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Abstract

Foamy macrophages (FM)s harbor lipid bodies that not only assist mycobacterial persis-
tence within the granulomas but also are sites for intracellular signaling and inflammatory
mediators which are essential for mycobacterial pathogenesis. However, molecular mecha-
nisms that regulate intracellular lipid accumulation in FMs during mycobacterial infection
are not clear. Here, we report for the first time that jumonji domain containing protein (JMJD)
3, ademethylase of the repressive H3K27me3 mark, orchestrates the expression of M.
tuberculosis H37Rv-, MDR-JAL2287-, H37Ra- and M. bovis BCG-induced genes essential
for FM generation in a TLR2-dependent manner. Further, NOTCH1-responsive RNA-bind-
ing protein MUSASHI (MS]), targets a transcriptional repressor of JMJD3, Msx2-interacting
nuclear target protein, to positively regulate infection-induced JMJD3 expression, FM gen-
eration and M2 phenotype. Investigations in in vivo murine models further substantiated
these observations. Together, our study has attributed novel roles for JMJD3 and its regula-
tors during mycobacterial infection that assist FM generation and fine-tune associated host
immunity.

Author Summary

Foamy macrophages (FMs) not only provide a suitable survival niche for the mycobacteria
in the granuloma but also are reservoirs for several inflammatory mediators that regulate
mycobacterial pathogenesis. Hence, understanding the mechanisms that regulate infec-
tion-induced FM generation assumes importance. In this investigation, we present empiri-
cal evidence to support the role of host epigenetic mechanisms in generating FMs and thus
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facilitating mycobacterial persistence in vivo. We show that the signaling pathways that
mediate mycobacteria-induced expression of JMJD3, a demethylase of the facultative
repression mark, regulate the genes assisting in FM generation. Importantly, the identified
pathway could largely contribute to the evasive responses during mycobacterial infection
and suppression of such pathways during infection could confer stronger immunity.
Together, these regulators could be potential candidates for host-directed therapies against
mycobacterial infection.

Introduction

Macrophages recruit to the site/s of mycobacterial infection and differentiate to several cell
types including the lipid droplet loaded foamy macrophages (FMs) [1]. The characteristic lipid
body (LB) generation in the FMs provides a suitable survival niche for the mycobacteria in the
granuloma [2]. It is known that FMs not only provide the nutrient source for the internalized
mycobacteria, but also generate an environment conducive for the bacilli to attain the non-rep-
licating persistence state [3]. More importantly, FMs are the reservoirs for several inflamma-
tory mediators such as arachidonic acid and the enzymes that catalyze the conversion of
arachidonic acid to immunomodulatory eicosanoids like cyclooxygenase-2, lipoxygenases-5
and -15 and LTC4-synthase [1]. Additionally, LBs also regulate lipid metabolism, membrane
trafficking and intracellular signaling [4]. Hence, understanding the mechanisms that regulate
mycobacterial infection-induced FM generation assumes importance.

A complex co-ordinated mechanism of lipid influx, metabolism, storage and mobilization
constitute the FM generation [4]. These processes are carried out by a dedicated set of diverse
genes. The genes that assist in lipid biosynthesis like acyl-CoA synthetase long-chain family
member-1 (Acsl1, lipid biosynthesis), adipose differentiation-related protein (Adrp/Plin2, lipid
droplet synthesis) and sphingolipid activator proteins (Psap/SapC, its product maintains the
turnover of lipids in membranes) are known to be upregulated during FM formation [1, 5].
Membrane proteins like fatty acid translocase (Fat/CD36), macrophage scavenger receptor-1
(Msr1/CD204) and macrophage receptor with collagenous domain (Marco) were essential for
uptake of low-density lipoproteins into the macrophages, a characteristic evidence for FM gen-
eration [3]. The low-density lipoproteins inside the FMs are metabolized to triacylglycerides,
phospholipids and cholesterol. The esterified cholesterol either gets sequestered to the LBs or is
effluxed via the ATP-binding cassette (ABC) transporters, Abcal and Abcgl [3]. Hence, defi-
ciency or downregulation of the ABC transporters favour FM generation [6]. Importantly,
fine-regulation of the above mentioned genes would orchestrate the FM phenotype and func-
tions during mycobacterial pathogenesis.

In this context, regulatory mechanisms governing such pathogen-specific spatio-temporal
inflammatory responses would involve reversible, instantaneous but specific action like the
ones mediated by epigenetic regulators [7]. Of the various epigenetic mechanisms, histone
modifications play vital roles in regulating the gene expression [8]. Interestingly, many histone
marks including Histone H3 lysine 27 trimethylation (H3K27me3) have been implicated in
inflammation and pathogenesis [9]. It is well established that H3K27me3 brings about the
silencing of genes [10]. In general, trimethylation of H3K27 is catalyzed by EZH2, which asso-
ciates with SUZ12, EED and RbAp48 to form the polycomb-repressive complex 2 (PRC2) and
jumonji domain containing protein (JMJD)3 is a known H3K27me3 demethylase [10]. Impor-
tantly, PRC2 complex is a potent regulator of several signaling pathways like NOTCH1, WNT
and sonic hedgehog signaling [11] which have been reported to be activated during
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mycobacterial infection to direct the immune responses and determine the cell-fate [12-15].
Additionally, reports have implicated the role for JMJD3 in regulating inflammation and TLR
responses [10, 16, 17] including generation of M2 phenotype [18] and foamy characteristics of
macrophages during atherosclerosis [19]. Of note, M2 macrophages function to exacerbate
mycobacterial pathogenesis [15, 20-22] and FM molecular markers such CD36, MSR1, lipoxy-
genases 5/15 etc constitute M2 macrophages [23, 24]. In this perspective, the role for H3K27
methylation by PRC2 complex and its demethylase, JMJD3 during mycobacteria-responsive
FM generation was explored.

Infection of macrophages with M. tuberculosis H37Rv (represented as H37Rv), multi-drug
resistant strain MDR-JAL2287, M. tuberculosis H37Ra (represented as H37Ra) or M. bovis
BCG (represented as BCG), but not M. smegmatis, displayed JMJD3-dependent LB formation.
Supporting this observation, the genes involved in lipid biosynthesis (Acsl1, Adrp, Psap) and
uptake (Fat/CD36) and Msr1) were significantly upregulated with mycobacterial infection of
macrophages in a JMJD3- and TLR2-dependent manner. Deciphering the mechanism of
JMJD3 expression, we found an evolutionarily conserved RNA-binding protein MUSASHI
(MSI), which was NOTCH1-responsive, to target a transcriptional repressor of JMJD3,
Msx2-interacting nuclear target protein (MINT/Spen) and thus assist in FM generation during
mycobacterial infection. Immunohistochemistry (IHC) and immunofluorescence (IF) experi-
ments utilizing H37Rv-infected lungs and in vivo murine BCG-induced granuloma model sub-
stantiated these observations. MSI-JMJD3 axis was found to regulate M2 phenotypic responses
in the FMs during mycobacterial infection. Thus, the current investigation has identified roles
for JMJD3 and associated epigenetic regulators to shape the immune responses during myco-
bacterial pathogenesis.

Results

TLR2 signaling mediates JMJD3-dependent FM formation during
mycobacterial infection

FMs are the integral components of granulomas during mycobacterial pathogenesis [2]. How-
ever, mechanisms that regulate intracellular lipid accumulation in the FMs during the course
of mycobacterial infection require extensive investigation. To begin with, the ability of different
mycobacterial species to induce FMs was analyzed. H37Ra- and BCG-infected RAW 264.7
macrophages, unlike M. smegmatis, stained positive for LB formation as assessed by Oil Red O
(ORO) staining and measurement of the extracted ORO (S1A Fig). With reports suggesting a
crucial role for TLR2 signaling during FM generation [25] and TLR2 signaling being a major
mediator of mycobacterial pathogenesis [26], analysis of the contribution of TLR2 during
mycobacteria-mediated FM formation was undertaken. In this regard, RAW 264.7 macro-
phages expressing the dominant negative form of TLR2 failed to generate FMs on H37Ra and
BCG infection (S1A Fig). Additionally, lipid bodies in primary mouse macrophages were
labeled with fluorescent dye BODIPY 493/503 to assess the frequency and mean fluorescence
intensities (MFIs) of FMs. In line with the ORO results, H37Ra and BCG showed increased fre-
quency and MFIs of BODIPY-stained macrophages in WT mice when compared to that in
tlr2-null mice (S1B Fig). For the reasons mentioned earlier in the introduction and to under-
stand the mechanisms governing such mycobacteria-TLR2-specific responses, we sought to
uncover the role for epigenetic regulation, if any, of the coordinated process of FM generation.
Of note, H3K27me3 is a histone mark widely implicated during inflammation and pathogene-
sis [27]. Hence, H3K27-associated methylase EZH2 and demethylase JMJD3 were analyzed to
explore the epigenetic regulation of TLR2-dependend FM induction during mycobacterial
infections. Primary macrophages infected with H37Ra or BCG, but not M. smegmatis, were
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Fig 1. TLR2-responsive JMJD3 regulates mycobacteria-induced FM formation and immune responses. (A and B) Mouse peritoneal macrophages
were infected with the indicated bacteria (H37Ra: M. tuberculosis H37Ra; BCG: M. bovis BCG; MS: M. smegmatis) for 6 h. Immunoblot analysis for
H3K27me3, EZH2 and JMJD3 (A) and quantitative real-time RT-PCR for Jmjd3 expression (B). (C and D) Transcript (C) and protein (D) levels of JMJD3 in
H37Rv- and MDR-JAL2287-infected peritoneal macrophages. (E and F) IF imaging of BODIPY-stained lipid droplets in peritoneal macrophages infected
for 48 h with H37Rv or MDR-JAL2287 (E, left panel). DNA was stained with DAPI. Frequency of FMs was calculated by counting the population of cells
expressing 0-5, 5-10 or >10 lipid bodies (n = 250-300) and plotted as a bar graph (E, right panel). Based on the IF images, MFIs were calculated (n = 100,
each treatment) and plotted (F). (G and H) Peritoneal macrophages from WT or t/r2-null mice were infected with BCG for 6 h and quantitative real-time
RT-PCR (G) and immunoblotting (H) were performed to assess the expression levels of JIMJDS3. (I and J) RAW 264.7 cells were transiently transfected with
JMJD3-HA () and peritoneal macrophages transfected with NT or Jmjd3 siRNA were infected with H37Rv expressing the red fluorescent protein tdTomato
for 48 h (J). Representative IF images of macrophages with BODIPY-stained lipid droplets (left panels). MFls (middle panel in | and right top panel in J) and
frequency of FMs (right panels) were calculated as mentioned in panels E and F. (K) RAW 264.7 macrophages transiently transfected NT or Jmjd3 siRNA
were infected with BCG for 12 h. Quantitative real-time RT-PCR for the indicated M2 markers. All data represents the mean + SEM for at least 3
independent experiments, *P < 0.05, **P < 0.005, ***P < 0.0005 (one-way ANOVA followed by Tukey’s multiple-comparisons test except for two-tailed
paired Student’s t-test in I) and all blots are representative of at least 3 independent experiments. Med, medium; WT, wild-type; KO, knockout; NT, non-
targeting; MFI, mean fluorescence intensity. Bar, 5 um; Original magnifications 63X.

doi:10.1371/journal.ppat.1005814.9001

found to display elevated expression of JMJD3 at both RNA and protein levels (Fig 1A and 1B).
However, no significant global change in the levels of H3K27me3 and EZH2 were observed
(Fig 1A). Interestingly, peritoneal macrophages infected with virulent strains of M. tuberculosis
like H37Rv and MDR-JAL2287 induced a robust expression of JMJD3 (Fig 1C and 1D). Like
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avirulent strain of mycobacteria, H37Rv and MDR-JAL2287 showed increased frequency and
MFIs of BODIPY-stained macrophages (Fig 1E and 1F) and ORO staining (S1C Fig), indicative
of significant FM generation. Role for TLR2 in mediating the mycobacteria-induced JMJD3
expression was verified in macrophages obtained from t/r2-null mice (Fig 1G and 1H). To
establish the physiological role for JMJD3 during LB generation, overexpression and knock-
down experiments of JMJD3 were performed. While RAW 264.7 macrophages overexpressing
JMJD3 showed significant induction of the FMs (Fig 11 and S1D and S1E Fig), macrophages
depleted of JMJD3 using specific siRNAs displayed compromised ability to generate FMs on
mycobacterial infection of H37Rv and BCG (Fig 1] and S1F and S1G Fig). As mentioned ear-
lier, FMs house several inflammatory mediators that contribute to the M2 phenotypic and
functional properties of FMs in different disease contexts [23, 24]. We thus assessed the role
for JMJD3 in orchestrating the immune responses exhibited by FMs. Interestingly, while
JMJD3 was found to negatively regulate few of the mycobacteria-responsive M1 markers of
macrophages viz., 1112, Il1b and Cxcl2 (S2A Fig), the expression of M2 markers like Argl, Mrcl,
1110, Tgfb, Ccl17 and Ccl2 on infection were JMJD3-dependent (Fig 1K).

Several genes co-ordinate the lipid biosynthesis, uptake and accumulation processes during
FM formation [5]. Expression analysis of few of the genes suggested that H37Ra and BCG, but
not M. smegmatis, induced the positive regulators (Acsl1, Adrp, Psap, Fat, Msr1 and Marco)
and downregulated or did not modify the negative regulators (Abcal and Abcgl) of FM genera-
tion (S2B Fig and Fig 2A). In accordance with the previous results utilizing virulent mycobacte-
rial strains, H37Rv and MDR-JAL2287 expressed the FM genes (Fig 2B). Further,
mycobacteria-responsive expression of Acsll, Adrp, Psap, Fat and Msr1 was found to be
TLR2-dependent (Fig 2C). Since induced expression of JMJD3 was found essential to render
the FM phenotype during mycobacterial infection (Fig 1]), contribution of JMJD3 in regulating
the identified set of genes was assessed. Corroborating the previous observation, RAW 264.7
macrophages expressing Jmjd3-specific siRNAs failed to express Acsl1, Adrp, Psap and Fat on
BCG infection (Fig 2D and 2E). To further validate the epigenetic regulation of the identified
genes, ChIP experiments were performed. BCG infection of primary macrophages showed
TLR2-dependency for decreased H3K27me3 methylations on the promoters of Acsl1, Adrp,
Psap and Fat genes marking the active transcription (Fig 2F). Importantly, corresponding
recruitment of JMJD3 to the identified promoters was found. While BCG infection of wild-
type macrophage showed significant recruitment of JMJD3 to the promoters of AcslI, Adrp,
Psap and Fat genes, macrophages from tlr2-null mice did not exhibit similar results (Fig 2F).
Possibility of direct regulation of the M2 genes by JMJD3 was ruled out as ChIP results sug-
gested that mycobacterial infection does not modulate H3K27me3 modification or recruitment
of JMJD3 to the promoters of M2 genes in macrophages (S2C Fig). Additionally, BODIPY and
transcript analysis in macrophages transfected with specific siRNAs to AcslI, Adrp, Psap and
Fat genes underscored the role for these genes in regulating FM generation (Fig 2G and S2D
Fig) and M2 gene expression (S2E Fig). Together, this suggests that mycobacteria-induced
TLR2 signaling directs the JMJD3-dependent expression of genes required for LB formation,
FM generation and concomitant M2 phenotypic responses.

TLR2-dependent FM formation and JMJD3 expression in in vivo murine
models

To bring the in vivo relevance of the identified mechanism of FM generation, we utilized two
murine models. Lungs were isolated from WT and #/r2-null mice after aerosol infection with
H37Rv. Characteristic lesions were observed in larger numbers on the pleura of infected WT
mice as compared to that in infected #/r2-null mice (S3A Fig and Fig 3A). Analysis of lung
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Fig 2. JMJD3 epigenetically regulates the expression of genes required for mycobacteria-induced FMs. (A and B) Protein (A) and transcript (B)
analysis of the selected genes involved during FM formation in peritoneal macrophages infected with the indicated bacteria for 12 h. (C) Peritoneal

macrophages from WT or tIr2-null mice were infected with BCG for 12 hand q

uantitative real-time RT-PCR for the selected FM genes. (D and E) Murine

RAW 264.7 cells were transiently transfected with NT or Jmjd3 siRNA and infected with BCG for 12 h. Quantitative real-time RT-PCR (D) and
immunoblotting (E) for the selected FM genes. (F) Peritoneal macrophages from WT or t/r2-null mice were infected with BCG for 12 h. H3K27me3
modification and JMJD3 recruitment at promoters of Acs/1, Adrp, Psap and Fat were evaluated by ChIP. (G) Peritoneal macrophages transfected with NT or
Acsl1+Adrp+Psap+Fat siRNA were infected with H37Rv expressing the red fluorescent protein tdTomato for 48 h. Representative IF images of

macrophages with BODIPY-stained lipid droplets (left panel). Based on the IF

images, MFls were calculated (n = 100, each treatment) and plotted (top right

panel). Frequency of FMs was calculated by counting the population of cells expressing 0-5, 5-10 or >10 lipid bodies (n = 250-300) and plotted as a bar
graph (bottom right panel). All data represents the mean + SEM for at least 3 independent experiments, ns = not significant, *P < 0.05, **P < 0.005,
***P < 0.0005 (one-way ANOVA followed by Tukey’s multiple-comparisons test) and all blots are representative of 3 independent experiments. Med,
medium; NT, non-targeting; WT, wild-type; KO, knockout; MFI, mean fluorescence intensity. Bar, 5 ym; Original magnifications 63X.

doi:10.1371/journal.ppat.1005814.9002

tissue sections revealed characteristic granulomas with epithelioid cells and lymphocytes in the
H37Rv-infected mice. However, no necrosis was observed. While 5-8 such granulomas were
observed in the lungs of the WT mice, /r2-KO mice were found to have 2-3 granulomas in
their lungs. Importantly, the granuloma score was significantly reduced from 32.5 in the WT to

17.5 in the tlr2-KO mice (F

ig 3B and 3C), indicating the TLR2 dependency of mycobacteria-

induced granulomas. Further, BODIPY analysis of the lungs by IF (Fig 3D) and FACS (Fig 3E)
and ORO staining (S3B Fig) validated the TLR2-dependent FM generation in mice during
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Fig 3. In vivo murine granuloma models display TLR2-dependent FM generation and expression of associated genes. (A-E) WT or tir2-null mice
were infected by aerosol inhalation of 500 CFUs of H37Rv (n = 6 in each group, two independent experiment). Pulmonary pathology of the infected lungs
(A). Representative images of hematoxylin and eosin staining of formaldehyde-fixed, paraffin-embedded lung tissue sections are shown (B). Lungs from
PBS treated mice (left two panels): Low power (10X) photomicrograph of a lung showing normal pulmonary parenchyma and high power (40X) of same
section showing part of normal bronchial wall and alveoli are represented. BL = Bronchial Lumen, AS = Alveolar Space. Lungs from H37Ryv treated mice
(right two panels): Low power (10X) photomicrograph of a lung showing a granuloma on the periphery and high power (40X) photomicrograph showing
the granuloma formed of epithelioid cells and lymphocytes are represented. No necrosis was observed in granulomas from both WT and t/r2-null mice
lungs. G = Granuloma, AS = Alveolar Space, EC = Epithelioid cells, L = Lymphocytes (B). Tabulation of granuloma scores from histopathology results (C).
IF imaging of BODIPY-stained lipid droplets in the cryosections of the lungs (D). Formaldehyde-fixed, paraffin-embedded lung sections from H37Rv-
infected WT and t/r2-KO mice were stained for acid-fast bacteria by Ziehl-Neelsen method (D, right most panels). Flow cytometry of BODIPY-stained lung
cells (E). Histogram plot for BODIPY 493/503 fluorescence (left panel) and MFls (right panel) of the same are plotted. Data represents the mean + SEM
(n=4), ***P <0.0005 (one-way ANOVA followed by Tukey’s multiple-comparisons test). (F) IHC on formaldehyde-fixed, paraffin-embedded lung (left 5
panels)/ granuloma (right 5 panels) sections from WT and t/r2-KO mice was performed to assess the in vivo expression of JMJD3, ADRP and CD36.
Representative images are shown here (n = 6). WT, wild-type; KO, knockout; MFI, mean fluorescence intensity. Original magnifications and scale are
indicated on the images.

doi:10.1371/journal.ppat.1005814.9003

H37Rv infection. In an alternate study, a previously well known in vivo murine granuloma
model [5, 28] was established with BCG infection. The excised granulomas were analyzed for
the characteristic hallmarks of a granuloma such as cellular architecture, peripheral accumula-
tion of the lymphocytes and different classes of macrophages constituting the center (S3C Fig).
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After authenticating the obtained granulomas, ORO staining of the sections were performed.
BCG-induced granulomas from wild-type mice displayed increased occurrence of FMs in the
tissues when compared to that from t/r2-null mice (S3D Fig). Importantly, results from IHC
(Fig 3F) and IF (S3E Fig) experiments suggested that while H37Rv- and BCG-induced granulo-
mas from wild-type mice express elevated levels of JIMJD3, ADRP and CD36, expression of
these genes in granulomas from tlr2-null mice was significantly abrogated.

Mycobacteria downregulate MINT/Spen to facilitate JMJD3 expression

After establishing the downstream effector functions of JMJD3, the possible mechanisms by
which mycobacteria induces JMJD3 expression were explored. In this context, silencing media-
tor for RARs and thyroid receptors-extended (SMRTe/NCoR?2) is a known repressor of JMJD3
expression in neuronal cells [29]. Importantly, SMRTe complexes with MINT/Spen, HDAC1
and HDAC2 to bring about the repression of the target genes [30]. Hence, the role for SMRTe
and MINT/Spen to regulate JMJD3 expression was assessed. As shown in Fig 4A and 4B, while
no significant change in the expression of SMRTe was observed, expression of MINT protein
was significantly downregulated on H37Rv, H37Ra and BCG infection in primary macro-
phages. This observation corresponds to the induced expression of JMJD3 in these conditions
(Fig 1A-1D). However, levels of Spen transcripts did not alter with the infection (Fig 4C and
4D). Interestingly, we found that inhibition of MINT by specific siRNA results in significant
increase in JMJD3 expression, even in the absence of infection (Fig 4E and 4F). To further
establish the role for MINT in negatively regulating JMJD3 responses, MINT was overex-
pressed in RAW 264.7 macrophages. Ectopic expression of MINT not only suppressed the abil-
ity of mycobacteria (both BCG and H37Rv) to induce JMJD3 and the downstream genes
responsible for FM generation (Fig 4G, 4H and 4I), but also compromised the ability of BCG to
form FMs (Fig 4] and 4K). Thus, mycobacteria subdue the expression of MINT to elevate
JMJD3 expression and mediate FM formation.

MSI targets MINT to regulate JMJD3 expression and FM generation

Interestingly, as shown, mycobacteria-mediated inhibition of MINT/Spen was observed at the
protein but not at transcript levels (Fig 4A-4D). This underscores a regulation-mediated by
post-transcriptional modifications. One such known regulatory mechanism is exhibited by a
RNA binding protein, MSI [31]. MSI isoforms MSI1 and MSI2, bind to the 3’UTR of the target
mRNA to block its translation [32]. In the current context, Spen 3’UTR was analyzed for the
binding site of MSI, (G/A)U,AGU (n = 2-3) [32]. Importantly, a binding site ATTAGT span-
ning the 332-337 residues of the Spen 3’UTR was identified (Fig 5A). Thus, it was hypothesized
that mycobacteria may regulate MINT via MSI activity.

H37Rv, MDR-JAL2287, H37Ra and BCG, but not M. smegmatis infection of primary mac-
rophages was found to exhibit elevated expression of MSI1 and MSI2 at both RNA and protein
levels in a TLR2-dependent manner (Fig 5B-5F). Substantiating this observation, significant
expression of MSI was found in the infected lungs as well as granuloma sections (Fig 5G and
5H). Further, BODIPY and ORO staining of RAW 264.7 macrophages expressing MSI overex-
pression construct (Fig 51 and S4A and S4B Fig) or MSI dominant negative (S4C and S4D Fig)
and BODIPY analysis of primary macrophages transfected Msi-specific siRNA (Fig 5] and S4E
Fig) suggested that MSI expression was crucial to mediate mycobacteria-induced FM genera-
tion. Supporting this observation, the genes regulating FM formation, Jmjd3, Acsll, Adrp, Psap
and Fat were positively regulated by MSI (Fig 6A, 6B and 6C). Interestingly, expression of
MINT, a putative target of MSI, was not only suppressed in RAW 264.7 macrophages overex-
pressing MSI, but also rescued in macrophages expressing MSI dominant negative despite the
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quantitative real-time RT-PCR and immunoblotting respectively. Validation of MINT OE (MINT-EGFP) construct (I). Representative images of cells
stained with ORO (J, left panel) and extracted ORO was measured at ODs1¢ (J, right panel). (K) RAW 264.7 cells transiently transfected with MINT OE
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images, MFIs were calculated (n = 100, each treatment) and plotted (top right panel). Frequency of FMs was calculated by counting the population of cells
expressing 0-5, 5-10 or >10 lipid bodies (n = 250-300) and plotted as a bar graph (bottom right panel). All data represents the mean + SEM for at least 3
independent experiments, *P < 0.05, **P < 0.005, ***P < 0.0005 (one-way ANOVA followed by Tukey’s multiple-comparisons test) and all blots are
representative of 3 independent experiments. Med, medium; NT, non-targeting; OE, overexpression; MFI, mean fluorescence intensity. Bar, 5 ym;
Original magnifications 63X in | and K and 100X in J.

doi:10.1371/journal.ppat.1005814.9004

infection (Fig 6A and 6C). To further validate the direct interaction of MINT with MSI, RNA
IP experiments were performed. Numb is known target of MSI and was used as a positive con-
trol in the experiment [31]. Importantly, the MSI immunoprecipitates from RAW 264.7 mac-
rophages infected with BCG or from RAW 264.7 macrophages overexpressing MSI showed
significant enrichment of MSI binding region from 3"'UTR of Spen and Numb (Fig 6D). How-
ever, BCG-induced enrichment of MSI binding region from Spen and Numb 3’'UTR was
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severely abolished in macrophages expressing MSI dominant negative (Fig 6D). Together,
these results establish that MINT is bonafide target of MSI. We further assessed the contribu-
tion of MSI in regulating the immune responses displayed by FMs. In accordance with JMJD3,
MSI negatively regulated M1 markers like I112, Il1b and Cxcl2 (Fig 6E, left panel) and was nec-
essary for mycobacterial infection-induced expression of M2 markers like Argl, Mrcl, 1110,
Tgfb, Ccl17 and Ccl2 (Fig 6E, right panel).
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doi:10.1371/journal.ppat.1005814.9006

NOTCH1-dependent expression of MSI and FM generation during
mycobacterial infection

To establish the signaling link between TLR2 and MSI, a screen for various signaling pathways,
previously known to be activated during mycobacterial infection [12-14, 33] was performed.
Macrophages treated with specific inhibitors of NOTCH1 activation (GSI), PI3K (LY294002),
mTOR (Rapamycin), NF-kB (BAY 11-7085), SHH signaling (Cyclopamine, Betulinic Acid)
and WNT signaling (IWP-2, FH535) suggested a role for well-established NOTCH1-PI3K-
mTOR-NF-«xB pathway in regulating BCG-induced MSI expression (Fig 7A). Following inhibi-
tion of NOTCH1-PI3K-mTOR-NF-«xB pathway with specific pharmacological inhibitors, the
MFI and number of BODIPY-stained lipid bodies in H37Rv-infected primary macrophages
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5 pm; Original magnifications 63X.

doi:10.1371/journal.ppat.1005814.9007

were significantly reduced (Fig 7B and 7C). It has been well characterized that activation of
NOTCHI signaling is marked by cleavage of the intracellular domain of the NOTCH1 receptor
to form NICD that transduces the downstream signaling. BCG infection-induced NOTCH1
signals via PI3K-mTOR-NF-«B cascade in macrophages in a TLR2-dependent manner (Fig

PLOS Pathogens | DOI:10.1371/journal.ppat.1005814  August 17,2016 12/25
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7D, left panel and [12, 33]). Further, BCG-infected macrophages expressing Notch1-specific
siRNAs failed to activate the downstream PI3K-mTOR-NF-kB pathway (Fig 7D, right panel).
In line with Fig 7A, BCG-regulated expression of MSI, MINT, JMJD3, genes associated with
FM generation (Fig 7E-7H) and FM phenotype as assessed by BODIPY staining (Fig 7I) was
found to be significantly reduced in macrophages expressing Notch1-specific siRNAs. These
results underscore the NOTCHI1 signaling functions that mediate mycobacteria-induced FM
generation. Corroborating these results, RAW 264.7 macrophages stably expressing NICD
exhibited the activation of PI3K-mTOR-NF-kB pathway (S5A Fig), induced comparable level
of MSI, JMJD3, genes associated with FM generation and inhibited MINT expression (Fig 8A
and S5B Fig). Additionally, similar to BCG-infected macrophages, NICD-expressing RAW
264.7 macrophages exhibited significant ORO staining (S5C Fig). Finally, inhibition of PI3K-
mTOR-NF-xB pathway in RAW 264.7 macrophages stably expressing NICD significantly
hampered their ability to induce the expression of MSI, JMJD3, genes associated with FM gen-
eration and FM phenotype (Fig 8B, 8C and 8D). Together, these results suggest the role for
NOTCHLI signaling during LB generation and FM formation during mycobacterial infection.

Discussion

In patients with M. tuberculosis infection, the bacilli were chiefly found to reside in the lipid-
rich environment of FMs [34]. Further, both in vitro and in vivo studies in murine [28] and
human granuloma models [34] have underscored the importance of the macrophage-derived
FMs in regulating the course of mycobacterial pathogenesis. In accordance with previous
observations [23, 34], in the current study, H37Rv, MDR-JAL2287, H37Ra and BCG, but not
M. smegmatis, a saprophyte, were found to stimulate FM generation. In vivo generation of FMs
in the granuloma was also observed. However, though several host [5, 23, 35] and bacterial [34,
35] components have been identified to regulate the infection-induced FM generation, no stud-
ies have attempted to unveil the epigenetic regulation that mediate LB and FM formation. We
identified role for a histone demethylase, JMJD3, in orchestrating the mycobacterial infection-
induced FM generation.

Functions of an inducible demethylase, JMJD3 has been implicated in case of several viral
infections [36], bacterial effector functions [16, 37], inflammation [38] and M2 polarization
[18]. Interestingly, pathogenic mycobacterial infection is well characterized for the generation
of alternatively activated M2 macrophages, which could aid the bacterial survival and immune
evasion [15, 20-22]. Importantly, many FM characteristic proteins like CD36, MSR1, lipoxy-
genases 5/15 etc are hallmark markers of M2 macrophages indicating a close link between M2
macrophages and FMs [23, 24]. In this context, the role for JMJD3 in mycobacteria-induced
FMs was explored. JMJD3 was indeed, for the first time, found to coordinate the H37Rv-,
MDR-JAL2287-, H37Ra- or BCG-induced FM formation and consequent M2 phenotype of
the FMs. A recent report indicated an important role for JMJD3 during serum amyloid A-
enhancement of oxidized LDL-induced macrophage FM generation [19]; however, there was
no mechanism established in the study.

Of note, the genes that facilitate FM generation like AcslI, Adrp, Psap and Fat exhibited ele-
vated expression on infection with mycobacteria. Though the expression of Msr1 and Marco was
induced with infection, no significant changes were observed in tIr2-null macrophages or in the
absence of Jmjd3, H3K27me3 demethylase. Hence, these genes were not pursued further. Inter-
estingly, both virulent mycobacterial strains like H37Rv, MDR-JAL2287 and avirulent strains
like H37Ra, BCG induced the robust expression of FM genes, but not M. smegmatis. We also
found a robust expression of JMJD3-responsive FM genes on H37Rv or MDR-JAL2287 infection
when compared to that with H37Ra and BCG. This could be attributed to the virulence
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Fig 8. NOTCH1 regulates the FM formation via the PI3K-mTOR-NF-kB pathway. (A-C) Murine RAW 264.7 macrophages stably transfected with
pCMV NICD (NICD) or pCMV alone (pCMV) were analyzed for the expression of the indicated genes either 12 h post BCG infection (A) or after treatment
with the specific inhibitors of PI3K (LY294002), mTOR (Rapamycin), NF-kB (BAY 11-7085) (B and C) for 12 h. Immunoblotting (A, C) or quantitative real-
time RT-PCR (B) analysis was performed. (D) RAW 264.7 macrophages stably expressing NICD were infected with H37Rv expressing the red
fluorescent protein tdTomato for 48 h or treated with specific inhibitors. Representative IF images of macrophages with BODIPY-stained lipid droplets (top
left panel). Based on the IF images, MFIs were calculated (n = 100, each treatment) and plotted (bottom left panel). Frequency of FMs was calculated by
counting the population of cells expressing 0-5, 5-10 or >10 lipid bodies (n = 250-300) and plotted as a bar graph (top right panel). (E) Model presented
in the study. All data represents the mean + SEM for at least 3 independent experiments, **P < 0.005, ***P < 0.0005 (one-way ANOVA followed by
Tukey’s multiple-comparisons test) and all blots are representative of 3 independent experiments. Med, medium; WT, wild-type; KO, knockout; NT, non-
targeting; MFI, mean fluorescence intensity. Bar, 5 ym; Original magnifications 63X.

doi:10.1371/journal.ppat.1005814.9008

characteristics of H37Rv and MDR-JAL2287. Further investigation on these aspects is underway.
Also, the efflux coordinators, Abcal and Abcgl were downregulated or remained unchanged
with H37Ra and BCG infection but were significantly induced during M. smegmatis infection.
Though it needs further examination, increased ABCA1 and ABCGL transporters in response to
M. smegmatis could facilitate the efficient efflux of cholesterol from the infected macrophages
and hence contribute to the reduced frequency of FMs during M. smegmatis infection. Together,
in case of H37Rv, MDR-JAL2287, H37Ra and BCG, results indicate a concerted modulation of
the lipid biosynthesis and uptake genes by a master regulator, JMJD3.
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Further, mycobacteria-induced post-transcriptional regulator, MSI was found to target a nega-
tive regulator of JMJD3, MINT to facilitate the FM generation. In accordance to this observation,
MINT was found to inhibit adipogenic differenciation [39] and inhibition of MINT could induce
adipogenesis [40]. Likewise, we found suppression of MINT during pathogenic mycobacterial
infection is requisite for JMJD3 expression and LB generation. Apart from a study that suggests
MSI expression on infection with Helicobacter pylori that induces stemness and gastric cancer
[41], no available reports have implicated the role for MSI during infection or inflammation. The
functions of MSI are usually attributed to regulate cancer and development [32, 42]. Hence, a
novel role for MSI during mycobacteria-responsive FM formation was elucidated in the current
study. Importantly, while few M1 markers like 1112, Il1b and Cxcl5 were negatively regulated by
MSI-JMJD3 axis, characteristic M2 markers were directed by this pathway (in line with [18, 43]).
The MSI-JMJD3-dependent M2 genes IL-10 and TGF-f including PGE, which constitute FMs
can regulate T cell responses including the generation and expansion of regulatory T cells [44, 45].
Thus, the identified pathway could largely contribute to the evasive responses during mycobacte-
rial infection and suppression of such pathways during infection could confer stronger immunity.

Infection-induced NOTCH1-PI3K-mTOR-NEF-«B signaling was found to mediate MSI
expression. While mycobacterial infection was previously shown to induce TLR2-NOTCH1--
PI3K-mTOR-NF-kB pathway to regulate immune responses [12, 33], different cancer studies
have implicated NOTCH3-dependent MSI1 expression [46] and MSI1-dependent NOTCH
activation [47]. Further, early activation of NOTCHI1 signaling on mycobacterial infection [12,
33] is in line with the current observation of NOTCHI signaling inducing MSI at early time
points of infection. Together, TLR2-NOTCH1-dependent MSI induction was found to regulate
the expression of a demethylase, JMJD3 by suppressing MINT. JM]JD3 orchestrated the expres-
sion of the genes, Acsl1, Adrp, Psap and Fat to direct the formation of LBs and FMs (Fig 8E).

Confounding studies attribute both anti-bacterial and pro-bacterial functions of TLR2 dur-
ing mycobacterial infection [15, 48-50]. Importantly, tIr2-null mice were previously reported
to exhibit exaggerated immune responses to high dose (500 CFUs, as in the current study)
mycobacterial infection but displayed dispersed granuloma, reduced bacterial clearance and
succumbed to infection [51]. Elevated inflammatory phenotype was entailed to TLR2-depen-
dent recruitment of Foxp3™ regulatory T cells to lungs that was compromised in /r2-null mice
[52]. In the current investigation, however, we found a pro-mycobacterial role for TLR2, as a
requirement to establish the FMs in granuloma. Due to the fact that TLR2 effectuates multiple
immune responses during mycobacterial infection, the exact contribution of TLR2-dependent
JMJD3 in vivo in terms of regulating mycobacteria-induced immune responses needs to be
assessed in jmjd3-null mice. Since loss of jmjd3 causes perinatal lethality in mice [53], this
study needs alternative strategies.

Our work has underscored the novel functions of epigenetic regulators like JMJD3 during
mycobacteria-induced generation of a survival niche like FMs in granulomas and fine-tuning
the concomitant immune responses. These regulators could be potential candidates for host-
directed therapies against mycobacterial infection.

Materials and Methods
Cells, mice and bacteria

Primary macrophages were isolated from peritoneal exudates of C57BL/6], C3H/He] and tlr2-
KO mice that were purchased from The Jackson Laboratory and maintained in the Central
Animal Facility, Indian Institute of Science (IISc). Briefly, mice were intraperitoneally injected
with 1 ml of 8% Brewer thioglycollate. After 4 d of injection, mice were sacrificed and perito-
neal cells were harvested by lavage from peritoneal cavity with ice-cold PBS. The cells were

PLOS Pathogens | DOI:10.1371/journal.ppat.1005814  August 17,2016 15/25



@’PLOS | PATHOGENS

Epigenetics of Foamy Macrophage Generation

cultured in DMEM (Gibco-Invitrogen/Thermo Fisher Scientific) containing 10% FBS (Gibco-
Invitrogen/Thermo Fisher Scientific) for 6 to 8 h and adherent cells were used as peritoneal
macrophages. Murine RAW 264.7 macrophage-like cells obtained from the National Center
for Cell Sciences, Pune, India. M. tuberculosis H37Rv and MDR-JAL2287 were kind research
gifts from Dr. Kanury V.S. Rao, ICGEB, India. All studies involving virulent mycobacterial
strains were carried out at the BSL-3 facility at Centre for Infectious Disease Research (CIDR),
ISc. M. bovis BCG Pasteur 1173P2 was obtained from Pasteur Institute, Paris, France; M.
tuberculosis H37Ra and M. smegmatis were kind research gifts from Dr. P. Ajitkumar, IISc,
India. Bacteria were grown to mid-log phase and used at 10 multiplicity of infection (MOI) in
all the experiments unless mentioned otherwise.

Ethics statement

All studies involving mice and virulent mycobacterial strains were carried out after the
approval from the Institutional Ethics Committee for animal experimentation as well as from
Institutional Biosafety Committee. The animal care and use protocol adhered were approved
by national guidelines of the Committee for the Purpose of Control and Supervision of Experi-
ments on Animals (CPCSEA), Government of India.

Reagents and antibodies

General laboratory chemicals were obtained from Sigma-Aldrich or Merck Millipore. Anti--
ACTIN and anti-HA antibodies were purchased from Sigma-Aldrich. Anti-H3K27me3, anti-
EZH2, anti-JMJD3, anti-MUSASHI (MSI), anti-NUMB, anti-NOTCH]1, anti-Cleaved Notch1
(Val1744) (NICD), anti-Tyr485 p85/ Tyr199 p55 phospho-PI3K, anti-Ser2448 phospho-
mTOR, anti-Thr389 phospho-p70S6K and anti-Ser536 phospho-NF-«xB p65 were purchased
from Cell Signaling Technology. Anti-ADRP, anti-CD36, anti-ABCA1, anti-SMRTe and anti-
MINT (SPEN) were purchased from Santa Cruz Biotechnology, Inc. HRP conjugated anti-rab-
bit IgG and anti-mouse IgG and anti-rabbit DyLight 488 were obtained from Jackson Immu-
noResearch. Fluorescein isothiocyanate (FITC)-conjugated monoclonal antibodies (mAbs) to
mouse MHC class II, phycoerythrin (PE)-conjugated mAbs to mouse F4/80 were from BD Bio-
sciences. Anti-mouse CD19-APC and CD3-FITC were from Imgenex. Ziehl-Neelsen (ZN)
staining Kit was purchased from HiMedia and 4’,6-Diamidino-2-phenylindole dihydrochloride
(DAPI) was from Sigma-Aldrich. BODIPY 493/503 (4,4-Difluoro-1,3,5,7,8-Pentamethyl-
4-Bora-3a,4a-Diaza-s-Indacene) and HCS LipidTOX Red neutral lipid stain was from Molecu-
lar Probes (Invitrogen/Thermo Fisher Scientific).

Treatment with pharmacological reagents

In all experiments, cells were treated with the given inhibitor (from Calbiochem) for 1 h before
experimental treatments at following concentrations: GSI (10 uM), LY294002 (50 pM), Rapa-
mycin (100 nM), BAY 11-7085 (10 uM), Cyclopamine (10 uM), Betulinic Acid (10 pM), IWP-
2 (5 uM), FH535 B-CATENIN and TCF inhibtor (15 uM). DMSO at 0.1% concentration was
used as the vehicle control. In all experiments involving pharmacological reagents, a tested con-
centration was used after careful titration experiments assessing the viability of the macro-
phages using the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.

Stable transfection of RAW 264.7 cells

RAW 264.7 macrophages stably expressing NOTCH intracellular domain (NICD) were gener-
ated as described previously [12]. Briefly, RAW 264.7 cells were transfected with pCMV-NICD
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cDNA construct or pCMV alone using Lipofectamine 2000 (Invitrogen/Thermo Fisher Scien-
tific). Cells were selected in G418 sulfate (400 pug/ml) and screened for NICD expression by
immunoblotting as well as assessed for the expression of HesI mRNA, a transcriptional target
for NOTCH1 by quantitative real-time RT-PCR.

Transient transfection studies

Transiently transfection of RAW 264.7 macrophages with 5 ug of dominant negative mutant
forms of TLR2, MSI or overexpression constructs of JMJD3, MINT and MSI was performed
using low m.w. polyethylenimine (Sigma-Aldrich). In case of experiments involving siRNA,
RAW 264.7 macrophage cells were transfected with 100 nM siRNA. Jmjd3, Acsl1, Adrp, Fat,
Psap, Spen, Msi, Notchl, non-targeting siRNA and siGLO Lamin A/C were obtained from
Dharmacon as siGENOME SMARTpool reagents, which contain a pool of four different dou-
ble-stranded RNA oligonucleotides. Transfection efficiency was found to be 70-80% in all the
experiments as determined by counting the number of siGLO Lamin A/C positive cells in a
microscopic field using fluorescent microscope. Further, 48 h post-transfection (for experi-
ments with RAW 264.7 cells) or 24-36 h post-transfection (for experiments with peritoneal
macrophages), the cells were treated or infected as indicated and processed for analysis.

RNA isolation and quantitative real-time RT-PCR

Macrophages were treated or infected as indicated and total RNA from macrophages was iso-
lated by TRI reagent (Sigma-Aldrich). 2 ug of total RNA was converted into cDNA using First
strand cDNA synthesis kit (Applied Biological Materials Inc.). Quantitative real-time RT-PCR
was performed using SYBR Green PCR mixture (KAPA Biosystems) for quantification of the
target gene expression. All the experiments were repeated at least three times independently to
ensure the reproducibility of the results. Gapdh was used as internal control. The primers used
for quantitative real-time RT-PCR amplification are summarized in S1 Table.

Immunoblotting

Immunoblotting was performed as previously mentioned elsewhere [15]. Infected or treated
macrophages were lysed in RIPA buffer constituting 50 mM Tris-HCI (pH 7.4), 1% NP-40,
0.25% Sodium deoxycholate, 150 mM NaCl, 1 mM EDTA, 1 mM PMSF, 1 pg/ml of each apro-
tinin, leupeptin, pepstatin, 1 mM Na;VO, and 1 mM NaF. Equal amount of protein from each
cell lysate was resolved on a 12% SDS-polyacrylamide gel and transferred to polyvinylidene
difluoride membranes (PVDF) (Millipore) by the semi-dry transfer (Bio-Rad) method. Non-
specific binding was blocked with 5% nonfat dry milk powder in TBST [20 mM Tris-HCI (pH
7.4), 137 mM NaCl, and 0.1% Tween 20] for 60 min. The blots were incubated overnight at
4°C with primary antibody followed by incubation with anti-rabbit-HRP or anti-mouse-HRP
secondary antibody in 5% BSA for 2 h. After washing in TBST, the immunoblots were devel-
oped with enhanced chemiluminescence detection system (Perkin Elmer) as per manufactur-
er’s instructions. B-ACTIN was used as loading control.

Chromatin Immunoprecipitation (ChlP) assay

ChIP assays were carried out using a protocol provided by Upstate Biotechnology and Sigma-
Adrich with certain modifications. Briefly, macrophages were fixed with 3.6% formaldehyde
for 15 min at room temperature followed by inactivation of formaldehyde with addition of 125
mM glycine. Nuclei were lysed in 0.1% SDS lysis buffer [50 mM Tris-HCI (pH 8.0), 200 mM
NaCl, 10 mM HEPES (pH 6.5), 0.1% SDS, 10 mM EDTA, 0.5 mM EGTA, 1 mM PMSF, 1 g/
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ml of each aprotinin, leupeptin, pepstatin, 1 mM Na;VO, and 1 mM NaF]. Chromatin was
sheared using Bioruptor Plus (Diagenode) at high power for 40 rounds of 30 sec pulse ON/45
sec OFF. Chromatin extracts containing DNA fragments with an average size of 500 bp were
immunoprecipitated using JMJD3- or H3K27me3-specific antibodies or rabbit preimmune
sera complexed with Protein A agarose beads (Bangalore Genei). Immunoprecipitated com-
plexes were sequentially washed [Wash Buffer A: 50 mM Tris-HCI (pH 8.0), 500 mM NaCl, 1
mM EDTA, 1% Triton X-100, 0.1% Sodium deoxycholate, 0.1% SDS and protease/phosphatase
inhibitors; Wash Buffer B: 50 mM Tris-HCI (pH 8.0), 1 mM EDTA, 250 mM LiCl, 0.5% NP-
40, 0.5% Sodium deoxycholate and protease/phosphatase inhibitors; TE: 10 mM Tris-HCI (pH
8.0), 1 mM EDTA] and eluted in elution buffer [1% SDS, 0.1 M NaHCO;]. After treating the
eluted samples with RNase A and Proteinase K, DNA was precipitated using phenol-chloro-
form-ethanol method. Purified DNA was analyzed by quantitative real time RT-PCR. All val-
ues in the test samples were normalized to amplification of the specific gene in Input and IgG
pull down and represented as fold change in modification or enrichment. All ChIP experi-
ments were repeated at least three times and the primers utilized are listed in S1 Table.

H37Rv aerosol infection of mice

H37Rv was grown in Middlesbrook 7H9 medium (Difco) containing 0.2% glycerol, 0.05%
Tween 80 and 10% ADC. Cultures were grown at 37°C to log phase. Culture was washed with
PBS and passed 10 times each through 26-, 29- and 31-gauge needles to make single cell suspen-
sions of H37Rv. C57BL/6 and tlr2 null mice (n = 6, each group) were infected with 500 CFUs of
H37Rv via aerosol using an aerosol chamber (Wisconsin-Madison). The pulmonary infection
dose was confirmed by plating the homogenized lung tissue on Middlebrook 7H10 (Difco) agar
plates. Post 8 weeks of aerosol infection, mice were sacrificed; lungs were collected, fixed over-
night with 3.6% formaldehyde (Sigma-Aldrich) and processed for cryotomy or microtomy. Sec-
tions of fixed mice lungs were stained with hematoxylin and eosin to assess the pathology.
Granulomas features were characterized and assigned different scores: with necrosis (Score = 5),
without necrosis (Score = 2.5), with fibrosis (Score = 1). Total granuloma scores were calculated
by multiplying the characterized feature score with the number of granuloma in each lung.

In vivo murine BCG-induced granuloma model

C57BL/6 and tIr2 null mice (n = 7, each group) were used for generating granulomas as previ-
ously described [3, 5, 28] with certain modifications. BCG (107) were resuspended in 300 ml of
ice-cold growth-factor reduced matrigel (Sigma-Aldrich). The mixture was injected sub-der-
mally into the skin fold at the scruff of the neck. Both sets of mice received either matrigel
alone or BCG mixed matrigel. Granulomas were excised at 7 day post-inoculation and pro-
cessed for cryotomy or microtomy.

Cryosection preparation

The excised granuloma was rapidly frozen in liquid nitrogen in the optimal cutting tempera-
ture (OCT) media (Jung, Leica). Cryosections of 10-15 um were taken in Leica CM 1510 S or
Leica CM 3050 S cryostat (both Leica) with the tissue embedded in OCT onto the glass slides
and stored at -80°C.

Oil Red O (ORO) staining

Cells/cryosection tissues were fixed in 3.6% formaldehyde for 15 min. After PBS wash, the
cells/tissues were rinsed in 60% isopropanol for 10 min and stained with 0.5% ORO for 15 min.
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After cleaning the cells/tissues with 60% isopropanol, they were either counterstained with hae-
matoxylin and viewed under 100X or 20X in light microscope or washed in 100% isopropanol
for colorimetric analysis at 510 nm.

Lipid body staining and analysis

Lipid body staining was performed using a protocol provided by the manufacturer with certain
modifications. The cells/cryosection tissues were fixed with 3.6% formaldehyde for 45 min.
After 3 washes with PBS, the cells/cryosection tissues were stained with 10 ug/ml BODIPY 493/
503 or 1X HCS LipidTOX Red neutral lipid stain for 30 min in dark. After 3 washes with PBS,
the cells/sections were stained with DAPI and mounted on a slide with glycerol as the medium.
Confocal images (Z-stacks) were taken on Zeiss LSM 710 Meta confocal laser scanning micro-
scope (Carl Zeiss AG) using a plan-Apochromat 63X/1.4 Oil DIC objective (Carl Zeiss AG)
and images were analyzed using ZEN 2009 and Image] softwares. The lipid bodies were
counted in over 250 cells from different fields. Frequency of populations with different number
of lipid bodies (0-5 in blue, 5-10 in green, >10 in red) were plotted in terms of percentage. Sta-
tistical significance is represented in green and red. Green line represents the significance anal-
ysis of populations with “5-10” lipid bodies between indicated treatments and red represents
the significance analysis of populations with “>10” lipid bodies. For the MFI analysis, Image]J
was utilized to calculate the maximum intensity projections of the Z-stacks. Using free hand
selection tool, cells were selected to measure the area-integrated intensity and mean grey value.
The area around the cells without fluorescence was used to calculate the background values.
Corrected Total Cell Fluorescence (CTCF) was calculated using the following formula:

CTCF = Integrated intensity—(area of selected cell X Mean florescence of background reading).

BODIPY 493/503 analysis of the lungs

Uninfected and H37Rv-infected lungs were finely chopped and digested in 5 ml RPMI with 5%
FBS containing 150 U/ml Collagenase IV (HiMedia) and 50 U/ml DNasel (Thermo Fisher Sci-
entific) at 37°C in shaking condition for 1 h. The cell suspension was passed through 40 pm
cell strainer and pelleted at 1500 rpm for 10 min. The cells were resuspended in RBC lysis
buffer. Post lysis, the cells were washed with PBS. Obtained cell suspension was fixed using
3.6% formaldehyde solution for 30 min. After 3 washes with PBS, cells were resuspended in
PBS containing 2 ug/ml BODIPY 493/503 and incubated for 30 min at room temperature in
dark under mild rocking condition. After thorough washes with PBS, cells were analysed by
flow cytometry wherein 1 lakh events were recorded for each sample acquired in BD FACS-
Canto II. The data was analyzed using FACSDiva software (BD Biosciences) and WinMDI
Version 2.8.

Immunofluorescence (IF)

In case of MINT validation experiments, RAW 264.7 macrophages-transfected with MIN-
T-EGFP were seeded on to coverslips and incubated. The cells were fixed with 3.6% formalde-
hyde for 15 min at room temperature and the coverslips were mounted on a slide with glycerol.
For IF of the cryosections, frozen sections were thawed to room temperature and fixed with
3.6% formaldehyde. After blocking with 2% BSA containing saponin, the sections were stained
for specific antibodies at 4°C overnight. The sections were incubated with DyLight 488-conju-
gated secondary antibody for 2 h and nuclei stained with DAPI. A coverslip was mounted on
the section with glycerol as the medium. Confocal images were taken on Zeiss LSM 710 Meta
confocal laser scanning microscope (Carl Zeiss AG) using a plan-Apochromat 63X/1.4 Oil
DIC objective (Carl Zeiss AG) and images were analyzed using ZEN 2009 software.
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Immunohistochemistry (IHC)

Microtome sections (4 pm) were obtained from 3.6% formaldehyde-fixed, decalcified, and par-
affin-embedded tissues using Leica RM2245 microtome (Leica). These sections were first
deparaffinized, subjected to antigen retrieval by boiling in 10 mM citrate buffer (pH 6.0) for 10
min, treated with 1% H,O, for 10 min, and blocked with 5% BSA for 1 h at room temperature.
The tissue sections were further incubated with primary antibodies overnight. After incubation
with anti-rabbit HRP-conjugated secondary antibody for 90 min, sections were stained with
0.05% diaminobenzidine (Sigma-Aldrich) in 0.03% H,O, solution and counterstained with
hematoxylin, dehydrated and mounted. Stained tissue sections were imaged with Axio Scope.
A1 microscope (Zeiss) at indicated magnification. All experiments were performed with appro-
priate isotype-matched control antibodies.

Ziehl-Neelsen (ZN) staining

Cryosections were fixed, paraffin-embedded sections were deparaffinized and hydrated to dis-
tilled water. The sections were stained with hot Carbol fuchsin solution for 5 min. The sec-
tioned were washed in running water and destained with 1% acid alcohol. After washing with
running water, the sections were counter-stained with methylene blue for 30 sec. The sections
were washed and dried. The images were acquired with Axio Scope.Al microscope (Zeiss) at
indicated magnification.

RNA Immunoprecipitation (RNA IP)

Macrophages were lysed in 300 pl of complete polysomal lysis buffer [5 mM MgCl,, 0.1 M KCl,
0.5% NP40, 0.01M HEPES pH 7.5]. Total cell lysate (200 pg) was diluted to 500 pl using com-
plete polysomal lysis buffer for IP. 50 ul of anti-mouse IgG precleared lysate was used as Input
for the experiment and total RNA was isolated as described earlier. Rest of the precleared lysate
was incubated with 1 pg anti-mouse IgG or anti-MSI prebound Protein A beads overnight.
Further, beads were washed in complete polysomal lysis buffer and 25% of the beads were
eluted in 5X Laemmli buffer for immunoblotting with anti-MSI. Remaining beads were eluted
in TRI reagent and processed for RNA isolation as described earlier. 500 ng of the RNA was
converted into cDNA and quantitative real time RT-PCR was performed to analyze Spen and
Numb. The primers used are listed in S1 Table. Gapdh from Input was utilized for
normalization.

Statistical analysis

Levels of significance for comparison between samples were determined by the Student’s ¢-test
distribution and one-way ANOVA followed by Tukey’s multiple-comparisons. The data in the
graphs are expressed as the mean * S.E for the values from at least 3 or more independent
experiments and P values < 0.05 were defined as significant. GraphPad Prism 5.0 software
(GraphPad Software) was used for all the statistical analysis.

Supporting Information

S1 Fig. TLR2- and JMJD3-dependent FM generation during mycobacterial infection. (A)
Murine RAW 264.7 macrophages were transiently transfected with TLR2 DN and infected
with the indicated bacteria (H37Ra: M. tuberculosis H37Ra; BCG: M. bovis BCG; MS: M. smeg-
matis) for 48 h. Representative images of cells stained with Oil Red O (ORO) (left panel) and
extracted ORO was measured at ODs,, (right panel). (B) IF imaging of BODIPY-stained lipid
droplets in WT or tlr2-null peritoneal macrophages infected with the indicated bacteria for 48
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h (left top panel). Based on the IF images, MFIs were calculated (n = 100, each treatment) and
plotted (left bottom panel). Frequency of FMs was calculated by counting the population of
cells expressing 0-5, 5-10 or >10 lipid bodies (n = 250-300) and plotted as a bar graph (right
panel). (C) Murine RAW 264.7 macrophages were infected with 5 MOI of H37Rv or
MDR-JAL2287 for 48 h. Representative images of cells stained with ORO (top panel) and
extracted ORO was measured at ODs; (bottom panel). (D-G) RAW 264.7 cells transiently
transfected with JMJD3-HA (D and E) or NT or Jmjd3 siRNA (F and G) were infected with
BCG for 48 h. ORO staining (D and F, left panels) and the extracted ORO at ODs5;, (D and F,
right panels) was performed. Confirmatory blot for JMJD3-HA construct (E) and Jmjd3-spe-
cific siRNA (G). All data represents the mean + SEM for at least 3 independent experiments,
ns = not significant, *P < 0.05, **P < 0.005, ***P < 0.0005 (one-way ANOVA followed by
Tukey’s multiple-comparisons test except for two-tailed paired Student’s ¢-test in D). Med,
medium; DN, dominant negative; WT, wild-type; KO, knockout; NT, non-targeting; MFI,
mean fluorescence intensity. Bar, 5 um; Original magnifications 100X in A, C, D, F and 63X in
B.

(TIF)

S2 Fig. JMJD3 and genes associated with FM generation regulate M1/M2 genes. (A) RAW
264.7 macrophages transiently transfected NT or Jmjd3 siRNA were infected with BCG for 12
h. Quantitative real-time RT-PCR for the indicated M1 markers. (B) Transcript levels analysis
of the selected genes involved during FM formation in peritoneal macrophages infected with
the indicated bacteria for 12 h. (C) Peritoneal macrophages from WT or tlr2-null mice were
infected with BCG for 12 h. H3K27me3 modification (upper panel) and JMJD3 recruitment
(lower panel) at promoters of M2 markers were evaluated by ChIP. (D) siRNA validation of
the selected genes involved during FM formation by immunoblotting and quantitative real-
time RT-PCR. (E) RAW 264.7 macrophages transiently transfected NT or Acsl1+Adrp+Psap
+Fat siRNA were infected with BCG for 12 h. Quantitative real-time RT-PCR for the indicated
M2 markers. All data represents the mean + SEM for at least 3 independent experiments,

ns = not significant, *P < 0.05, **P < 0.005, ***P < 0.0005 (one-way ANOVA followed by
Tukey’s multiple-comparisons). Med, medium; NT, non-targeting; WT, wild-type; KO, knock-
out.

(TIF)

S3 Fig. TLR2-dependent FM generation in mouse granulomas. (A) WT or tlr2-null mice
were infected by aerosol inhalation of 500 CFUs of H37Rv (n = 6 in each group, two indepen-
dent experiment). Pulmonary pathology was recorded after 8 weeks of infection; arrows indi-
cate the presence of granuloma structures. (B) Cryosections of the lung tissues were stained
with ORO. Representative images (left panel; Original magnifications 20X) and extracted ORO
at ODs (right panel). (C) BCG along with matrigel was injected to the scruft of the WT or
tlr2-null mice to induce granuloma formation (n = 7 in each group). Representative immuno-
fluorescence images stained for B cell (CD19) and T cell (CD3) markers or macrophage mark-
ers (F4/80, MHC-II) in the cryosections of the excised granuloma from BCG-infected WT
mice. Formaldehyde-fixed, paraffin-embedded granuloma sections from BCG-infected WT
mice were stained for acid-fast bacteria by Ziehl-Neelsen method (lower most panel). (D)
Cryosections of the excised granuloma from WT and #r2-KO mice were stained with ORO.
Representative images (upper panel; Original magnifications 20X) and extracted ORO at
ODs (lower panel). (E) IF with cryosections of the lungs (left 4 panels)/ granuloma (right 4
panels) from WT and #/r2-KO mice was performed to assess the in vivo expression of JMJD3,
ADRP and CD36. Representative images are shown here (n = 6). Original magnifications indi-
cated on the images. ORO OD data represents the mean + SEM, *P < 0.05, **P < 0.005,
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***P < 0.0005 (one-way ANOVA followed by Tukey’s multiple-comparisons). WT, wild-type;
KO, knockout. Original magnifications and scale are indicated on the images.
(TIF)

S4 Fig. MSI regulates FM formation. (A-D) RAW 264.7 cells were transiently transfected
with MSI1 OE (A and B) or MSI1 DN (C and D). BCG infection was for 48 h in panel C and 12
h in panel D. Representative images of cells stained with ORO (A and C, left panels) and the
extracted ORO at ODs; (A and C, right panels). Immunoblotting of MSI and its target gene
NUMB to validate the OE and DN constructs (B and D). (E) Msi siRNA-transfected RAW
264.7 macrophages were analyzed for MSI and its target gene NUMB in the presence of BCG
infection for 12 h by immunoblotting. All data represents the mean + SEM for at least 3 inde-
pendent experiments, *P < 0.05 (two-tailed paired Student’s ¢-test in A and one-way ANOVA
followed by Tukey’s multiple-comparisons test in C) and all blots are representative of 3 inde-
pendent experiments. Med, medium; OE, overexpression; DN, dominant negative; NT, non-
targeting. Bar, 5 um; Original magnifications 100X.

(TIF)

S5 Fig. NOTCHI1 mediates FM generation. (A-C) Murine RAW 264.7 macrophages stably
transfected with pCMV NICD (NICD) or pCMV alone (pCMV) were infected with BCG for 1
h (A), 12 h (B) or 48 h (C). Expression of the indicated genes was analyzed by immunoblotting
(A) or quantitative real-time RT-PCR (B). ORO staining (C, left panel) and the extracted ORO
at ODsy (C, right panel) was performed. All data represents the mean + SEM for at least 3
independent experiments, *P < 0.05, **P < 0.005, ***P < 0.0005 (one-way ANOVA followed
by Tukey’s multiple-comparisons) and all blots are representative of 3 independent experi-
ments. Med, medium. Bar, 5 um; Original magnifications 100X.

(TIF)

S1 Table. Primers used in the study.
(DOC)
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