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Abstract. Principal G-bundles with parabolic structure over a normal crossing divisor
are defined along the line of the interpretation of the usual principal G-bundles as functors from
the category of representations, of the structure group G, into the category of vector bundles,
satisfying certain axioms. Various results on principal bundles are extended to the more general
context of principal bundles with parabolic structures, and also to parabolic G-bundles with
Higgs structure. A simple construction of the moduli space of parabolic semistable G-bundles
over a curve is given, where G is a semisimple linear algebraic group over C.

1. Introduction. The isomorphism classes of principal G-bundles over a scheme X,
where G is an affine algebraic group, are in bijective correspondence with a certain class of
functors from the category, Rep(G), of left G-modules, to the category of locally free coherent
sheaves on X [Nol]. The class of functors in question share the abstract properties of the
construction of an associated vector bundle to a principal G-bundle for each left representation
of G, and in particular, the above bijective correspondence maps a principal G-bundle P to
the functor P which associates to a left G-module V the vector bundle associated to P for V.

Nori in [Nol] exploited this observation to classify the finite vector bundles over a curve
X, that is, vector bundles E with p(E) isomorphic to q(E), where p, q are some pair of dis-
tinct polynomials with nonnegative integral coefficients, as the vector bundles whose pullback
to some etale Galois cover of X is trivializable. This way of looking at principal bundles has
been further utilized in later works, which include [DM], [Si3].

A vector bundle E with parabolic structure over a divisor D is, loosely speaking, a
weighted filtration of the restriction of E to D. The notion of parabolic vector bundles was
first introduced in a work of Mehta and Seshadri [MS], in the context of their investiga-
tion of the unitary representations of the fundamental group of a punctured Riemann surface.
However, it has evolved into a topic of intrinsic interest in the study of vector bundles, with
generalizations by Maruyama and Yokogawa [MY], to the higher dimensional varieties.

A straightforward generalization of the notion of the parabolic structure on vector bun-
dles to G-bundles has some inherent difficulties stemming primarily from the fact that the
weights of the flag defining a parabolic structure are required to be in the interval [0, 1).
There are some working definitions suitable for different purposes (cf. [LS], [BR]), but none
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of them seem to coincide with the usual definition of parabolic vector bundles when G is

taken to be GL(n, C). (It seems that the definition of a parabolic G-bundle given in [BR] is

not even complete; in [LS] the object of study is the moduli stack and therefore, the ad hoc

definition given there suffices.) In particular, these definitions do not suffice in addressing the

counterpart of the following fundamental result for the case of principal bundles with more

general structure groups, namely, the analogue of the Narasimhan-Seshadri correspondence.

More precisely, the principal bundle analogue of the existence of a bijective correspondence

between the set of the isomorphism classes of poly stable parabolic vector bundles of rank

n on a Riemann surface X with parabolic structure over the divisor D C X and the set of

equivalence classes of homomorphisms from π\ (X — D) to U(n), remained unanswered (this

is the main result of [MS]).

We recall that given any p e Hom(πi(X —D), U(n))/U(n), the corresponding parabolic

vector bundle is given by the extension due to Deligne (cf. [Dl]) of the unitary flat vector

bundle over X — D, associated to p, to a vector bundle over X equipped with a logarithmic

singular connection; the parabolic structure over an irreducible component of D is obtained

from the residue of the logarithmic singular connection along that component.

Instead of that we interchange the roles of a principal bundle and its earlier mentioned

interpretation as a functor by Nori, and simply adapt a natural reformulation of the functor to

the parabolic context as the definition of a G-bundle with parabolic structure. This is indeed

a principal bundle analog of parabolic vector bundles since parabolic GL(n, C)-bundles are

exactly the parabolic vector bundles of rank n (Proposition 2.6).

We generalize various aspects of G-bundles to the parabolic G-bundles, which include

establishing a relationship between unitary flat connections and parabolic polystable G-

bundles.

The main tool used here is a relationship between parabolic vector bundles and vector

bundles equipped with an action of a finite group, which was established in [Bi2].

A consequence of the identification between the space of all parabolic principal G-

bundles over X with the space of all Γ -linearized principal G-bundles over a suitable Ga-

lois cover Y over X, with Galois group Γ, is a simple construction of the moduli space of

parabolic semistable G-bundles over a smooth projective curve X. More precisely, this iden-

tification reduces the problem of constructing a moduli space of parabolic G-bundles over X

to the problem of constructing a moduli space of F-linearized principal G-bundles over Y.

We describe a construction of a moduli space of Γ-linearized principal G-bundles. In the ab-

sence of any parabolic structure, our method of construction gives an alternative and shorter

approach than the earlier one due to Ramanathan for the construction of the moduli space of

usual G-bundles (cf. also [BS]).

The paper is organized as follows. In Section 2 we define G-bundles with parabolic

structure, where G is an affine algebraic group, and in Proposition 2.6 it is proved that par-

abolic GL(n, C)-bundles are precisely the parabolic vector bundles of rank n. In Section 3

the semistability and polystability of parabolic G-bundles have been defined. In Section 4

parabolic G-bundles are related to the flat unitary connections (Theorem 4.8). In Section 5,
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the moduli space of parabolic semistable G -bundles over a curve is constructed. In the final

section the case of parabolic Higgs G-bundles is briefly discussed.

We are very grateful to C. S. Seshadri for some useful discussions. The present work

was carried out during a visit of the first and third named authors to the Tata Institute of

Fundamental Research and a subsequent visit of the second named author to the Institute of

Mathematical Sciences. We are thankful to these two institutes for their hospitality.

2. The parabolic analog of principal bundles. Let X be a connected smooth projec-

tive variety over C. Denote by Vect(X) the category of vector bundles over X. The category

Vect(X) is equipped with an algebra structure defined by the tensor product operation

Vect(X) x Vect(X) -> Vect(X),

which sends any pair (E, F) to E ® F, and the direct sum operation 0, making it an additive

tensor category in the sense of [DM, Definition 1.15].

Let G be an affine algebraic group over C. A principal G-bundle P over X is a smooth

surjective morphism

(2.1) π : P -> X

together with a right action of the group G

p: P x G -> P

satisfying the following two conditions:

1. (π op)(p, g) = 7Γ(/?);

2. the map P x G ->• P Xx P, defined by (/?, g) H» (/?, p(p, g)), is actually an

isomorphism.

In [Nol] and [No2] an alternative description of principal G-bundles was obtained,

which will be briefly recalled. It may be noted that in [Nol] and [No2] X is allowed to

be a much more general space. However we restrict ourselves to the situation where X is a

smooth variety, since the applications here will be in this generality.

Let Rep(G) denote the category of all finite dimensional complex left representations of

the group G, or equivalently, left G-modules. By a G-module (or representation) we shall

always mean a left G-module (or a left representation).

Given a principal G-bundle P over X and a left G-module V, the associated fiber bundle

P xc V has a natural structure of a vector bundle over X. Consider the functor

(2.2) F(P) : Rep(G) -» Vect(X),

which sends any V to the vector bundle P XQV and sends any homomorphism between two

G-modules to the naturally induced homomorphism between the two corresponding vector

bundles. The functor F(P) enjoys several natural abstract properties. For example, it is

compatible with the algebra structures of Rep(G) and Vect(X) defined using direct sum and

tensor product operations. Furthermore, F(P) takes an exact sequence of G-modules to an

exact sequence of vector bundles, it also takes the trivial G-module C to the trivial line bundle

on X, and the dimension of V also coincides with the rank of the vector bundle F(P)(V).
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In Proposition 2.9 of [Nol] (also Proposition 2.9 of [No2]) it has been established that the

collection of principal G-bundles over X are in bijective correspondence with the collection

of functors from Rep(G) to Vect(X) satisfying the abstract properties that the functor F(P)

in (2.2) enjoys. The four abstract properties are described in page 31 of [Nol] where they are

marked F1-F4. The bijective correspondence sends a principal bundle P to the functor F(P)

defined in (2.2).

We shall now see that the above result of [Nol] easily extends to the equivariant set-up.

Let Γ c Aut(Γ) be a finite subgroup of the group of automorphisms of a connected

smooth projective variety Y/C. The natural action of Γ on Y is encoded in a morphism

Denote the projection of Γ x Y to Y by /?2 The projection of Γ x Γ x Y to the /-th factor will

be denoted by #/. A Γ-linearized vector bundle on Y is a vector bundle V over Y together

with an isomorphism

λ:p%V -> μ*V

over Γ xY such that the following diagram of vector bundles over Γ x Γ x Y is commutative:

(m x Idy)

(μo(m,Idγ))*V

where m is the multiplication operation on Γ.

The above definition of Γ-linearization is equivalent to giving isomorphisms of vector

bundles

g:V^(g-ιfV

for all g e Γ, satisfying the condition that gh = g o h for any g,h e Γ.

A Γ-homomorphism between two Γ-linearized vector bundles is a homomorphism be-

tween the two underlying vector bundles which commutes with the Γ-linearizations. Clearly,

the tensor product of two Γ-linearized vector bundles admits a natural Γ-linearization; so

does the dual of a Γ-linearized vector bundle. Let VectHΌ denote the additive tensor cate-

gory of Γ-linearized vector bundles on Y with morphisms being Γ-homomorphisms.

Imitating the above definition of Γ-linearization, a (Γ, G)-bundle is defined to be a prin-

cipal G-bundle P as defined in (2.1), together with a lift of the action of Γ on Y to a left action

of Γ on P which commutes with the right action of G on P. So a (Γ, GL(n, C))-bundle is

same as a Γ-linearized vector bundle of rank n.

Now, from the above mentioned result of [Nol] it can be deduced that the collection of

(Γ, G)-bundles on Y are in a natural bijective correspondence with the collection of functors

from the category Rep(G) to Vectr(F) satisfying four conditions of [Nol] indicated above.

We begin the proof of this assertion with the observation that if P is a (Γ, G)-bundle over Y,
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then for any G-module V, the vector bundle P XQ V has a natural Γ-linearization induced

by the left action of Γ on P. To see the inverse map, first note that if we are given a functor

F from Rep(G) to the category Vectr (Y) satisfying the abstract properties, then by the result

mentioned earlier of [Nol], the functor F, which is defined to be the composition of F with

the forgetful functor from the category Vectr(F) to the category Vect(y) of vector bundles

on Y, which forgets the action of Γ, corresponds to a principal G-bundle P over Y. For

any g e Γ we have a self-equivalence of the category Vect(y) given by the functor which

sends any vector bundle W to (g~ι)*W. Now, for a Γ-linearized vector bundle E, the Γ-

linearization gives an isomorphism between E and (g~ι)*E. Thus by the result of [Nol],

the composition of this self-equivalence with the functor F corresponds to an automorphism

of P over g. In other words, we have a lift of the action of Γ on Y to an automorphism of

the total space of P which commutes with the action of G. Evidently, the association of any

g e Γ to the above constructed action of g on P defines a (Γ, G)-bundle structure on P.

Thus we have a bijective correspondence between the collection of all (F, G)-bundles on Y

and the collection of functors from the category Rep(G) to Vectr(F) satisfying the abstract

conditions.

Our next goal is to define parabolic G-bundles along the above lines.

Let D be an effective divisor on X. For a coherent sheaf E on X the image of E ®QX

Oχ{—D) in E will be denoted by E(—D). The following definition of parabolic sheaf was

introduced in [MY].

DEFINITION 2.3. Let E be a torsionfree Oχ-coherent sheaf on X. A quasi-parabolic

structure on E over D is a filtration by Oχ -coherent subsheaves

E = Fι(E) D F2(E) D O F,(£) D FM(E) = E(-D).

The integer / is called the length of the filtration. A parabolic structure is a quasi-parabolic

structure, as above, together with a system of weights {a\,... , α/} such that

0 < ot\ < a,2 < < α/_i < α/ < 1,

where the weight α/ corresponds to the subsheaf F/ (£).

We shall denote the parabolic sheaf defined above by (E, F*, α*). When there is no

scope of confusion, it will be denoted by F*.

For a parabolic sheaf (£, F*,α*), define the following filtration {Et}teR of coherent

sheaves on X parameterized by R:

(2.4) Et := Fi(E)(-[t]D),

where [ί] is the integral part of / and α/_ i < ί — [t] < α, , with the convention that αo = α/ — 1

andα/+i = 1.

A homomorphism from the parabolic sheaf (£, F*,α*) to another parabolic sheaf

(F 7, F^, α£) is a homomorphism from E to F 7 which sends any subsheaf Et into E't, where

r G [0, 1] and the filtrations are as above.
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If the underlying sheaf E is locally free, then E* will be called a parabolic vector bundle.

Henceforth, all parabolic sheaves will be assumed to be parabolic vector bundles.

The class of parabolic vector bundles that are dealt with in the present work satisfy certain

conditions which will be explained now. The first condition is that all parabolic divisors are as-

sumed to be divisors with normal crossings. In other words, any parabolic divisor is assumed

to be reduced, its each irreducible component is smooth, and furthermore the irreducible com-

ponents intersect transversally. The second condition is that all the parabolic weights are ra-

tional numbers. Before stating the third condition, we remark that quasi-parabolic filtrations

on a vector bundle can be defined by giving filtrations by subsheaves of the restriction of the

vector bundle to each component of the parabolic divisor. The third and final condition states

that on each component of the parabolic divisor the filtration is given by subbundles. The

precise formulation of the last condition is given in ([Bi2], Assumptions 3.2(1)). Henceforth,

all parabolic vector bundles will be assumed to satisfy the above three conditions.

Let E* and Ef* be two parabolic vector bundles on X with the same parabolic divisor D.

Let

τ \X-D ^ X

be the natural inclusion. Define S := τ*τ*(£ 0 E'), which is a quasi-coherent sheaf on X.

For any t e R the subsheaf of E generated by all Ea (g) £ V where a + b > t, will be denoted

by St. The filtration {8t}teR defines a parabolic structure on the coherent sheaf So, which is

easily seen to be locally free.

In [Yo], Yokogawa defined the parabolic tensor product E* <g> Er* to be the parabolic

vector bundle £* constructed above.

Let PVect(Z, D) denote the category whose objects are parabolic vector bundles over

X with parabolic structure over the divisor D satisfying the above three conditions, and the

morphisms of the category are homomorphisms of parabolic vector bundles (which was de-

fined earlier). For any two £*, V* e PVect(X, D), their parabolic tensor product E* ® V*

is also an element of PVect(X, D). The trivial line bundle with the trivial parabolic structure

(this means that the length of the parabolic flag is zero) acts as the identity element for the

parabolic tensor multiplication. The parabolic tensor product operation on PVect(Z, D) has

all the abstract properties enjoyed by the usual tensor product operation of vector bundles.

The direct sum of two vector bundles with parabolic structures has an obvious parabolic

structure. Evidently, PVect(X, D) is closed under the operation of taking direct sum. The

category PVect(Z, D) is an additive tensor category with the direct sum and the parabolic

tensor product operation. It is straightforward to check that PVect(X, D) is also closed under

the operation of taking the parabolic dual defined in [Yo].

For an integer N > 2, let PVect(X, D, N) c PVect(X, D) denote the subcategory con-

sisting of all parabolic vector bundles all of whose parabolic weights are multiples of \/N.

It is straightforward to check that PVect(X, D, N) is closed under all the above operations,

namely parabolic tensor product, direct sum and taking the parabolic dual.
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As before, let G be an affine algebraic group over C. Let D be a normal crossing divisor

on X. The content of the following definition is clearly an imitation of the Proposition 2.9 of

[Nol].

DEFINITION 2.5. A parabolic principal G-bundle with parabolic structure over D

is a functor F from the category Rep(G) to the category PVect(Z, D) satisfying the four

conditions of [Nol] mentioned earlier. The functor is further required to satisfy the condition

that there is an integer N, which depends on the functor, such that the image of the functor is

contained in PVect(X, D, N).

A justification of the above definition will be provided by showing that the class of

parabolic principal GL(n, C)-bundles with parabolic structure over D is naturally isomorphic

to the subclass of PVect(X, D) consisting of all parabolic vector bundles such that the rank of

the underlying vector bundle is n. This is carried out in the following proposition.

PROPOSITION 2.6. Let D be a normal crossing divisor on X. The collection of par-

abolic GL(n, C)-bundles on X with parabolic structure over D is identified, in a bijective

fashion, with the subclass o/PVect(X, D) consisting of parabolic vector bundles of rank n.

Under this identification, a parabolic GL(n, C)-bundle is identified with the parabolic vector

bundle associated to it for the standard representation ofGL(n,C) onCn.

PROOF. Let D = Σ/=i A ^ e m e decomposition of the divisor D into its irreducible

components.

Take any E* e PVect(X, D) such that all the parabolic weights of E* are multiples of

\/N\ that is, £* € PVect(X, D, N).
The "Covering Lemma" of Kawamata (Theorem 1.1.1 of [KMM], Theorem 17 of [K])

says that there is a connected smooth projective variety Y over C and a Galois covering mor-
phism

(2.7) p : Y -+ X

such that the reduced divisor D := (/?*D)reci is a normal crossing divisor on Y and further-
more, p*Di = kiN.(p*Di)Ted, where &;, 1 < i < c, are positive integers. Let Γ denote the

Galois group for the covering map p.

As before, Vectr (Y) denotes the category of all Γ-linearized vector bundles on Y. The

isotropy group of any point y e Y, for the action of Γ on Y, will be denoted by Γy.

Let Vect^(F, N) denote the subcategory of Vectr(^) consisting of all Γ-linearized vec-

tor bundles W over Y satisfying the following two conditions:

1. for a general point y of an irreducible component of (/?* A) r ed, m e action of the

isotropy group Γy on the fiber Wy is of order a divisor of N, which is equivalent to the

condition that for any g e Γy, the action of gN on Wy is the trivial action;

2. for a general point v of an irreducible component of a ramification divisor for p not

contained in (p*D)rcd, the action of Γy on Wy is the trivial action.

We note that Vect^(y, N) is also an additive tensor category.
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In [Bi2] an identification between the objects of PVect(X, D, N) and the objects of

Vect^ (F, N) has been constructed. Given a Γ-homomorphism between two Γ-linearized vec-

tor bundles, there is a naturally associated homomorphisms between the corresponding vector

bundles, and this identifies, in a bijective fashion, the space of all Γ-homomorphisms between

two objects of Vect^(y, N) and the space of all homomorphisms between the correspond-

ing objects of PVect(X, D, N). An equivalence between the two additive tensor categories,

namely PVect(X, D, N) and Vect^(F, N), is obtained in this way. Since the description of

this identification is already given in [Bil], [Bi2], [Bi3] and [BN], it will not be repeated here.

We observe that an earlier assertion that the parabolic tensor product operation enjoys

all the abstract properties of the usual tensor product operation of vector bundles, is a conse-

quence of the fact that the above equivalence of categories indeed preserves the tensor product

operation.

The above equivalence of categories has the further property that it takes the parabolic

dual of a parabolic vector bundle to the usual dual of the corresponding /^-linearized vector

bundle.

Let W G Vect^(y, N) be the Γ-linearized vector bundle of rank n onY that corresponds

to the given parabolic vector bundle E*. The fiber bundle

7Γ : P -> y ,

whose fiber π~{ (y) is the space of all C-linear isomorphisms from Cn to the fiber Wy, has a

the structure of a (Γ, GL(n, C))-bundle over Y.

We have established earlier the existence of a natural one-to-one identification between

the collection of all (Γ, GL(n, C))-bundles on Y and the collection of all functors from the

category Rep(GL(n,C)) to Vectr(y) satisfying certain properties. Let F(P) denote the

functor corresponding to the (Γ, G)-bundle P.

Now, given any V e Rep(GL(«, C)), consider the parabolic vector bundle on X that

corresponds to the Γ-linearized vector bundle F(P)(V) over Y which is also an object in

Vect£(y, N). Let

(2.8) F(E*) : Rep(GL(«, C)) -> PVect(X, D)

denote the functor obtained in this way. It is straightforward to check that F(E*) does not

depend on the choice of the covering p in (2.7). Indeed, for another such covering //, choose

a covering p as in (2.7) such that p factors through both p and p'. It is straightforward to

check that the map in (2.8) for the covering p coincides with that for both p and p''.

Since all the parabolic weights of E* are multiples of l/N, we conclude that all the par-

abolic weights of the parabolic dual E* and also those of any A -fold parabolic tensor powers

0 E* are all multiples of l/N. Consequently, all the parabolic weights of any subbundle of

the underlying vector bundle for ((g)k E*) (8) ( 0 / E*) with the induced parabolic structure are

also multiples of l/N. Any irreducible GL(n, C)-module is isomorphic to a submodule of

some (®* Cn) (8) ((g^'ίC1)*), where Cn is the standard GL(n, C)-module. Thus the image

of F(£*) in (2.8) is contained in PVect(X, D, N).
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We now note that from the property mentioned earlier of the correspondence between

the two categories, namely Vect^(T, N) and PVect(X, D, N), that it takes the usual tensor

product to the parabolic tensor product, it follows immediately that the map F(E*) satisfies

all the abstract properties needed in Definition 2.5 in order to define a parabolic principal

GLOz, C)-bundle.

This completes the construction of a parabolic principal GL(n, C)-bundle from £*.

We can now simply trace back the steps to construct a parabolic vector bundle from a

parabolic principal GL(n, C)-bundle.

Let P* be a parabolic principal GL(n, C)-bundle on X with parabolic structure over D.

Assume that the image of the functor P* is contained in PVect(X, D, N).

Take a covering p as in (2.7). To any V e Rep(GL(n, C)), associate the Γ-linearized

vector bundle on Y that corresponds to the parabolic vector bundle P*(V) by the correspon-

dence between parabolic vector bundles and Γ-linearized vector bundles constructed in [Bi2].

Let

(2.9) P : Rep(GL(«, C)) -> Vect Γ (Ό

be the map constructed in this way. We note that the image of P is contained in Vect^(F, N).

The functor P satisfies all the conditions needed to define a (Γ, G)-bundle. Let P denote the

(Γ, GL(n, C))-bundle defined by P. The vector bundle W associated to P for the standard

action of GL(n, C) on Cn has a natural Γ-linearization. Let E''* be the parabolic vector

bundle on X corresponding to the Γ-linearized vector bundle W'.

It is easy to check that the parabolic principal GL(n, C)-bundle corresponding to Er* by

the earlier construction actually coincides with P*. Conversely, the composition of the two

constructions is also the identity map on PVect(X, D).

The Γ-linearized vector bundle W is simply the image of the standard representation of

GL(n, C) by the functor P constructed in (2.9). This implies that the parabolic vector bundle

E'* is indeed the image of the standard representation of GL{n, C) on Cn by the functor P*.

This completes the proof of the proposition. D

Let P* be a parabolic G-bundle with parabolic structure over D. For a homomorphism

G -+ H, the corresponding map Rep(//) —• Rep(G) composes with the functor P* to give

a functor from Rep(//) to PVect(X, D). This composition of maps defines a parabolic un-

bundle P**, with a parabolic structure over D. This construction coincides with the extension

of the structure group of a principal G-bundle to H.

In the next section we shall define the notion of semistability for parabolic principal

bundles.

3. Semistability for parabolic principal bundles. Fix an ample line bundle L over

X, which is a connected smooth projective variety over C of dimension d. For a coherent

sheaf F over X, the degree deg(F) is defined as follows:

deg(F):= / c,(F)Uci(L)d-\
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Note that if two sheaves F\ and Fi are isomorphic outside a subvariety of codimension two,

then deg(Fi) = deg(/<2). Hence the degree of a coherent sheaf defined over the complement

of a subvariety X, of codimension two or more, is well-defined.

Let P be a principal G-bundle over X. A reduction of the structure group of P to a

subgroup Q C G is defined by giving a section of the fiber bundle P/Q -> X with fiber

G/Q.

DEFINITION 3.1 [RS]). Let P(Q) denote a reduction of the structure group of P to

a maximal parabolic subgroup Q C G over an open set U c X with codim(X — U) > 2.

The principal G-bundle P is called semistable (resp. stable) if for every such situation, the

line bundle over U associated to P(Q) for any character of Q dominant with respect to a

Borel subgroup contained in Q, is of nonpositive degree (resp. strictly negative degree). The

principal bundle P is called poly stable if there is a reduction of the structure group of P to M,

namely P{M) c P where M c G is a maximal reductive subgroup of a parabolic subgroup

of G, such that P(M) is a stable principal M-bundle and furthermore, for any character of

M trivial on the intersection with the center of G, the corresponding line bundle associated to

P(M) is of degree zero.

Unless explicitly stated otherwise, henceforth all groups considered will be assumed to

be semisimple and affine algebraic over C.

The following proposition will be needed for extending the above definition to the para-

bolic context. The definition of parabolic semistable and parabolic polystable vector bundles

is given in [MY] and [MS].

PROPOSITION 3.2. LetE*,F*e PVect(X, D) be two parabolic semistable (resp. par-

abolic polystable) vector bundles on X. Then the parabolic tensor product E* ® F* is also

parabolic semistable (resp. parabolic polystable), and furthermore the parabolic dual of E*

is also parabolic semistable (resp. parabolic polystable).

PROOF. Choose N e N such that both E* and F* have all their parabolic weights as

multiples of \/N. Fix a Galois covering p with Galois group Γ as in (2.7).

Since the covering map p is a finite morphism, the line bundle L := p*L is ample on Y.

The degree of a coherent sheaf on Y is defined using L.

A Γ-linearized vector bundle V over Y is called Γ-semistable (resp. Γ-stable) if for any

proper nonzero coherent subsheaf F' C V, invariant under the action of Γ and with V/ F'

being torsionfree, the following inequality is valid:

deg(F') ^ deg(V') / .̂ , deg(F') deg(V/ deg(F') deg(V')\
I respectively, < I .
V rank(Fr) rank(V')/

rank(F') ~ rank(Vr)

The Γ-linearized vector bundle V is called Γ-polystable if it is a direct sum of Γ-stable

vector bundles of same slope (:= degree/rank).
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Now, Γ-invariant subsheaves of V are in bijective correspondence with the subsheaves

of the parabolic vector bundle corresponding to V\ and furthermore, the degree of a Γ-

invariant subsheaf is simply #Γ-times the parabolic degree of the corresponding subsheaf

with the induced parabolic structure ([Bi2], (3.12)). (#Γ is the order of the group Γ.)

Let V and W be the /"-linearized vector bundles corresponding to the parabolic semi-

stable (resp. parabolic poly stable) vector bundles E* and F*, respectively. From the above

remarks it follows that in order to complete the proof of the proposition it suffices to show

that V® W is Γ-semistable (resp. Γ-polystable) and V* is Γ-semistable (resp. Γ-polystable).

It is immediate that if V* is Γ-semistable (resp. Γ-polystable) if and only if V is so.

The Lemma 3.13 of [Bi2] says that a Γ-linearized vector bundle V is Γ-semistable if

and only if it is semistable in the usual sense. From a theorem of [MR] which says that a

vector bundle is semistable if and only if its restriction to the general complete intersection

curve of sufficiently high degree is semistable, it immediately follows that the tensor product

of two semistable vector bundles is again semistable. Thus the Γ-linearized vector bundle

V ® W must be Γ-semistable if V and W are both individually Γ-semistable.

The main theorem of [Sil] (Theorem 1, page 878) implies that a Γ-linearized vector

bundle V admits a Hermitian-Yang-Mills connection with respect to a Γ-invariant Kahler

metric representing c\(L) if and only if V is Γ-polystable. If V v and Ww are Hermitian-

Yang-Mills connections on V and W respectively, then V v ®Idw +Idy (g) V^ is a Hermitian-

Yang-Mills connections on V ® W. Thus V ® W is Γ-polystable if V and W are both

individually Γ-polystable. This completes the proof of the proposition. D

Given a homomorphism G —• H and a principal G -bundle P, the quotient space

r P X H

PxGH = ——

has a natural structure of a principal //-bundle. This construction of the principal bundle

//-bundle from the principal G-bundle P is called the extension of the structure group of P

to H. From [RR] (also [RS], Theorem 3) we know that if P is semistable (resp. poly stable)

G-bundle, then P XG H is a semistable (resp. polystable) //-bundle. Note that the above

theorem of [RS] applies, since by our assumption G is semisimple and hence the connected

component of the center of G is trivial.

The following definitions of semistability and poly stability of a parabolic principal G-

bundle are motivated by the above result of [RR].

DEFINITION 3.3. Let P* be a functor from the category Rep(G) to the category

PVect(X, D) defining a parabolic G-bundle as in Definition 2.5. This functor P* will be

called a parabolic semistable (resp. parabolic polystable) principal G-bundle if and only if

the image of the functor is contained in the category of parabolic semistable (resp. parabolic

polystable) vector bundles.

We observe that from Proposition 3.2 it follows that the subcategory of PVect(X, D)

consisting of parabolic semistable (resp. parabolic polystable) vector bundles is closed under

tensor product. Furthermore, to check parabolic semistability (resp. parabolic polystability)
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it is not necessary to check the criterion for V\ ® V2 e Rep(G) if it has been checked for V\

and V2 individually.

PROPOSITION 3.4. A parabolic G-bundle P* is parabolic semistable (resp. parabolic

poly stable) if and only if there is a faithful representation

p:G -> GL(V)

such that the corresponding parabolic vector bundle P*(β) is parabolic semistable (resp. par-

abolic poly stable). Consequently, if for one faithful representation p the parabolic vector bun-

dle P*(ρ) is a parabolic semistable (resp. parabolic poly stable), then for any representation

p', the parabolic vector bundle P*(pO is parabolic semistable (resp. parabolic poly stable).

PROOF. If P* is a parabolic semistable (resp. parabolic polystable) G-bundle, then for

any faithful representation p, the parabolic bundle P*(p) is by definition parabolic semistable

(resp. parabolic polystable).

To prove the converse, suppose that P*(p) is a parabolic semistable (resp. parabolic

polystable) vector bundle, where p is a faithful representation of G on V. We note that since

p is faithful, any W e Rep(G) is isomorphic to a G-submodule of a direct sum of G-modules

of the form «g)* V) <g> ( ® z V*); this follows from Proposition 3.1(a) of [D2].

Choose an integer N such that both P*(ρ) and P*(W) are in PVect(X, D, N). Fix a

Galois covering p as in (2.7) with Galois group Γ.

Let Vp be the Γ-linearized vector bundle corresponding to P* (p). It has been established

in the proof of Proposition 3.2 that Vp is Γ-semistable (resp. Γ-polystable). This, as we saw

in the proof of Proposition 3.2, implies that the tensor product ( 0 * Vp) ® (®l(Vp)*) is

Γ-semistable (resp. Γ-polystable).

Since W is isomorphic to a direct sum of G-submodules of G-modules of the type

( 0 ^ V) (g) ( 0 / V*), the Γ-linearized vector bundle corresponding to the parabolic vector

bundle P*(W) must be Γ-semistable (resp. Γ-polystable). This completes the proof of the

proposition. D

Propositions 2.6 and 3.4 together have the following corollary:

COROLLARY 3.5. A parabolic principal SL(n, C)-bundle P* is parabolic semistable

(resp. parabolic polystable) if and only if the parabolic vector bundle associated to P* for

the standard representation ofSL(n, C) on Cn is parabolic semistable (resp. parabolic poly-

stable).

Proposition 3.4 suggests an alternative definition of parabolic semistability (resp. par-

abolic polystability) of parabolic G-bundles, namely a functor P* is a parabolic semistable

(resp. parabolic polystable) G-bundle if for some faithful representation p, the parabolic vec-

tor bundle P*(p) is parabolic semistable (resp. parabolic polystable). This definition is close

in spirit to the definition of semistability of principal Higgs bundles made by Simpson in Sec-

tion 8 (page 49) of [Si3]. This definition has the advantage that it extends to reductive groups

as opposed to the set-up of semisimple groups in Definition 3.3. However, it needs an extra
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assumption of the vanishing of the first Chern class. We shall not go further into the fine

distinction between this definition and Definition 3.3 adapted in the present work.

REMARK 3.6. For a parabolic semistable vector bundle E* a certain inequality in-

volving Chern classes of E and the parabolic data was established in [Bi2], which is a gener-

alization to the parabolic context of the Bogomolov inequality involving the first two Chern

classes of a semistable vector bundle. Now, if P* is a parabolic semistable G-bundle then for

any V e Rep(G), we have the parabolic analog of the Bogomolov inequality for the parabolic

vector bundle P*(V). In particular, an inequality is obtained for the adjoint representation of

G, which in the absence of a parabolic structure says that for a semistable principal G -bundle

P,

where ad(P) = P XG 9 is the adjoint bundle associated to P for the adjoint action of G on its

Lie algebra 9. The analog of Bogomolov inequality for parabolic semistable vector bundles

has a simple interpretation in terms of the analog of the Chern classes for parabolic vector

bundles, namely it is the usual Bogomolov inequality with the Chern classes being replaced

by their parabolic analogs [Bi3]. •

In Section 2 the notion of the extension of the structure group of a parabolic principal

bundle was defined. The following proposition, which is immediate from Definition 3.3, is a

parabolic analog of Theorem 3 of [RS].

PROPOSITION 3.7. If G —̂  H is a homomorphism of groups and if P* is a para-

bolic semistable (resp. parabolic poly stable) G-bundle, then the parabolic H-bundle, ob-

tained by the extension of structure group of P*, is also parabolic semistable (resp. parabolic

poly stable).

In the next section we shall relate a space of equivalence classes of homomorphisms

from the fundamental group π\ (X — D) to a maximal compact subgroup of G with the space

of parabolic polystable G-bundles on X with parabolic structure over D.

4. Representations of π\(X — D) and parabolic principal bundles. Let P be a

(Γ, G)-bundle on Y. It is called semistable (resp. polystable) if and only if the underlying

G-bundle is semistable (resp. polystable) according to Definition 3.1.

On the other hand, P is called Γ-semistable (resp. Γ-polystable) if and only if P satis-

fies the condition of semistability (resp. polystability) in Definition 3.1 with all reductions of

structure group being F-equivariant.

The following simple proposition identifies the above two definitions.

PROPOSITION 4.1. A (Γ,G)-bundle P is Γ-semistable (resp. Γ-polystable) if and

only if P is semistable (resp. polystable).

PROOF. If P is semistable (resp. polystable), then obviously P is Γ-semistable (resp.

Γ-polystable).
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To prove the converse we first remark that it is known that the G-bundle P is semistable

(resp. polystable) if and only if the adjoint vector bundle ad(P) is semistable (resp. polystable)

[ABi, Proposition 2.10], [AB].

Now, if P is Γ-semistable (resp. Γ-polystable), then it is easy to deduce that ad(P) is

Γ-semistable (resp. Γ-polystable).

Thus it suffices to show that any Γ-linearized vector bundle is semistable (resp. poly-

stable) in the usual sense if it is Γ-semistable (resp. Γ-polystable). But this has been estab-

lished in Lemma 3.13 of [Bi2]. This completes the proof of the proposition. D

For an integer N > 1, let PG(X, D, N) denote the collection of all parabolic G-bundles

P* on X with parabolic structure over the divisor D and satisfying the condition that for any

V e Rep(G), the parabolic vector bundle P*(V) has all its parabolic weights as multiples of

l/N.

The category PVect(X, D, N) is closed under the operations of taking the parabolic

dual and the parabolic tensor product, and furthermore given any faithful G-module V, any

irreducible G-module is isomorphic to a submodule of ((££) V) ® ((^) V*), for some k

and /. These two facts combine together to imply that P* e PG(X, D, N) if and only if

P*(V) G PVect(Z, D, N) for some faithful G-module V.

Fix a Galois covering p : Y -> X as in (2.7). For any irreducible component D/ of D, a

general point

y e Q?*A)red

of the reduced divisor (/?*A)red has a cyclic subgroup Γy c Γ of order k(N as the isotropy

group. For a (Γ, G)-bundle P, the isotropy subgroup Γy c Γ for any point y e Y has an

action on the fiber Py of P over y.

Let [Γ, G, N] denote the collection of (Γ, G)-bundles on Y satisfying the following two

conditions:

1. for a general point y of an irreducible component of (p*D;)red, the action of Γy on

Py is of order N in other words, for any g e Γy, the action of gN on Py is the trivial action;

2. for a general point v of an irreducible component of a ramification divisor for p not

contained in (p*D)red> the action of Γy on Py is the trivial action.

So [Γ, GL(n, C), N] coincides with the collection of rank n vector bundles in the cate-

gory Vect^(F, N) defined in Section 2.

For any P* e PG(X, Z), N), consider the composition

(4.2) Rep(G) -^> PVect(X, D, N) -> Vect£(F, N),

where Vectr(^) is the category of Γ-linearized vector bundles on Y and the right-hand-side

map in (4.2) is the identification of the parabolic vector bundles with the Γ-linearized vector

bundles. It is straightforward to check that the composition of functors in (4.2) satisfies the

conditions in Section 2 to define a (Γ, G)-bundle P on Y.

THEOREM 4.3. The (Γ, G)-bundle P constructed above is in [Γ, G, N]. The map

from PG(X, D, N) to [Γ, G, N], which sends any P* to P constructed above, is actually
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bijective. Furthermore, P* is parabolic semistable (resp. parabolic poly stable) if and only

if P is Γ-semistable (resp. Γ-polystable), or in view of Proposition 4.1, if and only if P is

semistable (resp. poly stable).

PROOF. Let p : G -> GL(V) be a faithful representation of G. Let PQL be the

principal (Γ, GL(V))-bundle on Y obtained by extending the structure group of P using p.

Thus we have a Γ-equivariant embedding

(4.4) f:P-+PGL

of the total spaces of principal bundles.

In the correspondence between parabolic vector bundles and Γ -linearized vector bun-

dles, the parabolic vector bundle P*(p) corresponds by definition to the Γ-linearized vector

bundle P(p) associated to PQL using the standard representation of GL(V).

We are given that P*(p) e PVect(X, D, N). From the construction of the correspon-

dence between parabolic vector bundles and Γ-linearized vector bundles in [Bi2] it is imme-

diate that for any g e Γy, where y is a general point of a component of (/?*D/)red, the action

of gN on the fiber P(p)y is actually the trivial action. Furthermore, the action of Γy on P(ρ)y,

where v is a general point of a component of the ramification divisor for p not contained in

(/7*D)red, is the trivial action.

Since / in (4.4) is Γ-equivariant embedding, we conclude that P e [Γ, G, N].

Let F : PG(X, D, N) -> [Γ, G, N] denote the map which assigns to P* the (Γ, G)-

bundle P by the above construction.

To construct the inverse of F9 take any Pr e [Γ, G, N]. Consider the composition

(4.5) Rep(G) - Ώ Vector, N) — • PVect(X, D),

where [Pf] denotes the functor which associates to a G-module the Γ-linearized vector bun-

dle obtained by the extension of the structure group of P', and the right-hand side map is

the correspondence between parabolic vector bundles and Γ-linearized vector bundles. It is

straightforward to check that this composition satisfies all the conditions needed to define a

parabolic G-bundle. Let P^ denote the parabolic G-bundle defined by the composition (4.5).

To show that P^ is actually in PG(X, D, N), take a faithful representation p of G on

V. It is easy to derive from the given condition, namely P' e [Γ, G, N], that the inclusion

P^(p) e PVect(X, D, N) is valid. Now from the argument used repeatedly involving that any

irreducible G-module is isomorphic to some submodule of (§§k V) <g> ((g/ V*), it follows that

P^ e PG(X, D, N).
Evidently, F(P^) = P'. Similarly, the composition of the two constructions is the iden-

tity map on PG(X, D, N).

Since the Γ-linearized vector bundle corresponding to a given parabolic vector bundle

is Γ-semistable (resp. Γ-polystable) if and only if the original parabolic vector bundle is

parabolic semistable (resp. parabolic polystable), the second part of the theorem follows. D

Recall the earlier remark that a principal G-bundle over Y is semistable (resp. polystable)

if and only if the adjoint vector bundle is semistable (resp. polystable). Therefore, Proposition
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4.1 implies that a (Γ, G)-bundle P over Y is Γ-semistable (resp. Γ-polystable) if and only if

ad(P) is Γ-semistable (resp. Γ-polystable). Now Theorem 4.3 has the following corollary:

COROLLARY 4.6. A parabolic G-bundle P* e PG(X, D) over X is parabolic semi-

stable (resp. parabolic poly stable) if and only if the parabolic vector bundle P*(ad) is para-

bolic semistable (resp. parabolic poly stable), where ad is the adjoint representation of G on

the Lie algebra gofG.

A Γ-connection on a (Γ, G)-bundle P on Y is defined to be a C°°-connection on the

principal bundle P which is preserved by the action of Γ on P. Fix a maximal compact

subgroup K of G. A unitary Γ-connection on P is defined to be a Γ-connection V satisfying

the condition that there is a point y e Y and an element z € Py in the fiber, such that the end
point of the horizontal lift, based at z, of any loop on Y, based at y, is contained in the orbit
of z for the action of K on P. This condition is equivalent to the following: there is a C°°
reduction of the structure group, say PK C P, of the G-bundle P to K and a connection on
PK whose extension is V. By aflat Γ-connection V on a (Γ, G)-bundle P we shall mean that

the connection V on P satisfies the following conditions:

1. V is a Γ-connection;

2. the curvature of V vanishes identically;

3. the (local) horizontal sections of P are holomorphic.

The following proposition, which is rather easy to prove, gives a criterion for the exis-

tence of a Γ -connection which is both unitary and flat.

PROPOSITION 4.7. A (Γ, G)-bundle P admits a unitary flat (Γ, G)-connection if and

only if the following two conditions hold:

1. P is Γ'-polystable;

2. C2(ad(P)) = 0, where C2 is the rational second Chern class.

Furthermore, a principal (Γ, G)-bundle satisfying the above two conditions admits a

unique unitary flat Γ -connection.

PROOF. Let P be a (Γ, G)-bundle admitting a unitary flat connection V. From The-

orem 1 (page 24) of [RS] it follows that P is Γ-polystable. Also, C2(ad(P)) = 0, since V

induces a flat connection on ad(P).

To prove the converse, let P be a (Γ, G)-bundle satisfying the two conditions in the

statement of the proposition.

Proposition 4.1 says that P is polystable. Now Theorem 1 of [RS] implies that P has a

unique Hermitian-Einstein connection which we shall denote by V. Let V be the Hermitian-

Einstein connection on the adjoint bundle ad(P) induced by V. Since

Theorem 1 (page 19) of [Si2] implies that V is a flat connection. As G is semisimple, its Lie

algebra does not have a nontrivial center, and hence V must be a flat connection. Since P has

a unique Hermitian-Einstein connection (Theorem 1 of [RS]), V must be invariant under the

action of Γ on P. This completes the proof of the proposition. D
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Let P* be a parabolic G-bundle on X with parabolic structure over D. Let P*(ad) be

the parabolic vector bundle associated to P* for the adjoint representation of G. Let P be

the Γ-linearized G-bundle associated to P* by Theorem 4.3. Since P*(ad) corresponds to the

adjoint bundle ad(P), the fibers of the vector bundle underlying the parabolic vector bundle

P*(ad) over X — D have a structure of a Lie algebra isomorphic to g, the Lie algebra of G.

Let P*(ad)o denote underlying vector bundle for the parabolic vector bundle P*(ad).

A unitary connection on P* is a connection V on the restriction of P*(ad)o to X — D

satisfying the following two conditions:

1. V preserves the Lie algebra structure of the fibers;

2. there is a C°° Lie algebra subbundle W of P*(ad)0 over X - D such that the fibers

of W are isomorphic to the Lie algebra of K, and furthermore, W is left invariant by the

connection V.

The second condition is equivalent to the one that there is a reduction of the structure

group of P*(ad)|χ_£> to K and a connection V on this reduction such that V is the extension

ofV.

A unitary flat connection on P* is defined to be a connection V on P*(ad)o over X — D

satisfying the following five conditions:

1. V is a unitary connection as defined above;

2. the curvature of V vanishes identically;

3. (local) flat sections are holomorphic sections;

4. the connection V extends across D as a logarithmic connection on the vector bundle

P*(ad)0;

5. for any irreducible component D; of D, the weighted filtration of the vector bun-

dle P*(ad)olz), over D, , defined by the residue of V along D;, coincides with the parabolic

structure of P* (ad) over D/.

The notions of logarithmic connections and their residues can be found in [Dl]. The

residue of V along D\ is a section

R e s ( V , A ) e / / ° ( A ,P*(ad)o | A )

over D[. The vector bundle P*(ad)olD, decomposes as a direct sum of eigenspaces of the

residue Res(V, D;). The fifth condition means that a is a parabolic weight for the parabolic

structure of P*(ad) over D; if and only if — 2πyf^\a is an eigenvalue for Res(V, D;), and

furthermore, the decreasing filtration of P*(ad)olz)/, which to any ί € [0,1] assigns the direct
sum of all the eigenspaces of Res(V, D{) with \/(2πyf-Ϋ) times the eigenvalue less than or

equal to — t, coincides with the quasi-parabolic filtration over D;.

The following theorem can be easily derived from Theorem 4.3 and Proposition 4.7.

THEOREM 4.8. A parabolic G-bundle P* admits a unitary flat connection if and only

if the following two conditions hold:

1. P* is parabolic polystable\

2. c^(P* (ad)) = 0, where c^ is the second parabolic Chern class.
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Furthermore, a parabolic G-bundle satisfying the above two conditions admits a unique

unitary flat connection.

PROOF. Let P* e PG(X, D, N) be a parabolic G-bundle satisfying the above two

conditions. Take a Galois covering p as in (2.7). Let P e [Γ, G, N] be the (Γ, G)-bundle

that corresponds to P*.

Using Theorem 4.3, we conclude that P is Γ-polystable. Since the pullback of the ι-th

parabolic Chern class of a parabolic vector bundle by the morphism p actually coincides with

the /-th Chern class of the corresponding Γ-linearized vector bundle ([Bi3]), we have

c 2 ( a d ( P ) ) = 0 .

Thus by Proposition 4.7 the G-bundle P has a unitary flat connection. Using the Γ-

invariance property of the induced connection on ad(P), a connection on P*(ad)o over X — D

is obtained. It is straightforward to check that this connection satisfies all the conditions

needed to define a unitary flat connection on P*.

Conversely, if P* has a flat unitary connection V, then we pull back the connection V on

P*(ad)o over X — D using the projection p. This is a connection on ad(P) over Y — p~ι(D).

The conditions on V ensure that this connection over Y — p~ι(D) extends across p~ι(D)

to produce a regular connection on ad(P). This connection on ad(P) gives a unitary flat

connection on P. Hence P must be Γ-polystable by Proposition 4.7. This in turn implies that

P* is parabolic polystable. From the earlier remark on the pullback of parabolic Chern classes

it follows that C2(P*(ad)) = 0, since C2(ad(P)) = 0, as ad(P) admits a flat connection. The

uniqueness statement in the theorem is equivalent to that in Proposition 4.7. This completes

the proof of the theorem. D

For a connected smooth subvariety X' c X such that X' Π D is a normal crossing divisor

on X, there is an obvious restriction functor from PVect(X, D) to PVect(X', X' Π D). The

gives a restriction map from PG(X, D) to PG(Xf, Xf Π D) simply by composing a functor

with the above restriction functor. The present section is closed by making a remark on the

restrictions of parabolic semistable G-bundles.

REMARK 4.9. In [MR] it was proved that given a vector bundle E over a connected

smooth projective variety X/C, the restriction of E to the general complete intersection curve

of sufficiently large degree is semistable if and only if E itself is semistable. In [Bh] this

result of Mehta and Ramanathan was extended to the parabolic context. On the other hand,

it is a straightforward task to extend the above theorem of [MR] to the set-up of Γ-linearized

vector bundles. So now applying Theorem 4.3, we obtain a very simple proof of the theorem

proved in [Bh], which states that the restriction of a parabolic vector bundle to the general

complete intersection curve of sufficiently large degree is parabolic semistable if and only if

so is the original parabolic vector bundle, for the particular class of parabolic vector bundles

considered here. Now Proposition 3.4 implies that the restriction of a parabolic G-bundle P*

to the general complete intersection curve of sufficiently large degree is parabolic semistable

if and only if P* itself is parabolic semistable.
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In the next section we shall give a construction of the moduli space of parabolic G-

bundles over a curve.

5. Construction of the moduli space. Let Y be a connected smooth protective curve

over C, equipped with a faithful action of a finite group Γ. Let H be a semisimple linear

algebraic group over C. We say a Γ-linearized semistable principal //-bundle P over Y is of

degree zero if, the associated vector bundle P(V), for every finite dimensional representation

H —> GL(V), is of degree zero.

For every z e Y, we fix once and for all the isomorphism class of the action of the

isotropy subgroup Γz on the fiber over z of a Γ-linearized principal //-bundle. Let

FH : (Schemes)/C -+ (Sets)

be the functor defined by

[isomorphism classes of F-semistable //-bundles]

\ of degree 0 on Y parameterized by T J

Let p : H °-> G be a faithful representation of H in G = SL(n). Let y e Y be a marked point

on Y. Let E be a principal G-bundle on Y x T or equivalently, family of principal G-bundles

on Y parametrised by a scheme Γ, and let E(G/H)y denote the restriction of E(G/H) to

y x T ^ T. Let ///,y be the functor defined as follows:

FH.y(T) =

isomorphism classes of pairs (E, σy), where E = {Et}teτ

is a family of semistable principal (Γ, G)-bundles over Y

parameterized by T and σy : T -> E(G/H)y is a section

Notice that, by reduction of structure group, the functor FH can also be realised as:

isomorphism classes of pairs (£, s), whercE = {Et}teτ

FH(T) = is a family of semistable (Γ, G)-bundles and s = {st }teτ is a

family of Γ-invariant sections of {E(G/H)t}teτ>

(That the reduced //-bundle P also has degree zero can be seen as follows: any repre-

sentation V of H can be realised as a sub-module of direct sums of the tensor representations,

Tm>n(p) = ( 0 m p) 0 ( ® " p*). Since P is semistable as a (Γ, //)-bundle, being a reduction

of structure group of £, it follows that P(V) is also semistable. Moreover, it is a semistable

sub-bundle of the semistable vector bundle 0 P(Tm'n(p)) of degree zero, and hence P(V)

is of degree zero.)

With this description we have the following proposition.

PROPOSITION 5.1. Let ay : FH —> Fπ,y be the morphism obtained by evaluating

sections at y. Then ay is a proper morphism of functors.

PROOF. We begin by remarking that "properness of morphism" in our sense does not

include "separatedness". We use the valuation criterion for properness. Let T be an affine

smooth curve and let p e T. Then by the valuation criterion, we need to show the following:
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Let E be a family of Γ-semistable principal G-bundles o n F x Γ together with a section

σy : T -> E(G/H)y, such that for every t e T - p, we are given a family of (Γ, //)-

reductions, that is, a family {st}teτ-p of Γ-invariant sections st : Y ->• E(G/H)t, with the

property that the equality sr(v) = σy(ί) is valid for every t € T — p. Then we need to extend
the family sγ-p to sγ as a Γ-invariant section of E(G/H) onX xT such that sp(y) = σy(p)

as well.

Observe that, since G/H is affine, there exists a G-module W such that G/// ^ W is

a closed G-embedding and 0 φ G/H. Thus we get a closed embedding

E(G/H) ^ £(W)

and a family of Γ-semistable vector bundles {E(W)t }teτ together with a family of Γ-invariant

sections sj-p and evaluations {σy(t)}tGτ such that st(y) = σy(t) for all t Φ p.

For the section sτ-p, viewed as a Γ-invariant section of E(W)τ-p, we have two possi-

bilities:

(a) it extends as a regular section sγ',

(b) it has a pole along Y x p.

Observe that in the situation of (a), the section sτ-p extends as an usual section not

necessarily Γ-invariant, and then, since it is Γ-invariant on a Zariski open subset, it will in

fact be Γ-invariant on the whole of Y x T. Thus if (a) holds, then we have

sτ(Y x(T- p)) C E(G/H) C E(W),

and since E(G/H) is closed in E(W)9 it follows that sτ (Y x p ) C E(G/H). Thus we have

sp{Y) C E(G/H)p. Further by continuity, sp(y) = σy(p) as well, and this completes the

proof of the proposition if the situation (a) holds.

Therefore, to complete the proof it suffices to check that the possibility (b) does not

occur. Suppose it does occur. For our purpose, we could take the local ring A of T at p,

which is a discrete valuation ring, with a uniformizer π. Let K be its quotient field. The

section sj-P = SK is a section of E(W)κ, i.e., it is a rational section of E(W), and we have

supposed that it has poles on the divisor Y x p c Y x T, say of order k > 1.

Thus, by multiplying sτ-p by πk, where π is the uniformizer, we get a regular section

4 of E(W) on Y x T. If 4 = {^}ί€r, then we have the following:
1. s't = λ(t) - st for every t e T — p, where λ : T -> C is a function given by 7Γ*,

vanishing of order /: at p.

2. Sp is a nonzero section of 2i (W)p.

Notice that, s'p is a section of E( W)p, and E(W)p is a semistable vector bundle of degree

0, since E(W) is a family of semistable Γ-linearized vector bundles of degree 0. Therefore,

a nonzero section of E(W)p is nowhere vanishing. So, from (2) it follows that

(*) s'p(z)φ0 f o r a n y z e y .

By assumption, st(y) = σy(t) for every t e T — p, and hence

s't(y) =λ(t)-σy(t) t e T - p .
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Therefore, by using continuity, and since σy(p) is well-defined, we conclude that λ(ί) σy(t)

tends to λ(p) σy(p) = 0, as t -> p. Also,

s'p(y)

as t -> p. Hence by continuity it follows that s'p(y) = 0, which contradicts the assertion (*).

Therefore, we conclude that the possibility (b) does not occur. This completes the proof

of the proposition. D

Let H c G = SL(n) as above. We recall very briefly the definition of Grothendieck

Quot scheme used in the construction of the moduli space of vector bundles (cf. [Se2]). Let T

be a Γ-coherent sheaf on Y and T(nί) be T ® Oγ(m) (following the usual notation). Choose

an integer mo =mo(n, d) (depending on n and d, where n = rank and d = degree) such that

for any m > mo and any semistable Γ-linearized vector bundle V of rank n and degree d on

Y we have hι(V(m)) = 0 for / > 1 and V(m) is generated by its global sections. Note that we

shall be working throughout only with the situation where the underlying bundles have degree

0, since we work with SL(n)-bundles.

Fix an integer m as above, and set N = h°(V(m)). Let P denote the linear polynomial

P{x) = nx + n{\ — g). Consider the Quot scheme QG consisting of coherent sheaves F over

y, which are quotients of E where E = CN ®c Oγ(—m) with a fixed Hubert polynomial P.

Let T denote the universal quotient sheaf on Y x QQ. Note that since E is also a Γ sheaf,

the group Γ acts on the Quot scheme QG- Further, the group Q := Aut(£) acts canonically

on QG and hence on Y x QG (with the trivial action on Y), commuting with the Γ-action

and lifts to an action on E as well. Let us denote by QΓ the subgroup of Q consisting of all

Γ-invariant automorphisms of E. We remark that QΓ is a product of copies of GL(k), and

therefore reductive (cf. [Se3]). Let QΓ

G be the closed subscheme of QG of Γ-invariant points.

We shall also fix the local type of our Γ-bundles which gives a connected component of Q^

(cf. [Se3] for the definition of local type).

By an abuse of notation we shall henceforth denote by Q the group QΓ'.

Let R denote the ^-invariant open subset of Q^ defined by

Tq = T\γ^q is locally free such that the canonical map

CN _+ H*(Fq{m)) is an isomorphism, and d e t ^ - Oγ

We denote by Rss the (/-invariant open subset of R consisting of semistable Γ-bundles, and

let T continue to denote the restriction of T to Y x Rss.

Fix a base point y e Y. Let q" : (Sch)/C -• (Sets) be the following functor:

{Vt] is a family of (Γ, G)-bundles in Rss parameterized 1
q (T) = |(Vί, jr) ^ τ a n d ^ ^ H 0 ^ y ( G / / / ) ) r f o r a n y t e T

Namely, q"(T) consists of all pairs of a Γ-linearized vector bundle of rank n in Rss (or,

equivalently, (Γ, G)-bundles) together with a Γ-invariant reduction of structure group to H.

By appealing to the general theory of Hubert schemes, one can show that q" is representable

by a /?ss-scheme (cf. [Ra2, Lemma 3.8.1]). The /?ss-scheme representing q" will be denoted

byβ/f.
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The universal sheaf f o n F x Rss is in fact a Γ-linearized vector bundle. Denoting by

the same T the associated (Γ, G)-bundle, set Q' = {T/H)y. Then in our notation Q' =

JΓ(G/H)y, that is, we take the bundle over Y x Rss associated to T with fiber G/H and take

its restriction to v x Rss ^ Rss. Let / : Qf -> /?ss be the natural morphism. Then, since H

is reductive, / is an affine morphism.

Observe that Qf parameterizes semistable Γ-linearized vector bundles together with ini-

tial values of reductions to H.

Define the evaluation map of Rss-schemes as follows:

Φy' QH-+Q', (V,J)H>(V,J(3O).

PROPOSITION 5.2. The evaluation map φy : QH -> Qf is affine.

PROOF. The Proposition can be proved in two steps, by showing that φy is proper and

is injective. That it is proper follows exactly as in the proof of Proposition 5.1.

To see the injectivity we proceed as follows: Let G/H °-> W be as in Proposition

5.1. Take two points (£, s) and (£ ' , s') e QH such that φy(E, s) = φy(Ef, s') in Q\ i.e.,

(E, s(y)) = (E\ s'(y)). So we may assume that E cz Ef and that s and sf are two different

sections of E(G/H) with s(y) = sf(y).
Using the map G/H ^ W, we may consider s and sf as sections in H°(Y, E(W))Γ.

Observe that E(W) is semistable of degree zero, since by definition E is semistable of degree

zero. Recall that a nonzero section of a semistable vector bundle of degree zero is nowhere

vanishing. From this it follows immediately that if E and F are semistable vector bundles

with μ ( £ ) = μ(F), then the evaluation map

(*) φy : Hom(£, F) -• Hom(Ey, Fy)

is injective.

Consider s and s' e Hom(Oγ, E(W))Γ. Since φy(s) = φy(sf), from (*) it follows that

s = sf. This proves that φy is injective. This concludes the proof of the Proposition 5.2. D

REMARK 5.3. Observe that the action of Q on Rss lifts to an action on β # Indeed,

the G action lifts to an action on the associated bundle T(G/H), and hence to its space of

sections.

Recall the commutative diagram

By Proposition 5.2, φy is affine. Further, one knows that / is an affine morphism, since the

fiber G/H is affine. Hence, we conclude that ψ is a Q equivariant affine morphism.
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REMARK 5.4. Let (E, s) and (£ ' , s') be in the same £-orbit of QH Then we have

E ~ E'. Let Autc(E) be the group of automorphisms of the principal G-bundles E. Identi-

fying E' with E, we see that s and s' lie in the same orbit of Auic(E) on H°(Y, E(G/H))Γ.

Now it is routine to check that the orbits under this natural action of AutG(£) correspond

precisely to the (Γ, H) reductions which are isomorphic as (Γ, H) bundles. Thus, we see that

the reductions s and s' give isomorphic (Γ, //)-bundles.

Conversely, if (E, s) and (E\ sf) are such that E cz E' and the Γ-reductions s, sf give

isomoφhic (Γ, //)-bundles, then as in the above argument we see that (E, s) and (Ef, s') lie

in the same Q-oτb\i.

Consider the ^-action on QH with the linearization induced by the affine Q-morphism

QH -* ^ s s By Ramanathan's Lemma (cf. Lemma 5.1 of [Ra2]), since a good quotient of

Rss by Q exists, it follows that a good quotient QHI IQ exists. Moreover, by the universal

property of categorical quotients, the canonical morphism

Ψ : QHIIG -> Rssl/Q

is also affine.

REMARK 5.6. Following Lemma 10.7 in [Si3] one can show without much diffi-

culty that the dimension of the Zariski tangent space of QH at E is άim(Hι (F, ad(£)) Γ ) —

dim(//°(F, ad(£)) Γ ) + dim(£). (See also [Se3, pp. 214].) Now, since Y is a curve, it follows

immediately that the scheme QH is smooth.

THEOREM 5.7. Let Mγ(H) denote the scheme QHIIQ- This scheme Mγ(H) is the

coarse moduli scheme of semis table (Γ, H) -bundles. The scheme Mγ(H) is normal and

projective, and furthermore, if H ^> GL(V) is a faithful representation, then the canonical

morphism ψ : Mγ{H) -> Mγ(GL(V)) is finite.

PROOF. Since QH is smooth by Remark 5.6, and since Mγ(H) is obtained as a good

quotient, we conclude that the variety Mγ{H) is normal.

The proof of the projectivity of the moduli space Mγ(H) is given in the subsection below.

More precisely, we prove that the moduli Mγ(H) are topologically compact and conclude the

projectivity. It follows that ψ is proper. By the remarks above ψ is also affine, therefore ψ is

finite. D

The finiteness of ψ gives the following:

COROLLARY 5.8. Let Θ denote the generalized theta line bundle on Mγ(GL(V)).

Then the pull-back ψ*Θ is ample.

5a. Projectivity of the Γ-linearized moduli. The aim of this subsection is to give

a self-contained proof, along the lines of [Sel], that the moduli space Mγ(H) constructed

above is topologically compact. For the present, we assume that the group H is semi simple

and of also of adjoint type. For such groups we have the following well-known property:

LEMMA 5.9. There exists a faithful irreducible representation H C GL{n).
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PROOF. We may easily reduce the proof to the case when the group is simple (by

taking the tensor product representation for the product group). Then one can simply take any

fundamental representation for the simple factors and we are done. •

Fix a maximal compact K of H such that K C U(n). Consider the subset Rs C Rss

consisting of the stable (Γ, G)-bundles.

Recall that there is a discrete group π which acts discontinuously on the universal cover

Ϋ of Y, with X as its quotient, and further, Γ is a quotient of π by a normal subgroup which

acts freely on Ϋ.

DEFINITION 5.10. We say a principal (Γ, //)-bundle E is unitary if there exists a

representation p : π ->• K such that E is isomorphic to the extension of the principal K-

bundle V(p), associated to p, to a principal H bundle by using the inclusion homomorphism

of K into H.

LEMMA 5.11. Let φ : QH -> Rss be the morphism induced by the representation p

by extension of structure group. Then, the inverse image of the set of stable points φ~ι(Rs) =

QS

H consists of unitary (Γ, H) -bundles.

PROOF. We consider the adjoint representation ad : H -> GL(ad(//)). Then, we

observe that a principal //-bundle E is unitary if and only if the associated adjoint bundle

ad(£) is so (cf. Lemma 10.12, [AB]).

More generally, we claim that, if p : H -> GL(n) is an arbitrary finite dimensional

representation an //-bundle E is unitary if and only if the associated vector bundle E(p) is

so.

If E is unitary it is obvious that E(p) is so. For the converse, assume that E(p) is

unitary. Then by the earlier remark, it is enough to show that £(ad) is unitary. First observe

that, since p is a faithful representation of H, the adjoint representation can be realized as a

//-submodule of a direct sum of the tensor representations, Tm'n(p) = ((g)m p) 0 ((g)" p*).

Furthermore, since E(p) is a unitary vector bundle, the vector bundles E(Tm'n(p)ys are also

unitary. Now for vector bundles, one knows that unitarity is equivalent to polystability plus

degree zero. Hence, £(Γ m ' w (p)) ' s are polystable vector bundle of degree zero. Since £(ad)

is a degree zero subbundle of a polystable bundle of degree zero, it follows that £(ad) must

be polystable. Therefore, /s(ad) is a unitary vector bundle. This proves the claim.

Now by Narasimhan-Seshadri theorem, we see that points of Rs which are stable bundles

are all unitary. Hence by the claim above the bundles in the inverse image φ~ι(Rs) are also

unitary. •

PROPOSITION 5.12. Let p be the faithful irreducible representation ofH as obtained

above in Lemma 5.9. Then the inverse image of Rs by the induced morphism φ is nonempty.

PROOF. Let π denote the group of holomorphic automorphisms of the universal cover

Ϋ of Y which commute with the composition map

Ϋ -• 7 -• Y/Γ.
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Recall that Γ is the quotient of π by a normal subgroup which acts freely on Ϋ and by [Se2]

a Γ-vector bundle is polystable (resp. stable) if and only if it arises from a unitary (resp.

irreducible unitary) representation of π . The group π can be identified with the free group on

the letters A\, B\,... , Ag, Bg, C\,... , Cm modulo the following relations:

[AU Bι]. . [Ag, Bg]'Cl'"Cm=id, Cn

λ

ι = . = Cnj = id.

So to prove that the inverse image φ~x Rs is nonempty, we need to exhibit a representa-

tion

χ.π^K

such that the composition

p o χ : π -> U(n)

is irreducible.

Choose elements h\,... , hm e K so that they are elements of order n, , where i =

1,... , m (these correspond to fixing the local type of our bundles).

We claim that every element of a compact connected real semisimple Lie group is a

commutator.

PROOF OF THIS CLAIM. One can proceed as follows. Since K is compact, every ele-

ment is semisimple and can therefore be put in a maximal torus T. Now one proceeds as in

[Ral]. That is, by using the Coxeter-Killing transformation w, it can be proved that any x e T

can actually be expressed as w y - w~ι y~ι for some y e T. Indeed, the map ad(u ) — Id

does not have 1 as an eigenvalue, when acting on the Lie algebra Lie(Γ) by the adjoint action.

Consequently,

Aά(w) : T -> T

is surjective, where Ad(u ) is the action on T. This proves that any x e T can actually be

expressed as w y w" 1 v" 1 for some y e T.

Thus we can solve the equation

[a3,b3].. [ag,bg\ = (hι >.hm)-1

ΊnK.

Observe that, we crucially need that the genus (X) > 2.

Since A' is a compact connected real semi-simple Lie group, there exists a dense sub-

group of K generated by two general elements (a, β) (for a proof cf. Lemma 3.1 in [Su]).

Now, define the representation

as follows:

χ ( A i ) = α , χ(fii) = j8, χ(A 2) = jβ, χ ( B 2 ) = α ,

χ(Ai) = fl, , χ(Bi) = bi, χ(Cj) = hJ9 i = 3 , . . . , g and j = 1,. . . , m .

It is clear that χ gives a representation of the group π. Now, since p is irreducible, and

the image of χ contains a dense subgroup, the composition poχ gives an irreducible represen-

tation of π in the unitary group U(n). Therefore, it gives a stable Γ-linearized vector bundle,
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which moreover arises as the extension of structure group of a //-bundle. This completes the

proof of the Proposition. •

COROLLARY 5.13. In the total family QH far the H-bundles, there is a non-empty

Zariski open subset of unitary bundles.

PROOF. This follows immediately from the Lemma 5.11 and Proposition 5.12. D

Let RH(K) denote the space of representations of π in K. By the local universal property

of QH, for every point of RH (K) there is an analytic neighborhood and a continuous map into

QH, namely, by taking the unitary (Γ, //)-bundle associated to a representation of π in K.

These maps patch up modulo the action of the group Q, and we get, by the categorical quotient

property of Mγ(H), a continuous map ψ : R(K) -> Mγ(H) (cf. [Sel]).

Let / : QH —• Mγ(H) be the canonical quotient map.

THEOREM 5.14. The map ψ is surjective and hence Mγ(H) is compact In particu-

lar, Mγ(H) has a structure of a projective variety when the group H is of adjoint type.

PROOF. Consider the canonical categorical quotient map / : QH -^ Mγ(H). Since

/ is surjective the image f(Qs

H) in Mγ(H) contains a Zariski open subset U ("Chevalley's

lemma").

By the Corollary 5.13 above, the subset QS

H is nonempty and consists entirely of unitary

bundles. That is, the image f(Qs

H) is a subset of the image ψ(RH(K)) in Mγ (//). Therefore,

it follows that ψ{Rπ(K)) contains the Zariski open subset U, of Mγ(H).

Since the group H is semisimple and the topological type of the bundles is fixed, it

follows that the moduli space Mγ(H) is firstly connected. It was noted earlier (in the Proof

of Theorem 5.7) that Mγ(H) is normal, since QH is smooth. Therefore, the connectedness

of Mγ(H) implies that it is irreducible.

Now, since RH(K) is compact, the image ψ{Rπ(K)) is closed in Mγ(H) in the analytic

topology and also contains a dense subset. It follows by the irreducibility of Mγ(H), that

Ψ(RH(K)) is the whole of Mγ(H) and hence Mγ{H) is topologically compact. By the

GAGA principle we conclude that Mγ(H) is a projective variety. D

COROLLARY 5.15. The moduli spaces MY (//) are projective for all semisimple groups

H (cf. also [BS]).

PROOF. Consider the exact sequence of groups:

Z{H)-> H -> H/Z{H)

where Z(H) is the centre of //. The projectivity of the moduli space Mγ(H) then reduces to

that of MY(H/Z(H)) and of MY(Z(H)). That MY(H/Z(H)) is projective is the content of

Theorem 5.14. Since Z(H) is abelian, the projectivity of Mγ(Z(H)) now follows, since one

has only a product of Picard varieties of curves to handle. (Arguments of a similar kind can

be found, for example, in [AB].) D

The next section will be devoted to the parabolic analog of Higgs G-bundles.
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6. Principal Higgs bundles with parabolic structure. Let X/C be a connected

smooth projective variety of dimension d, and D be a normal crossing divisor on X. Let

£* = (£, F*, a*) be a parabolic vector bundle of rank n on X with parabolic structure over

D. Define Endι(E*) to be the subsheaf of the sheaf of endomorphisms of E that preserves

the quasi-parabolic flag of E*. In other words, for a local section S of End 1 ^*) over an open

set U, the inclusion

(6.1) S(Fi(E)\u) ^ Fi(E)\u

is valid. Clearly, Έndι(E*) is locally free, and

End(£) ® Oχ(-D) c End 1 ^*) c End(£).

Let ί2^(log D) denote the vector bundle on X defined by the sheaf of logarithmic dif-

ferential forms ([Dl]). For any irreducible component D/ of D, there is a natural residue

homomorphism

Res(A) : f l i ( logD)->O D | .

which defines a homomorphism

(6.2) Res(£*, D, ) : End 1 ^*) ® Ωι

x(logD) -> End 1 ^*)^, . ,

where End1 (£*) | D, is the restriction of the vector bundle End1 (£*) to D/.

DEFINITION 6.3. A parabolic Higgs vector bundle is a pair of the form (£*, 0), where

£* is a parabolic vector bundle and

0 e H°(X, End\E*) 0 β^(logD))

satisfying the following two conditions:

1. θ A θ <E H°(X, End1 (£*) ® ί2|(log D)) vanishes identically, where the multiplica-

tion is defined using the Lie algebra structure of the fibers of Enά(E)',

2. Res(£*, Di)(θ)(Fi(E)\Di) c Fi+ϊ\Dr

A section θ satisfying the above two conditions is called a Higgs field on £*.

For two parabolic Higgs vector bundles (£*, θ) and (Zs£, 0')> the section 0 0 0 r is a Higgs

field on the parabolic vector bundle E* 0 £*. Similarly, 0 (8) Id̂ y + Id^ <g> θ' is a Higgs field

on the parabolic tensor product E* ® £"̂ . The direct sum operation and the tensor product

operation of parabolic Higgs bundles are defined in this way. Using the natural identification

between End(£) and End(£*), a Higgs field 0 on E defines a Higgs field on the parabolic

dual £*. See [Yo], [Bi3] for the details.

A homomorphism from a Higgs bundle (£*, 0) to another Higgs bundle (£*, θf) is a

parabolic homomorphism / : £ ' * - > £"£ such that the condition

is valid.

Let PHVec(X, D) denote the category whose objects are parabolic Higgs vector bundles

and whose morphisms are homomorphisms of parabolic Higgs vector bundles. Using the

above remarks, PHVec(X, D) becomes an additive tensor category.
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DEFINITION 6.4. A parabolic Higgs G-bundle with parabolic structure over D is a

functor from Rep(G) to PHVec(X, D) satisfying all the conditions in Definition 5.5 with the

tensor product operation and the homomorphisms being as defined above.

An equivalent definition of a parabolic Higgs G-bundle is the following:

DEFINITION 6.5. A parabolic Higgs G-bundle is a pair of the form (P*, 0), where P*

is a parabolic G-bundle and 0 is a Higgs field on the parabolic vector bundle P*(ad), where

ad is the adjoint representation of G.

To show that the two definitions are equivalent, let V be a functor defining a para-

bolic Higgs G-bundle according to Definition 6.4. Denote by T the forgetful functor from

PHVec(X, D) to PVect(X, D), which forgets the Higgs field. The composition T o V defines

a parabolic G-bundle P* according to Definition 5.5. If 7^(ad) = (E, 0), then associate to

V the pair (P*, 0). It is easy to see that (P*, 0) is a parabolic Higgs G-bundle according to

Definition 6.5.

In the reverse direction, let (P*, 0) be a parabolic Higgs G-bundle according to Definition

6.5. Now given any representation p : G -+ Aut(V), consider the induced G-equivariant

homomorphism

ad(p) : 9 -> End(V).

This gives a homomorphism

adζo) : P*(ad)0 <8> Ωι

x(\og D) -> End1 (P*(p)) ® ^ ( l o g D),

where P*(ad)o is the underlying vector bundle for the parabolic vector bundle P*(ad). It

is easy to see that ad(p)(0) is a Higgs field on P*(p). Now, a parabolic Higgs G-bundle

according to Definition 6.4 is obtained by associating to any p e Rep(G) the parabolic Higgs

bundle (P*(/θ), ad(p)(0)). It is immediate that the above two constructions are inverses of

each other.

A Γ-Higgs field on a Γ-linearized vector bundle W over Y, equipped with an action of

Γ, is an invariant section

φe //0(F,End(W)<g>ί4)Γ

satisfying the condition that φ A φ — 0. In the correspondence between parabolic vector

bundles and Γ-linearized vector bundles that has been used repeatedly here, the space of Γ-

Higgs fields on W is naturally isomorphic to the space of Higgs fields on the parabolic vector

bundle that corresponds to W [Bi3]. Therefore, we have a bijective correspondence between

the space of parabolic Higgs vector bundles of rank n and the space of Γ -linearized vector

bundles of rank n equipped with a Γ -Higgs field.

Using this bijective correspondence, it is a simple exercise to extend the proof of Propo-

sition 2.6 to establish a bijective identification between the collection of parabolic Higgs

GL(n, C)-bundles and the collection of parabolic Higgs vector bundles of rank n. As be-

fore, this bijective identification is defined by using the standard representation of GL(n, C).

We omit the details.
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Before defining parabolic semistable Higgs G-bundles, let us first recall the definition of

parabolic semistable Higgs vector bundles.

A parabolic Higgs vector bundle (£*, θ) is called parabolic semistable (resp. parabolic

stable) if for any nonzero proper coherent subsheaf V C E with E/V torsion-free and θ (F) c

F (g) i?^(log Z)), the following inequality is valid:

par-deg(V*) < par-deg(£*) / par-deg^) par-deg(£*)
— 1 / j"~ϊ \ 1 x * 1 / T / \

rank(V) " rank(£) \ rank(V) rank(£)

where V* is V with the induced structure of a parabolic sheaf. Also, (£*, θ) is called parabolic

polystable if it is direct sum of parabolic stable Higgs vector bundles of same parabolic slope

(:= par-deg/rank).

The analog of Proposition 3.2 in the situation of Higgs vector bundles is valid. In other

words, parabolic semistable (resp. parabolic polystable) Higgs vector bundles are closed under

the operations of tensor product and dual. Indeed, using the above bijective correspondence

between parabolic Higgs vector bundles and the Γ-linearized Higgs bundles, the question

reduces to Γ-linearized Higgs bundles. Clearly, the dual of a semistable (resp. polystable)

Higgs bundle is again semistable (resp. polystable). It is easy to see that a Γ-linearized Higgs

bundle is semistable (resp. polystable) if it is semistable (resp. polystable) in the usual sense.

Now, from [Si2] we know that the tensor product of two semistable (resp. polystable) Higgs

bundles is again semistable (resp. polystable).

DEFINITION 6.6. A parabolic Higgs G-bundle V is called parabolic semistable (resp.

parabolic polystable) if the image of the functor V is contained in the category of parabolic

semistable (resp. parabolic polystable) Higgs vector bundles.

A Higgs field on a (Γ, G)-bundle P on Y is an invariant section

φ <E H°(Y, ad(P) <g> Ω\)Γ

such that φ A φ = 0, where the multiplication is defined by using the Lie algebra structure of

the fibers of the vector bundle ad(P). The (Γ, G)-Higgs bundle is called Γ-semistable (resp.

Γ-polystable) if it satisfies the inequality condition for Γ-semistability (resp. Γ-polystability)

for the (Γ, G)-bundle P only for reduction of structure groups such that φ coincides with the

extension of a Higgs field on the reduction.

The bijective correspondence in Theorem 4.3 extends to a bijective correspondence in

the context of Higgs bundles. In other words, the collection of (Γ, G)-Higgs bundles (P, φ)

on 7, such that P e [Γ, G, N], is in a natural bijective correspondence with the collection of

parabolic Higgs G-bundles (P*, θ) on X such that P* e PG(X, D, N). If (P, φ) corresponds

to (P*, θ) by this identification, then P corresponds to P* in Theorem 4.3. The Higgs fields

are related using the adjoint representation.

In [Sil, p. 878, Proposition 3.4] it was shown that the Bogomolov inequality remains

valid for semistable (Γ, G)-Higgs bundles. Thus the analog of Bogomolov inequality for par-

abolic semistable G-bundles, mentioned in Remark 3.6, remains valid for parabolic semistable

Higgs G-bundles.
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Imitating the proof of Corollary 4.6, it can be shown that V is parabolic semistable

(resp. parabolic poly stable) if and only if the parabolic Higgs vector bundle P(ad) is parabolic

semistable (resp. parabolic polystable).

As in Section 4, let K c G be a maximal compact subgroup. Let (P, φ) be a (Γ, G)-

Higgs bundle, and V be a unitary Γ-connection on P. (unitary Γ-connections are defined in

Section 4.) Consider the connection

on P, where the adjoint φ* is the adjoint defined using the real linear involution of g that acts

as identity on the Lie algebra of K and acts as —1 on its K -invariant complement. The Yang-

Mills equation on (P, φ) is simply the flatness condition for V^. In other words, a solution of

the Yang-Mills equation is a unitary Γ-connection V such that the curvature of the connection

V^ vanishes. (See [Sil] for details.)

Consider a pair (E, φ), where φ is a Γ-Higgs field on the Γ-linearized vector bundle

E. We know that (E,φ) admits a connection satisfying the Yang-Mills equation if and only

if (£, φ) is polystable and c\(E) = 0 = C2(E) [Sil], [Si2]. Using this result, Proposition

4.7 generalizes to the situation of (Γ, G)-Higgs bundles. In other words, a (Γ, G)-Higgs

bundle admits a reduction to a maximal compact subgroup satisfying the Yang-Mills equation

if and only if the (Γ, G)-Higgs bundle is polystable and ci of the adjoint bundle vanishes.

Furthermore, such a connection is unique.

Therefore, Theorem 4.8 extends to the situation of parabolic Higgs G-bundles. In other

words, a bijective correspondence is obtained between the subset of Hom(7ri (X — D), G)/G

consisting of flat G-connections on X — D with finite order monodromy around each compo-

nent Di of D and the set of parabolic polystable Higgs G-bundles (P*, θ) such that C2(P*(ad))

= 0.
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