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Abstract

In this short note, we present an elementary proof of Ando’s theorem within a restricted
class P of homomorphisms modeled after Parrott’s example. We also show by explicit esti-
mation that the cb-norm of the contractive homomorphism ρ of the tri-disc algebra, induced
by the commuting triple of Parrott, exceeds 1. Indeed, we construct a polynomial P with
matrix coefficients with the property ‖ρ(P )‖ > ‖P ‖∞. In particular, we show that there are
contractive homomorphisms of the tri-disc algebra which are not even 2-contractive. © 2002
Elsevier Science Inc. All rights reserved.
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1. Introduction

Let � be a bounded, open and connected subset of Cm. The algebra of continuous
functions on the closure �̄ of � which are holomorphic on � is denoted by A(�). It
is a Banach algebra with respect to the supremum norm on �. If � is a polynomially
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convex domain, then A(�) is the closure of the polynomials with respect to the
supremum norm. Let Mk be the C∗-algebra of k × k matrices over the complex
scalars C. For ((fij)) in A(�) ⊗ Mk , define the norm

‖((fij))‖ = sup
{‖((fij(z)))‖op : z ∈ �

}
.

Clearly, A(�) ⊗ Mk is a Banach algebra with respect to this norm. Let H be a
separable Hilbert space and B(H) be the C∗-algebra of bounded linear operators on
H. Finally, let ρ : A(�) → B(H) be an algebra homomorphism.

Recall that the homomorphism ρ is said to dilate if there exists a ∗-homomor-
phism ρ̃ of the algebra C(��) of continuous functions on the Silov boundary of the
domain � into the bounded linear operators on a Hilbert space K ⊇ H such that

PHρ̃(f )|H = ρ(f ), f ∈ A(�),

where PH is the orthogonal projection on to the Hilbert space H. The ∗-homo-
morphism ρ̃ is called a dilation of ρ. Clearly, if the homomorphism ρ dilates, then
it is contractive, that is, ‖ρ(f )‖ � ‖f ‖∞. Therefore, it is natural to ask if every
contractive homomorphism dilates.

For each k = 1, 2, . . . , there is an induced homomorphism

ρ(k)def=ρ ⊗ Ik : A(�) ⊗ Mk → B(H) ⊗ Mk � B(H ⊗ Ck).

The supremum of the non-decreasing sequence {‖ρ(k)‖}k�1 is called the “cb-norm”
of the homomorphism ρ and is denoted by ‖ρ‖cb. Arveson [2,3] has shown that the
existence of a dilation for ρ : A(�) → B(H) is equivalent to ‖ρ‖cb � 1.

If � is the unit disc, then the von Neumann’s inequality says that a homomor-
phism ρ of the disc algebra A(D) is contractive if and only if ρ(id) is contractive
for the identity function id ∈ A(D). It was proved by B. Sz.-Nagy that if ρ is a
homomorphism of the disc algebra and ρ(id) is contractive, then it dilates to a ∗-ho-
momorphism of the C∗-algebra C(T). It is easy to deduce von Neumann’s inequality
from this result together with the spectral theorem for ∗-homomorphisms.

Once we fix a domain �, we may ask what are the contractive homomorphisms,
which among these are completely contractive? In particular, one may ask if con-
tractive homomorphisms are necessarily completely contractive. We find that for
the disc algebra, contractive homomorphisms are induced by contraction operators
(von Neumann’s inequality), these contractive homomorphisms always dilate (Sz.-
Nagy’s theorem) and therefore they are completely contractive. In the case of the
bi-disc, the well-known dilation theorem of Ando [1] says that a homomorphism of
the bi-disc algebra A(D2), induced by a pair of contractions, dilates. (In particular,
any commuting pair of contractions induces a contractive homomorphism of the bi-
disc algebra.) This shows that the case of the bi-disc is no different than that of the
disc. However, Parrott [11] produced examples of three contractions such that the
induced homomorphism of the tri-disc algebra is contractive but does not dilate!
Also, Varopoulos [14] has shown that a triple of contractions does not necessarily
induce a contractive homomorphism of the tri-disc algebra.
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In this short note, we consider a class P of homomorphisms defined from A(�)

into B(Cp+q) which are modeled after the examples due to Parrott—although, as
we explain below, some of these homomorphisms appear naturally as localizations
of Cowen–Douglas operators.

Given any w ∈ � and any tuple V = (V1, . . . , Vm) of p × q matrices, the opera-
tor tuple

N =
((

w1Ip V1
0 w1Iq

)
, . . . ,

(
wmIp Vm

0 wmIq

))
(1.1)

induces (via the usual functional calculus) a homomorphism ρw,V of the algebra

A(�) into Mp+q
def=B(Cp+q) defined by

ρw,V(f ) =
(

f (w)Ip 〈∇f (w), V〉
0 f (w)Iq

)
.

Here 〈∇f (w), V〉 stands for

V1
�f

�z1
(w) + · · · + Vm

�f

�zm

(w).

Let P denote the class of homomorphisms {ρw,V : w ∈ � and V ∈ Mp+q ⊗ Cm}.
As pointed out in the beginning for each k = 1, 2, . . . , there is an induced homo-

morphism

ρ
(k)
w,V := ρw,V ⊗ Ik : A(�) ⊗ Mk → Mp+q ⊗ Mk � M(p+q)k.

It is easy to verify that ρ
(k)
w,V is unitarily equivalent (via a fixed unitary which happens

to be a permutation matrix) to the map

F �→
(

F(w) ⊗ Ip 〈DF(w), V〉
0 F(w) ⊗ Iq

)
, F ∈ A(�) ⊗ Mk.

Here

〈DF(w), V〉 = �F

�z1
(w) ⊗ V1 + · · · + �F

�zm

(w) ⊗ Vm.

Using a bi-holomorphic automorphism of the unit ball (Mk)1 of Mk which takes
F(w) to 0, one can prove the following theorem (cf. [7, Lemma 3.3] and [13]).

Theorem 1.1. If k is any positive integer, then ‖ρ
(k)
w,V‖ � 1 if and only if ‖〈DF(w),

V〉‖ � 1 for all F ∈ A(�) ⊗ (Mk)1 satisfying F(w) = 0.

Let Hol(�1, �2) be the set of all holomorphic functions f from �1 into �2. It
is easy to verify that {∇f (w) : f ∈ Hol(�, D), f (w) = 0} ⊆ Cm is a unit ball with
respect to some norm. The dual of this norm, called the Carathéodory norm, is de-
noted by Cw,�. Thus the homomorphism ρw,V is contractive if and only if the lin-
ear map Lw,V : (Cm, C∗

w,�) → (Mn, op) defined by Lw,V : (z1, . . . , zm) �→ z1V1 +
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· · · + zmVm is contractive. We record the particular case of � = Dm and w = 0 as a
separate lemma.

Lemma 1.2. Every contractive homomorphism of A(Dm) which is in the class P
is induced by an m-tuple of contractions.

It is not much harder to verify that {DF(w) : F ∈ Hol(�, (Mn)1), F (w) = 0} ⊆
Mn ⊗ Cm is a unit ball with respect to some norm. In analogy with the case of
k = 1, we let C

(k)
w,� denote the norm of the dual space. It is clear that DF(w) maps

the unit ball in Cm with respect to the Carathéodory norm contractively into the unit
ball of Mn with respect to the operator norm. However, the question of whether any
such linear contraction is DF(w) for some F in Hol(�,Mn) was first raised in [12].
If � is a unit ball with respect to some norm, say ‖ · ‖, and w = 0, then an easy
application of the Schwarz lemma shows that C0,� = ‖ · ‖. In this case, it is easy to
see that the answer to the question of Paulsen is yes. There are examples to show that
the answer is no in general—even when � is a unit ball with respect to some norm
but w /= 0. Now, the homomorphism ρ

(k)
w,V, for any integer k > 1, is contractive if

and only if the linear map

L
(k)
w,V : (

Cm ⊗ Mn, C
(k)∗
w,�

) → (Mn ⊗ Mk, op)

defined by

L
(k)
w,V : (�1, . . . , �m) �→ �1 ⊗ V1 + · · · + �m ⊗ Vm

is contractive. The fact that contractive homomorphisms from the class P, with p =
q = 1, are completely contractive (cf. [7,8]) plays a significant role in proving that
Caratheodory metric coincides with the Kobayashi metric for convex domains (cf.
[15]).

We now point out that many of the homomorphisms ρw,V are induced by local-
ization of a certain tuple T of commuting bounded linear operators in the Cowen–
Douglas class Bk(�) (cf. [5]). Such tuples satisfy (among other things):

dim
m⋂

j=1

ker(Tj − wj) = k

for some positive integer k and for each w = (w1, . . . , wm) ∈ �. Adjoints of multi-
plication operators on a functional Hilbert space consisting of holomorphic functions
defined on � and taking values in Ck provide an abundance of such operator tuples
(cf. [6]). The study of such operators was initiated in [5] by Cowen and Douglas
using a slightly different language. If γ (�)

w is a joint eigenvector for the operator tuple
for 1 � � � k, then differentiating the relation (Tj − wj)(γ (�)

w ) = 0, it is easy to see
that (T� − w�)

2∂jγ (�)
w = 0 for 1 � j � m. Thus the dimension of ker(T� − w�)

2 is
(m + 1)k. Then it is easily verified that the localizations

N(w1) = (T1 − w1)|⋂k
j=1 ker(Tj −wj )2 , . . . ,
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N(wm) = (Tm − wm)|⋂k
j=1 ker(Tj −wj )2

map (
⋂m

j=1 ker(Tj − wj))⊥ to
⋂m

j=1 ker(Tj − wj). Hence their matricial represen-
tation is of the form (1.1). This operator tuple therefore defines a homomorphism
which is in the class P (with p = k, q = mk). It is possible to build the operator
tuple T (up to unitary equivalence) from the localizations {N(w) = (N(w1), . . . ,

N(wm)) : w ∈ �}. For a precise statement, we refer the reader to [5]. Therefore, it
is likely that a better understanding of these localizations will play a significant role
in answering questions about the operator tuple T. In particular, one may ask under
what circumstance a dilation of the tuple T may be built out of given dilations of the
localizations N(w), w ∈ �.

In the following section, we study properties of the homomorphism ρw,V : A(�)

→ Mn in the class P. From now on, we make the simplifying assumption p = q.

2. The homomorphism ρw,V

Suppose � is the unit ball with respect to some norm. If � is also homogeneous,
that is, if for each w in � there is a bi-holomorphic automorphism ϕ of � which
maps w to 0, then

{
G ∈ Hol(�, (Mn)1) : G(w) = 0

}
= {

F ◦ ϕ : F ∈ Hol(�, (Mn)1), F (0) = 0
}
.

The chain rule then implies that Dϕ(w) is unitary with respect to the two norms
C

(k)
w,� and C

(k)
0,�. Consequently, it is easy to see that ρ

(k)
w,V is contractive if and only if

ρ
(k)
0,V · Dϕ(w) is contractive. Therefore, it is enough to consider only the case w = 0.

The first lemma is obvious and we omit the proof. If Vi = Vi1 ⊕ Vi2 for all i =
1, . . . , m, where Vi1 are � × � and Vi2 are (n − �) × (n − �), let V(j) = (V1j , . . . ,

Vmj ) for j = 1, 2.

Lemma 2.1.

‖ρw,V‖ = max
{‖ρw,V(j)‖: j = 1, 2

}
and

‖ρw,V‖cb = max
{‖ρw,V(j)‖cb : j = 1, 2

}
.

Given an n × n matrix V and a positive integer k, let V ⊗k ∈ B((Cn)⊗k) be the
k-fold tensor product V ⊗ · · · ⊗ V. Given a tuple V = (V1, . . . , Vm), we denote the
tuple (V ⊗k

1 , . . . , V ⊗k
m ) by V⊗k. When w = 0, we shall denote ρw,V by ρV for the

sake of brevity.
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Lemma 2.2. Let ρw,V defined on A(Dm) be completely contractive and k be a
positive integer. Then ρw,V⊗k is completely contractive.

Proof. We first show that ρw,V⊗2 is completely contractive. The vector w can be
taken to be 0 without loss of generality. Let X1, . . . , Xm be such that ‖λ1X1 + · · · +
λmXm‖ � 1 for any choice of (λ1, . . . , λm) ∈ Dm. We have to show that ‖X1 ⊗
V1 ⊗ V1 + · · · + Xm ⊗ Vm ⊗ Vm‖ � 1. Let X̃i = ziXi for (z1, . . . , zm) ∈ Dm and
i = 1, . . . , m. Then

‖λ1X̃1 + · · · + λmX̃m‖ = ‖λ1z1X1 + · · · + λmzmXm‖ � 1,

because |λizi | = |λi | |zi | � 1. Since ρV is completely contractive, we have ‖X̃1 ⊗
V1 + · · · + X̃m ⊗ Vm‖ � 1. So the tuple (X1 ⊗ V1, . . . , Xm ⊗ Vm) is such that ‖z1
(X1 ⊗ V1) + · · · + zm(Xm ⊗ VM)‖ � 1 for any (z1, . . . , zm) with |zi | � 1. Using
the complete contractivity of ρV again, we have ‖X1 ⊗ V1 ⊗ V1 + · · · + Xm ⊗ Vm ⊗
Vm‖ � 1. This, by our original assumption on X1, . . . , Xm means that ρV⊗2 is com-
pletely contractive. The rest follows by induction. �

Given two tuples V = (V1, . . . , Vm) and W = (W1, . . . , Wm), let V ⊗ W denote
the tuple (V1 ⊗ W1, . . . , Vm ⊗ Wm). A generalization of the lemma above is the fol-
lowing whose proof is similar and hence we omit.

Lemma 2.3. If ρw,V and ρw,W defined on A(Dm) are completely contractive, then
ρw,V⊗W is completely contractive.

The following lemma, on the one hand, provides a natural proof of Ando’s the-
orem within the class P. On the other hand, it also shows that if there were con-
tractive homomorphisms in P of the tri-disc algebra which do not dilate, then there
must be one which is induced by a triple (I, U, V ), where U, V are non-commuting
unitaries. Therefore, in looking for Parrott-like examples within the class P, it is
natural to restrict to tuples V of unitaries (as Parrott actually did without any apparent
justification).

Lemma 2.4. If there is a contractive homomorphism ρV which is not completely
contractive, then there is a contractive homomorphism ρU with U1, . . . , Um unitaries
which is not completely contractive.

Proof. If F : Dm → Mk is a holomorphic function with F(0) = 0, then

�F

�z1
(0), . . . ,

�F

�zm

(0)

satisfy∥∥∥∥z1
�F

�z1
(0) + · · · + zm

�F

�zm

(0)

∥∥∥∥ � 1 for all (z1, . . . , zm)
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satisfying |z1| � 1, . . . , |zm| � 1

and conversely given any X1, . . . , Xm ∈ B(H) satisfying

‖z1X1 + · · · + zmXm‖ � 1

for all (z1, . . . , zm) with |z1| � 1, . . . , |zm| � 1,

the contractive function F : Dm → Mk given by F(z1, . . . , zm) = z1X1 + · · · + zm

Xm vanishes at 0 and has X1, . . . , Xm as its first partial derivatives with respect to
z1, . . . , zm, respectively. Thus,

‖ρV‖cb = sup
{‖ρV(F )‖: ‖F‖ � 1

}
= sup

{‖X1 ⊗ V1 + · · · + Xm ⊗ Vm‖ : ‖z1X1 + · · · + zmXm‖ � 1
}
.

Now if there is a contractive homomorphism ρV which is not completely contrac-
tive, then sup{‖ρV‖cb : V1, . . . , Vm are contractions} > 1. But since the set of ex-
treme points of the convex set consisting of contractions is the set of unitaries, this
supremum is attained for a unitary tuple U = (U1, . . . , Um). �

We end this section by proving that contractivity implies complete contractivity
for the homomorphisms ρV on the bi-disc algebra. Of course, this is Ando’s theorem
[1] for homomorphisms in the class P.

Corollary 2.5. If � is the bi-disc and ρV is contractive, then ρV is completely con-
tractive.

Proof. The computations of the above lemma show that

sup
{‖ρV‖cb : V1, . . . , Vm are contractions

}
= sup

{‖ρU‖ : U1, . . . , Um are unitaries
}

= sup
{‖X1 ⊗ U1 + · · · + Xm ⊗ Um‖ : ‖z1X1 + · · · + zmXm‖ � 1,

U1, . . . , Um are unitaries
}
.

In the case m = 2, this last quantity is

sup
{‖X1 ⊗ U1 + X2 ⊗ U2‖ : ‖z1X1 + z2X2‖ � 1, U1, U2 are unitaries

}
.

Since norm is invariant under multiplication by a unitary, multiplying by I ⊗ U∗
2

from left and putting W = U∗
2 U1, we get

‖ρV‖cb � sup
{‖X1 ⊗ I + X2 ⊗ W‖ : ‖z1X1 + z2X2‖ � 1, W unitary

}
= sup

{
max ‖X1 + λ2X2‖ : ‖z1X1 + z2X2‖ � 1,

λ1, λ2 are eigenvalues ofW
}

� 1.

That completes the proof. �
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3. The tri-disc algebra

In this section, for the case � = D3, we characterize the homomorphisms ρV
induced by a triple of n × n unitaries V = (V1, V2, V3). We first make a simpli-
fication by putting U = V ∗

1 V2 and V = V ∗
1 V3. For the rest of the article, ρ will

denote the homomorphism induced by the vector (0, 0, 0) and the triple (I, U, V )

on A(D3). Since the operator norm is unitarily invariant, we have ‖ρ
(k)
V ‖ = ‖ρ(k)‖

for all k = 1, 2, . . . Thus ρ
(k)
V is contractive (respectively, completely contractive) if

and only if ρ is so. Moreover, UV = VU if V is a commuting tuple. Thus without
loss of generality, we shall henceforth be concerned with ρ and show, in this section
that the homomorphism ρ is completely contractive if and only if U commutes with
V .

Lemma 3.1. If UV = VU, then ρ is completely contractive.

Proof. Since UV = VU, there is a unitary W such that WUW∗ = D1 = diag (λ1,

. . . , λn) and D2 = diag (µ1, . . . , µn), where λ1, . . . , λn and µ1, . . . , µn are eigen-
values of U and V , respectively.

For any positive integer k, let X, Y, Z ∈ Mk satisfy

‖αX + βY + γ Z‖ � 1 (3.1)

for any scalars α, β, γ of modulus at most 1.
Thus,

‖In ⊗ X + U ⊗ Y + V ⊗ Z‖ = ‖In ⊗ X + D1 ⊗ Y + D2 ⊗ Z‖

=
∥∥∥∥∥

n⊕
i=1

(X + λiY + µiZ)

∥∥∥∥∥
= max

1�i�n
‖X + λiY + µZ‖ � 1,

by (3.1). Now ‖ρ‖cb = sup{‖In ⊗ X + U ⊗ Y + V ⊗ Z‖}, where the supremum is
over all positive integers k and all X, Y, Z in Mk satisfying (3.1). So ‖ρ‖cb � 1. �

Theorem 3.7 is the converse to this lemma. We need the following lemmas to
complete the proof of this theorem.

Lemma 3.2. The unitaries U and V have a joint eigenvector of joint eigenvalue
(1, 1) if and only if ‖I + U + V ‖ = 3.

Proof. If there is a joint eigenvector of joint eigenvalue (1, 1), then obviously ‖I +
U + V ‖ = 3. Conversely, suppose ‖I + U + V ‖ = 3. Choose a unit vector x in Cn

satisfying ‖(I + U + V )x‖ = 3. Then there are nine terms in the expansion of ‖x +
Ux + Vx‖2, each of modulus at most 1. Since their sum is 9, modulus of each term
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is equal to 1. By the condition of equality in Cauchy–Schwarz inequality, we have
Ux = cx and Vx = dx for some scalars c, d of modulus 1. But |1 + c + d| = ‖x +
Ux + Vx‖ = 3. Hence c = d = 1. Thus Ux = Vx = x. �

Lemma 3.3. If U and V are any two n × n unitary matrices, the matrices U⊗n and
V ⊗n have a common eigenvector.

Proof. Let λ1, . . . , λn be the eigenvalues of U and x1, . . . , xn be the corresponding
orthonormal eigenbasis for Cn, i.e., Uxi = λixi for all i = 1, . . . , n. Let µ1, . . . , µn

be the eigenvalues of V and y1, . . . , yn the orthonormal eigenbasis corresponding to

V . For any σ in the permutation group Sn, let xσ
def=xσ(1) ⊗ · · · ⊗ xσ(n) and

x1 ∧ · · · ∧ xn
def=

∑
σ∈Sn

εσ xσ ,

where εσ is ±1, depending on whether σ is an even or an odd permutation. Sim-
ilarly define yσ and y1 ∧ · · · ∧ yn. Then x1 ∧ · · · ∧ xn = eiθ y1 ∧ · · · ∧ yn for some
θ ∈ [0, 2�). Hence x1 ∧ · · · ∧ xn is a common eigenvector of U⊗n and V ⊗n with
eigenvalues

∏
λi and

∏
µi , respectively. �

Theorem 3.4. If U and V are two n × n unitary matrices, which do not have a joint
eigenvector of joint eigenvalue (1, 1), then ρ is not completely contractive.

Proof. First note that Lemma 3.3 implies that the two matrices U⊗n ⊗ (U∗)⊗n and
V ⊗n ⊗ (V ∗)⊗n have a joint eigenvector with joint eigenvalue (1, 1). Let ρ be com-
pletely contractive. Then it follows from Lemmas 2.2 and 2.3 that the homomor-
phism, say η, determined by the triple (I, U⊗n ⊗ (U∗)⊗(n−1), V ⊗n ⊗ (V ∗)⊗(n−1))

is completely contractive. Consider the function

f (z1, z2, z3) = z1In + z2U
∗ + z3V

∗.

Since U and V do not have a common eigenvector, by Lemma 3.2, we have ‖f ‖<3.
But ‖η(f )‖ = ‖I + U⊗n ⊗ (U∗)⊗n + V ⊗n ⊗ (V ∗)⊗n‖ = 3 by the observation
above. That is a contradiction. �

Remark 3.5. An inductive argument for the proof of the theorem above can also be
given as follows. First note that if η is the homomorphism determined by the triple
(I, U∗, V ∗), then ρ is completely contractive if and only if η is so. If f1(z1, z2, z3) =
z1I + z2U

∗ + z3V
∗, then ‖f1‖ < 3 by Lemma 3.2, and so ‖ρ(f1)‖ = ‖I ⊗ I +

U ⊗ U∗ + V ⊗ V ∗‖ � 3. If ‖ρ(f1)‖ > ‖f1‖, then ρ is not n-contractive. Other-
wise, take f2(z1, z2, z3) = z1I ⊗ I + z2U ⊗ U∗ + z3V ⊗ V ∗ and observe that ‖f2‖
< 3. If ‖ρ(f2)‖ > ‖f2‖, then ρ is not n2-contractive. Otherwise, take f3(z1, z2, z3)

= z1I ⊗ I ⊗ I + z2U ⊗ U ⊗ U∗ + z3V ⊗ V ⊗ V ∗. Then ‖f3‖ < 3. If ‖η(f3)‖ >

‖f3‖, then η is not n3-contractive, and so ρ is not n3-contractive. Otherwise continue
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with this procedure using η and ρ alternatively. This procedure will stop, by Lemma
3.3, since ‖η(f2n−1)‖ = 3.

Lemma 3.6. If U and V are two n × n non-commuting unitary matrices, then there
is an n × n unitary matrix W and an integer k between 0 and n − 2 such that
(a) WUW∗ = Ik ⊕ Ũ and WVW∗ = Ik ⊕ Ṽ ,

(b) ‖In−k + Ũ + Ṽ ‖ < 3.

Proof. If ‖In + U + V ‖ < 3 to start with, then k = 0 and W = In. If ‖In + U +
V ‖ = 3, then by Lemma 3.2, we choose x1 ∈ C2 such that ‖x1‖ = 1 and Ux1 =
Vx1 = x1. Since U and V are unitaries, the subspace L1

def= span {x1}⊥ is invari-
ant under them. Either ‖In−1 + UL1 + VL1‖ < 3 or we repeat the process till we

reach a k such that for the invariant subspace L
def= span {x1, . . . , xk}⊥, we have

‖In−k + U |L + V |L‖ < 3. Choosing an orthonormal basis {y1, . . . , yn−k} for L,
put W to be the unitary with column x1, . . . , xk, y1, . . . , yn−k . �

Theorem 3.7. If U and V are two n × n non-commuting unitary matrices, then ρ

is not completely contractive.

Proof. Let Ũ and Ṽ be as in Lemma 3.6. If ρ̃ is the homomorphism determined
on A(D) by the tuple (In−k, Ũ , Ṽ ), then we saw in Lemma 3.4 that ‖ρ̃‖cb > 1. But
then Lemma 2.1 implies that ‖ρ‖cb > 1. �

4. The 2-contractivity

In this section, we show that if U and V are 2 × 2 non-commuting unitary matri-
ces, then the induced homomorphism ρ on the tri-disc algebra is not even 2-contrac-
tive.

Lemma 4.1. If U, V ∈ M2 and UV /= VU, then ‖I2 + U + V ‖ < 3.

Proof. If ‖I2 + U + V ‖ = 3, then by Lemma 3.2, there is a unit joint eigenvector x

with joint eigenvalue (1, 1). Choose y ⊥ x with ‖y‖ = 1. Then y is an eigenvector
of both U and V . So in the basis {x, y}, the unitaries U and V are diagonal. So they
commute. �.

Lemma 4.2. If U, V ∈ M2, then ‖I2 ⊗ I2 + U ⊗ U∗ + V ⊗ V ∗‖ = 3.

Proof. Let

L1 = span
{
x ⊗ x : x ∈ C2 and xis an eigenvector of U

}
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and

L2 = span
{
x ⊗ x : x ∈ C2 and x is an eigenvector of V

}
.

Then dimL1 = dimL2 = 2. Since both L1 and L2 are subsets of the symmet-
ric tensor product of C2 with itself which has dimension 3, they have non-trivi-
al intersection. Choose y ∈ L1 ∩ L2 with ‖y‖ = 1. Note that (U ⊗ U∗)y = (V ⊗
V ∗)y = y. So ‖(I2 ⊗ I2 + U∗ ⊗ U + V ⊗ V ∗)y‖ = 3. �

Theorem 4.3. If U and V are 2 × 2 non-commuting unitaries, then the homomor-
phism ρ on A(D3) is contractive, but not 2-contractive.

Proof. The homomorphism ρ determined by I, U, V is always contractive. Let f :
D3 → M2 be defined by f (z1, z2, z3) = z1I + z2U

∗ + z3V
∗. Then ‖f ‖ < 3, but

‖ρ(f )‖ = 3. First note that ‖f ‖ < 3 by Lemma 3.2. Then note that ‖ρ(f )‖ = 3 by
Lemma 4.2. Hence the proof. �
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