced by e � and our assumption that d , d � 0, 0 .i i 1 2
� �Note that by Lemma 4.1 the signs of the r are precisely as in 3 .jk
n ŽIt also follows that the oscillation count of the eigenvalue � is n �1

. Ž Ž . Ž . Ž .. Ž1, n � 1 respectively n , n � 1 , n , n , n � 1, n if � � Q re-2 1 2 1 2 1 2 1
.spectively Q , Q , Q . Thus an oscillation count can correspond to two or2 3 4

more eigenvalues only if they are in separate Q . This means there can bej
at most four occurrences of a particular oscillation count.

Ž .Let L , i � 1, 2, denote the line � � s � . To prove i , consider the linei 2 i 1
L . All eigencurves from the second equation cross the line L because1 1
their slopes are uniformly bounded above by s . There are at most a finite1
number of eigencurves �1 from the first equation which do not intersect2 n1

this line. This can be seen easily from the fact that for a fixed � , the first1
Ž .equation in 0.1 is a negative right definite problem, and so its eigenvalues

must accumulate only at ��. Since two consecutive first equation curves
lying on different sides of the line L have different oscillation counts1



MULTIPARAMETER STURM�LIOUVILLE PROBLEMS 575

corresponding to them, whenever a second equation eigencurve crosses the
line, a double oscillation count occurs. Similarly, the line L gives rise to2

Ž .another sequence of double oscillation counts. This proves i .
� �An o.d.e. argument similar to the one in Lemma 3.3 of 3 shows that the

graph of �1 lies in Q � Q . If s � M , then each curve �1 cuts L20 2 3 1 1 2 n 11

exactly once for n � 0. Thus the oscillation count on the curve �1 is 11 21
Ž . Ž .respectively 0 when the curve is not in Q respectively is in Q . Now for1 1

Ž .n � N , the double occurrence of the oscillation count 0, n correspond-2 2 2
ing to �Ž0, n2 . and �Ž1, n2 . follows from the definition of the integer N .2
Another sequence of double oscillation counts arises from the line L as2

Ž .in the proof of i . A triple oscillation count has to have one eigenvalue
Ž .from Q . Since there are only finitely many eigenvalues in Q , ii is3 3

Ž .proved, and the proof of iii is similar.
It is easy to see that if both s � M and s � m hold, then any other1 1 2 2

repeated oscillation count involves at least one eigenvalue in Q . Result3
Ž .iv follows because there can be only finitely many such eigenvalues.

Let � n denote the curvilinear cell defined by the vertices �n, �Žn1�1 , n2 .,
�Žn1�1 , n2�1 ., and �Žn1, n2�1 . and the corresponding eigencurve sections as

Ž .edges. The oscillation count n , n corresponds to four eigenvalues if and1 2
n Ž . nonly if all four vertices of � are in separate Q . This forces 0, 0 � � ,j

and so at most one oscillation count corresponds to four eigenvalues. Thus
Ž .we prove � .
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