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Against the background of the development of
physics, and in particular of mechanics, over the
centuries since Galileo and Newton, we describe
the life and work of William Rowan Hamilton in
the 19th century. The depth of his ideas which
brought together the understanding of ray op-
tics and classical mechanics, and the remarkable
ways in which his work paved the way to the
construction of quantum mechanics in the 20th
century, are emphasized.

Introduction

Any student of science, indeed any well-educated person
today, is aware that the foundations of modern science
rest ultimately on the work and ideas of a small num-
ber of larger-than-life figures from the 15th century on-
wards – Nicolaus Copernicus (1473–1543), Johannes Ke-
pler (1571–1630), Galileo Galilei (1564–1642) and Isaac
Newton (1642–1727). Of course the scientific revolu-
tion was born out of a much larger social phenomenon
– the Renaissance – and many more persons such as
René Descartes, Christian Huygens... – were involved.
But if one is asked to narrow the choice to as few as
possible, these four would be the irreducible minimum.
Their great books remain everlasting classics of the era
of the birth of modern science – Copernicus’ De revolu-
tionibus orbium coelestium; Kepler’s Mysterium Cosmo-
graphicum and Astronomia nova; Galilei’s Il Saggiatore
and Dialogue Concerning the Two Chief World Systems;
and finally Newton’s Philosophiae Naturalis Principia
Mathematica, a culmination of this phase of the sci-
entific revolution. Newton’s Principia was built upon
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and synthesized the earlier ideas of Kepler, Galileo and
Descartes on the nature of motion. But of his three
Laws of Motion, the third on the equality of action and
reaction, and the Law of Universal Gravitation, were
uniquely his own.

Among the various branches of modern science it is un-
derstandable that it was physics, and within physics
the discipline of mechanics, that first achieved a se-
cure mathematical foundation permitting a systematic
growth and elaboration in the succeeding centuries. Over
the course of the 18th century, the greatest contrib-
utors to mechanics were Leonhard Euler (1707–1783),
Joseph Louis Lagrange (1736–1813), (known in Italy
as Giuseppe Luigi Lagrangia, as they too would like
to claim him as their own), and Pierre-Simon Laplace
(1749–1827). Lagrange’s Mécanique analytique and Lap-
lace’s Mécanique céleste decorate the 18th century as the
Principia does the 17th.

Progress in the field of mechanics has been truly impres-
sive over the centuries, with each individual’s contribu-
tions influenced by and influencing those of many oth-
ers. Those who have so far been named above are only
the most illustrious ones from that period that always
spring to mind. The pattern of classical mechanics has
served as a model for the other major areas in physics,
such as electromagnetism, thermodynamics, statistical
mechanics, and later the twin theories of relativity fol-
lowed by quantum mechanics. In the growth of me-
chanics itself the interplay between physical ideas and
mathematical formulations, with conceptions in the two
reinforcing one another, has been of immense impor-
tance. From the physics standpoint, the field of optics
has grown from the earliest times side-by-side with me-
chanics, with much give and take.

During the 19th century the greatest contributions to
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classical mechanics have been from William Rowan Hamil-
ton (1805–1865), Carl Gustav Jacob Jacobi (1804–1851),
and somewhat later Henri Poincaré (1854–1912) partic-
ularly in the realm of what is called ‘qualitative dy-
namics’. A profoundly critical account of mechanics as
viewed from century’s end is Ernst Mach’s The Science
of Mechanics published in 1883, which had a deep influ-
ence on Albert Einstein.

Here we celebrate the life and work of Hamilton, in par-
ticular the amazing circumstance that so many of his
pioneering ideas proved crucial for the creation of quan-
tum mechanics in the 20th century.

A Brief Life Sketch

Hamilton was born at midnight of 3–4 August 1805 in
Dublin, Ireland, to Archibald Hamilton, a solicitor by
profession, and Sarah Hutton Hamilton. (Their families
were originally from England and Scotland.) He was
the fourth of nine children. There were many distin-
guished scientists on his mother’s side, suggesting that
his scientific genius came from her. While he was still
in his teens, Hamilton’s mother and father passed away,
in 1817 and 1819 respectively.

Hamilton displayed precocious and amazing gifts very
early. He could read English by three; knew Greek,
Latin and Hebrew by five; and by twelve the major Euro-
pean languages as well as Persian, Arabic, Sanskrit and
Hindustani. His interest in mathematics was sparked off
at age fifteen. By seventeen he had read both Newton’s
Principia and Laplace’s Mécanique céleste.

In 1823 he entered Trinity College, Dublin, as an un-
dergraduate, completing his studies there in 1827 and
excelling in both science and classics. In 1824 he submit-
ted a paper ‘On Caustics’ to the Royal Irish Academy.
After receiving positive suggestions from (of course) a
Committee, he revised and enlarged it by 1827, while
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still in college, to ‘A Theory of Systems of Rays’. This
established his reputation. It was here that he presented
his concept of characteristic functions in optics. Later
there were three supplements, in 1828, 1830 and 1832.

Already in 1827 he was appointed Andrews Professor
of Astronomy at Trinity College, and Director of the
Dunsink Observatory, five miles away from the centre of
Dublin, where he lived for the rest of his life. Designated
also as the Astronomer Royal of Ireland, he was spared
observational duties, and was left free to concentrate on
theoretical work.

Hamilton experienced two early disappointments in ro-
mantic relationships – with Catherine Disney in 1824
who married instead a wealthy clergyman fifteen years
her senior, but who retained a relationship and corre-
spondence with Hamilton for many years; and with Ellen
de Vere around 1830, who however felt she could “not
live happily anywhere but at Curragh”. Finally he mar-
ried Helen Maria Bayly in 1833. They had two sons and
a daughter, but the marriage was an unhappy one.

The period 1827 to 1834–1835 comprises his ‘sunshine
years’, when he did his finest and most creative work in
mathematical physics. He also became close to the poets
William Wordsworth and Samuel Taylor Coleridge in
England. In 1835 he was knighted, and in 1836 became
President of the Royal Irish Academy.

The range and depth of Hamilton’s work are stagger-
ing. After the initial work on geometrical optics, based
on Fermat’s Principle and properties of systems or bun-
dles of rays, he turned to the analogous ideas in dynam-
ics. The highlights here are his version of the Action
Principle, and a new and amazingly fruitful form for
the equations of motion. The physical content is the
same as in Newton’s original equations of motion, or
in the Euler–Lagrange version of them, but the mathe-
matical shape given to them proved unbelievably power-
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ful. The optico–mechanical analogy is an expression of
the similarities in his treatments of geometrical optics
and Newtonian particle dynamics. The theory of the
Hamilton–Jacobi equations is an especially elegant part
of this work. The discovery of quaternions came in 1843;
this was more purely mathematical in character, though
Hamilton had hopes it could be applied in physics.

The last phase of his life was unfortunately a disas-
ter. Hamilton became an alcoholic, and his home and
lifestyle disintegrated completely. Shortly before his
death he learned that he had been elected the first For-
eign Associate of the newly established United States
National Academy of Science. He died on 2nd Septem-
ber 1865 in Dublin, from a severe attack of gout. He
had lived all his life in Dublin.

Next, in briefly describing his major achievements and
discoveries, the separation into different areas is only for
convenience in presentation. There are deep intercon-
nections between them, as must have existed in his own
mind. Again for convenience we will use notations and
terminology familiar to students today, so that his ideas
can be more readily appreciated, and will not strictly
follow the chronological order.

The Action Principle

One of the earliest ‘minimum’ or ‘extremum’ or ‘varia-
tional’ principles in the era of modern science is Fermat’s
principle of least time in optics, formulated in 1657. As
given by Cornelius Lanczos in his 1949 book The Vari-
ational Principles of Mechanics,

“The path of a light ray is distinguished by the property
that if light travels from one given point M to another
given point N, it does so in the smallest possible time.”

Thus, in a transparent medium with variable refractive
index n(x), and denoting M, N by x1, x2 respectively,
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the ray follows a path x(s) determined by

δ

∫ x2

x1

n(x(s))ds = 0, x(s1) = x1, x(s2) = x2. (1)

We assume an isotropic medium, with refractive index
dependent only on position and not on direction.

Here the parameter s measures path length, (dx(s)
ds

)2 = 1,
and the variation δx(s) of x(s) leaves the end points
fixed.

Probably the earliest analogous idea in mechanics was
expressed in 1747 in a somewhat imprecise form by Mau-
pertuis. From Sommerfeld’s Mechanics,

“Among all possible motions, Nature chooses that which
reaches its goal with the minimum expenditure of ac-
tion.”

Sommerfeld adds:

“This statement of the principle of least action may
sound somewhat vague, but is completely in keeping
with the form given to it by its discoverer.”

Many others contributed to this stream of thought –
d’Alembert with his Principle of Virtual Work, then Eu-
ler and Lagrange who succeeded in making Maupertuis’
idea more precise. They identified ‘action’ as the time
integral of an expression which in the notation familiar
today is pj

dqj

dt
– the qj are coordinates and the pj are

corresponding momenta. However in their formulation
it was understood that both the actual and imagined
varied motions are energy conserving: δE = 0. Then in
1834–35, Hamilton gave a new and much more flexible
version of the Principle in which the condition δE = 0
was completely avoided. For conservative systems sub-
ject only to holonomic constraints and where forces are
derivable from a potential function V (q), Hamilton’s
Principle says that the actual motion is such that



499RESONANCE ⎜  June  2016

GENERAL ARTICLE

Hamilton's

Principle continues

to be used in

fundamental

physics to this day.

variations about it obey:

δ

∫ t2

t1

L(q, q̇)dt = 0 ,

L(q, q̇) = T (q, q̇) − V (q),

T (q, q̇) = kinetic energy . (2)

The dot here denotes the derivative with respect to time.

It is understood that the variations δqj(t) vanish at the
terminal times t1 and t2, but are otherwise unrestricted;
and of course δt = 0 in between, i.e., ‘time is not varied’.
Thus the actual motion of the system in time is directly
characterized, and one immediately obtains from (2) the
Euler–Lagrange differential equations of motion (EOM)
in time:

d

dt

∂L

∂q̇j
− ∂L

∂qj
= 0 . (3)

So all the EOM are determined by one single function L.
It was in fact Hamilton who gave the name ‘Lagrangian’
to the integrand in the definition of action above. In
this extremely flexible and convenient form, Hamilton’s
Principle continues to be used in fundamental physics
to this day.

Soon after this work of Hamilton, in the years 1834–37
Jacobi refined and completed this formulation of me-
chanics, and in 1842–43 gave his celebrated ‘Lectures on
Dynamics’ in Konigsberg, where Hamilton’s ideas were
carried much further. However, Jacobi dwelt more on
mechanics than on optics. (These lectures in English
translation have recently been published by Hindustan
Book Agency, Delhi.) In particular, Jacobi gave yet an-
other formulation of the Principle of Least Action, in
which the dependence of coordinates on time was set
aside, and instead, the path of the system in its con-
figuration space was viewed purely geometrically. This
version however has not been very fruitful in later times,
though in spirit it is close to Fermat’s Principle in optics
where again time plays no essential role.
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In Feynman’s well-known three-volume Lectures on Phy-
sics, Lecture 19 in Volume 2 is a beautiful account of
Hamilton’s Principle. As Feynman recalls, he had al-
ways been fascinated by it, ever since the time in school
when his teacher Mr Bader described it to him one day
after school hours.

The Canonical Equations of Motion

The Euler–Lagrange EOM (3) can be presented in an
interesting form:

pj =
∂L(q, q̇)

∂q̇j
, ṗj =

∂L(q, q̇)

∂qj
. (4)

We regard the first set of equations as definitions of
(canonical) momenta, and the second set as the ‘true’
EOM in the Newtonian sense. From the physical point
of view, then, the content of the EOM (4) (or (3)) is
the same as of Newton’s EOM; however the former are
invariant in form under any change in the choice of
the (generalized) coordinates qj. This is also evident
from Hamilton’s Principle (2). Such changes in qj are
called point transformations, and we have the freedom
to choose the coordinates to suit the analysis of a given
system.

In 1835, Hamilton went one step further and cast the
EOM in a remarkably symmetrical form. Treating the
qj and the pj as independent variables, and defining a
function H(q, p) as the Legendre transform of the La-
grangian,

H(q, p) = pj q̇j − L(q, q̇) , (5)

he obtained the system

q̇j =
∂H(q, p)

∂pj
, ṗj = −∂H(q, p)

∂qj
. (6)

These are Hamilton’s canonical EOM, they form the ba-
sis of his treatment of mechanics. For nonrelativistic
systems with kinetic energy quadratic in the velocities,
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H(q, p) is the total energy. Equations of this form were
apparently used by Lagrange in 1809 in the context of
perturbation theory, however it is Hamilton who made
them the foundation of dynamics. In his honour, the
function H(q, p) is called the Hamiltonian of the sys-
tem. To avoid misunderstanding, we should mention
that we implicitly assume that we are able to express
the Lagrangian velocities as functions of the momenta
defined in equation (4), and the coordinates. This means
that the Lagrangian is nonsingular in the Dirac sense;
for singular Lagrangians a comprehensive extension of
Hamiltonian dynamics has been created by Dirac.

The mathematical space on which Hamilton’s Principle
(2) and the Euler–Lagrange EOM (3) are formulated
is the configuration space Q for which qj are indepen-
dent coordinates. For the canonical EOM (6) however,
the basic space or ‘carrier space’ is the ‘phase space’
whose dimension is twice that of Q and for which the qj

and pj together are independent coordinates. It is some-
times said that the construction of the phase space, for a
given configuration space Q, is amongst Hamilton’s pro-
foundest discoveries. It turns out that the passage from
configuration space Q to its associated phase space is
intrinsic and independent of, indeed prior to, the choice
of Lagrangian.

Hamilton’s treatment of the variables q and p ‘on the
same footing’ leads to a kind of symmetry between them
which is profoundly different from the more familiar ro-
tational symmetry among Cartesian spatial coordinates
alone coming from Euclidean geometry.

As we said above, the Euler–Lagrange EOM (3) are
preserved in form under all point transformations on
Q. This then remains true for the canonical EOM (6)
as well. However Jacobi then showed that the latter
EOM preserve their form – their Hamiltonian form – un-
der an immeasurably larger group of transformations on
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phase space, the group of all so-called canonical trans-
formations. Point transformations form a (very tiny!)
subgroup of the group of all canonical transformations.
These transformations were not known to Hamilton, and
it is to Jacobi that we owe our understanding of their
properties and descriptions.

Going beyond this, in a given system of phase space
variables qj, pj , the solutions in time of EOM of the
Hamiltonian form (6) describe the gradual and continu-
ous unfolding of a family of canonical transformations.
Thus, the equations expressing qj(t2), pj(t2) at a later
time t2 in terms of qj(t1), pj(t1) at an earlier time t1
constitute a canonical transformation dependent on t1,
t2 and the system Hamiltonian.

Thus, of the three physically equivalent forms of classical
dynamics – the Newtonian, the Euler–Lagrange, and the
Hamiltonian forms – it is the last that is the most sophis-
ticated from the structural mathematical point of view.
Its profound importance has been further brought out
by the circumstance that in both initial forms of quan-
tum mechanics – Heisenberg’s matrix mechanics of 1925
and Schrödinger’s wave mechanics of 1926 – Hamilton’s
work is used as the starting point to go from classical
to quantum mechanics. Heisenberg’s EOM for quantum
mechanics are based on (6), converting them into first
order differential equations in time for (non-commuting)
operators. The Schrödinger wave equation starts from
the classical Hamiltonian H(q, p), constructs a linear op-
erator out of it capable of acting on complex wave func-
tions ψ(q) by the rule of replacement p → −i� ∂

∂q
, and

then sets up the time dependent Schrödinger wave equa-
tion. Many years after Feynman learned about Hamil-
ton’s Principle of Least Action from Mr Bader, he dis-
covered a third form of quantum mechanics called the
Path Integral form. This was based on work by Dirac in
1934 on the role of the Lagrangian in quantum mechan-
ics, and in it Feynman made essential use of the action
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as defined by Hamilton in equation (2). It is awe in-
spiring to realise that Hamilton’s work around 1834–35
played such a crucial role in the birth of quantum me-
chanics nine decades later! Yet another aspect of this
will be described below.

Optico-mechanical analogy and the Hamilton–
Jacobi Equations

The presence of analogies between the descriptions of
optical and mechanical phenomena was sensed quite early,
by John Bernoulli and Maupertuis. As we have seen,
Hamilton’s work on geometrical optics preceded his work
on mechanics. There were four memoirs on optics, in the
years 1827, 1828, 1830 and 1832, in which he developed
the idea of characteristic functions as a basis for geo-
metrical optics, based on Fermat’s Principle (1). (The
quite remarkable prediction of conical refraction came
in the fourth memoir.) Even though it may be a bit
demanding, we sketch these ideas here.

Fermat’s Principle (1) leads to a system of second order
ordinary differential equations for rays in geometrical
optics:

n(x)ẍj = (δjk − ẋjẋk)∂kn(x) ,

ẋjẋj = 1, ẋjẍj = 0 , j, k = 1, 2, 3. (7)

Now the dots signify derivatives with respect to distance
s along the ray, not with respect to time.

For any choice of ‘initial data’ xj(s1), ẋj(s1) we get one
definite ray x(s). Alternatively, we may choose x1 =
x(s1) and x2 independently; then in the generic case we
get a ray x(s) and a value for s2 such that x(s2) = x2.
(We cannot choose s2 independently since ẋ(s)2 = 1
must be obeyed!)
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The point characteristic of Hamilton is then defined as

V (x1,x2) =

s2∫
s1

along ray

ds n(x(s)), x(s1) = x1,x(s2) = x2 .

(8)
This determines the ‘directional’ properties of the ray
from x1 to x2:

∇x2V (x1,x2) = n(x2)ẋ2, ∇x1 V (x1,x2) = −n(x1)ẋ1.
(9)

These are the basic equations of Hamiltonian optics, at
the level of single rays.

Other kinds of characteristic functions in optics were
defined by Hamilton as various Legendre transforms of
the point characteristic V (x1,x2).

Next we come to systems or families of rays, families
of solutions to (7), built up in a very special manner.
While (7) is a system of ordinary differential equations
for x(s), now we have to deal with a partial differential
equation for a real function S(x) on space:

|∇S(x)| = n(x) . (10)

(Many years later this equation acquired the name ‘eiko-
nal equation’, and S(x) the ‘eikonal’.) For a given S(x),
the choice of initial data

x(s1) = x1, ẋ(s1) =
1

n(x1)
(∇S(x))x=x1 , (11)

leads via (7) to a definite ray x(s). Analysis shows that,
since S(x) obeys (10), x(s) is determined by a system
of first order ordinary differential equations:

n(x(s))ẋ(s) = (∇S(x))x=x(s) , x(s1) = x1 . (12)

Allowing the initial point x1 to vary over a suitably
chosen two-dimensional ‘transverse region’ in physical
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space, for example a surface S(x) = constant, we get a
family or bundle of rays determined by S(x), filling out
some three-dimensional region in space.

In this picture, wave fronts are defined as surfaces of
constant S(x), while rays (within the family!) are tra-
jectories orthogonal to the wave fronts. Again within the
family corresponding to S(x), Hamilton’s point charac-
teristic (8) becomes

V (x1,x2) = S(x2) − S(x1) . (13)

Hamilton then transferred these ideas to mechanics. Now
time enters as an independent variable, leading to some
important changes. The discussion becomes ‘dynami-
cal’, and not simply geometrical as in optics.

The canonical EOM (6) can be solved for given definite
data at an initial time t1, leading to a definite phase
space trajectory:

qj(t1), pj(t1) at t1 → qj(t), pj(t) for t ≥ t1 . (14)

Alternatively we may specify a solution by giving some
initial and some final data:

t1, q
j(t1), t2, q

j(t2) → qj(t), pj(t) for t1 ≤ t ≤ t2 . (15)

It now turns out that the action appearing in Hamil-
ton’s Principle (2), evaluated for the solution (15) of the
canonical EOM, is the analogue of the point character-
istic V (x1,x2) in (8) in optics:

S(q(t1), t1; q(t2), t2) =

t2∫
t1

along trajectory

dt L(q(t), q̇(t));

(16a)

pj(t2) =
∂S(q(t1), t1; q(t2), t2)

∂qj(t2)
,

pj(t1) = −∂S(q(t1), t1; q(t2), t2)

∂qj(t1)
. (16b)
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This is called Hamilton’s Principal function. It acts
in the sense of (16b), as the Generating Function for
the canonical transformation connecting qj(t2), pj(t2) to
qj(t1), pj(t1). That every canonical transformation can
be described in this way (or a variant thereof) via a
Generating Function was shown by Jacobi. We should
also mention a beautiful extension of Jacobi’s result by
Constantin Carathéodory many years later.

This function obeys two partial differential equations
with respect to the time variables:

∂S

∂t2
+ H

(
q(t2),

∂S

∂q(t2)

)
= 0,

∂S

∂t1
−H

(
q(t1),

∂S

∂q(t1)

)
= 0,

S = S(q(t1), t1; q(t2), t2) throughout. (17)

These are the famous Hamilton–Jacobi (H–J) partial dif-
ferential equations of mechanics.

The general H–J problem is the search for a solution
S(q, t) to the partial differential equation

∂S(q, t)

∂t
+ H

(
q,

∂S(q, t)

∂q

)
= 0 , given S(q, t1) = S1(q) ,

(18)
presented as an initial value problem. This is the me-
chanics analogue to (10) in optics. The solution to (18)
is called a Hamilton Principal function. The link to
phase space trajectories obeying the canonical EOM (6)
is as follows: Since S(q, t) obeys (18), the canonical
EOM simplify to just the set

dqj

dt
=

(
∂H(q, p)

∂pj

)
p=

∂S(q,t)
∂q

, q = q(t) . (19)

Thus S(q, t) determines a special family of phase space
trajectories, corresponding to the selected set of initial
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conditions
(
qj, pj = ∂S1(q)

∂qj

)
at time t1, with q varying

over configuration space Q.

Let us mention that since we have (implicitly) assumed
that H(q, p) has no explicit time dependence, there is
a time independent version of the H–J equation, whose
solutions are called Hamilton characteristic functions.

The Hamilton–Jacobi equations appear also in the semi-
classical approximation to the Schrödinger wave equa-
tion of quantum mechanics.

It is widely felt that the Hamilton–Jacobi equation is the
most beautiful form of classical mechanics. (Remem-
ber though that it is a single partial differential equa-
tion, unlike the Euler–Lagrange or Hamiltonian EOM
(3,4,6).) At the start of his discussion of this equation,
Lanczos places this quotation from the old testament:

“Put off thy shoes from off thy feet, for the place whereon
thou standest is holy ground.” (Exodus III, 5)

Hamilton’s optico-mechanical analogy was a great source
of inspiration to Schrödinger in the creation of wave me-
chanics. As for the construction of special families of
rays in optics or of phase space trajectories in mechan-
ics we must quote an eloquent passage from Paul Dirac.
In his paper titled ‘The Hamiltonian form of field dy-
namics’ (Canadian Journal of Mathematics, Vol.3, p.1,
1951) he says:

“In classical dynamics one has usually supposed that
when one has solved the equations of motion one has
done everything worth doing. However, with the further
insight into general dynamical theory which has been
provided by the discovery of quantum mechanics, one is
led to believe that this is not the case. It seems that
there is some further work to be done, namely to group
the solutions into families (each family corresponding to
one principal function satisfying the Hamilton–Jacobi



508 RESONANCE ⎜ June  2016

GENERAL ARTICLE

“I then and there
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circuit of thought

close, and the
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The algebra of quaternions

and some applications to

geometry and group theory

are discussed in the article

by G S Krishnaswami and

S Sachdev in this issue of

Resonance.

equation). The family does not have any importance
from the point of view of Newtonian mechanics; but it
is a family which corresponds to one state of motion
in the quantum mechanics, so presumably the family
has some deep significance in nature, not yet properly
understood.”

Quaternions

Hamilton’s creation of the algebra of quaternions came
at a later stage in his life, after the work in optics and
mechanics. Complex numbers were known, and could
be represented on a Euclidean plane. Hamilton’s idea
was to extend this to higher spatial dimensions, so as
to be applicable in physics. After much effort he finally
succeeded in 1843, though now it is known that Ben-
jamin Olinde Rodrigues had found essentially the same
results in 1840. In place of the single pure imaginary
unit i for complex numbers, quaternions are built using
three such units i, j and k. Their essential algebraic or
composition properties became suddenly clear to Hamil-
ton during a walk with his wife along the Royal Canal
from Dunsink to a meeting of the Royal Irish Academy
on 16th October 1843:

i2 = j2 = k2 = ijk = −1 . (20)

He is said to have immediately carved these formulae
with his penknife on the stone of Broome Bridge as he
passed it. In a letter to Peter Guthrie Tait many years
later, on 15th October 1858, he described what had hap-
pened in these words:

“I then and there felt the galvanic circuit of thought
close, and the sparks which fell from it were the funda-
mental equations between i, j, k; exactly such as I have
used them ever since.”

Indeed he went on to claim: “I still must assert that this
discovery appears to me to be as important for the mid-
dle of the nineteenth century as the discovery of fluxions



509RESONANCE ⎜  June  2016

GENERAL ARTICLE

(the calculus) was for the close of the seventeenth”.

In 1958 on behalf of the Royal Irish Academy the Irish
mathematician-political leader Eamon de Valera unveil-
ed a plaque under Broome Bridge to commemorate the
event.

Hamilton wrote extensively on quaternions, his Lectures
on Quaternions being published in 1853. They are the
first example within mathematics of algebraic quanti-
ties obeying a non-commutative but associative rule of
multiplication. Recall here that physical quantities are
represented in quantum mechanics by generally non-
commuting operators. One little gem in this book is
Hamilton’s construction of a pictorial representation for
elements of the group SU (2) and their (non-commutative)
composition law, using great circle arcs on a sphere S2.
These ‘turns’ of Hamilton have been used in physics in
recent times.

However, quaternions did not prove as useful for physics
as Hamilton had hoped. The methods of vector algebra
and vector calculus later pioneered by Oliver Heaviside
and Josiah Willard Gibbs turned out more useful and
capable of extension to any number of dimensions.

Concluding Remarks

This account has hopefully succeeded in conveying to
the reader the depth and profound beauty of Hamilton’s
contributions to theoretical physics. His exalted status
among the greatest physicists of all time rests on his
magnificent achievements. There is no better way to
conclude than by quoting from two of his countrymen,
one belonging to his times and the other from a few
generations later:

“Hamilton was gifted with a rare combination of those
qualities which are essential instruments of discovery.
He had a fine perception by which the investigator is
guided in his passage from the known to the unknown....
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But he seems, also, to have possessed a higher power
of divination – an intuitive perception that new truths
lay in a particular direction, and that patient and sys-
tematic search, carried on within definite limits, must
certainly be rewarded by the discovery of a path leading
into regions hitherto unexplored....”

– Memorial address, November 1865, by Charles Graves,
President Royal Irish Academy.

‘Hamilton lived in the heroic age of mathematics.... It
was not Hamilton’s ambition to polish the corners of
structures built by other men. Newton had the theory
of gravitation and planetary motions, Lagrange had his
dynamical equations, Laplace had the theory of poten-
tial. What monument would Hamilton create to make
his memory imperishable? Hamilton realised that optics
and dynamics are essentially a single mathematical sub-
ject. He was able to characterise or describe any optical
or dynamical system by means of a single characteristic
or principal function.... Hamilton liked to refer to him-
self in the words Ptolemy used of Hipparchus: a lover of
labour and a lover of truth....”

–John Lighton Synge, 1943.




