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Abstract. In this paper we give a complete proof of a theorem, which states that ‘for a
weak shock, the shock ray velocity is equal to the mean of the ray velocities of nonlinear
wavefronts just ahead and just behind the shock, provided we take the wavefronts ahead
and behind to be instantaneously coincident with the shock front. Similarly, the rate
of turning of the shock front is also equal to the mean of the rates of turning of such
wavefronts just ahead and just behind the shock’. A particular case of this theorem for
shock propagation in gasdynamics has been used extensively in applications. Since it is
useful also in other physical systems, we present here the theorem in its most general
form.
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1. Introduction

The simplest example of the result, which we take up to prove here, is seen in the case

of the conservation law ut +
(

1
2
u2

)

x
= 0 from the Burgers’ equation ut + uux = 0.

The well known result for this equation says that the shock velocity S is the mean of the

characteristic velocities ul and ur respectively on the left and on the right of the shock,

i.e., S = 1
2
(ul +ur). As in this case, the subscripts ‘l’ and ‘r’ on a quantity will denote the

values of the quantity just on the left and just on the right of a shock under consideration,

through out this paper.

The above result is true approximately for a weak shock in the solution of a hyperbolic

system of n conservation laws in one space dimension ([2] and Theorem 17.16a of [9]).

For such a system, the eigenvalues can be arranged in the form c1 ≤ c2 ≤ · · · ≤ cn. A

wave moving with a velocity ck is referred to a wave in k-th characteristic field, which

may either be linearly degenerate or genuinely nonlinear [9]. Let S be the shock velocity

of a shock in the k-th genuinely nonlinear characteristic field with characteristic velocity

c (after dropping the subscript k from c) and let the strength of the shock be denoted by

ε > 0, then

S =
1

2
(cl + cr) + O(ε2), for ε << 1. (1.1)
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We shall extend the result (1.1) to a hyperbolic system of n conservation laws in multi-

dimensions (x, t), where x = (x1, x2, . . . , xd) ∈ R
d :

Ht(u) + F(1)
x1

(u) + F(2)
x2

(u) + · · · + F(d)
xd

(u) = 0, (1.2)

where u ∈ R
n, H ∈ R

n and F(α) ∈ R
n. We assume that H and F(α) are smooth. The

differential form of this system of conservation laws is a hyperbolic system of partial

differential equations

A(u)ut + B(α)(u)uxα = 0, (1.3)

where

A(u) = 〈∇u,H〉 and B(α)(u) = 〈∇u, F(α)〉, (1.4)

and we use the summation convention that a repeated symbol in subscripts and super-

scripts in a term will mean summation over the range of the symbol. The range of the

symbols α, β, and γ will be 1, 2, . . . , d and those of i, j , and k will be 1, 2, . . . , n.

In one dimension (one space dimension), a nonlinear wavefront and a shock front are

points moving with time and these points are projections of sections by t = constant

respectively of a characteristic curve ϕ(x, t) = 0 and a shock curve S(x, t) = 0 in the

(x, t)-plane. In d-space-dimensions a nonlinear wavefront is the projection on the x-space

of a section by t = constant of a characteristic surface ϕ(x, t) = 0 in space-time and

similarly a shock front (or simply a shock) is the projection of a section by t = constant

of shock manifold S(x, t) = 0. In §2, we shall write the ray equations of a nonlinear

wavefront. In that section, we shall also introduce the shock manifold equation (SME),

which is a partial differential equation satisfied by S(x, t). In §3, we shall deduce the

relation between the ray equations of the nonlinear wavefront and the shock ray equations

derived from the SME.

We take a known solution u(x, t) (smooth except for a jump discontinuity on a shock

manifold S(x, t) = 0) for which A and B(α) become known functions of x and t .

2. Ray equations of a nonlinear wavefront and a shock front

The unit normal n of a nonlinear wavefront �t : ϕ(x, t) = 0, t = constant, and its

(normal) velocity c are given by

n =
∇ϕ

|∇ϕ|
and c = −

ϕt

|∇ϕ|
. (2.1)

The velocity c of the wavefront is an eigenvalue of the system (1.3) and satisfies the

characteristic equation

det[nαB(α) − cA] = 0. (2.2)

We assume that c is a simple root of (2.2). Let the left and right eigenvectors of the

characteristic matrix in (2.2) be denoted respectively by l and r. They satisfy

lnαB(α) = c lA, nαB(α)r = c Ar. (2.3)

In space-time, ϕ(x, t) = 0 represents a d-dimensional characteristic surface �, which

is generated by a d − 1 parameter family of bicharacteristic curves on it (page 69 of [6]).
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Projection of the tangent direction of a bicharacteristic on x-space gives the ray velocity

direction associated with the wavefront �t . We denote the ray velocity by χ . We state

here the lemma on bicharacteristics directions, which was first proved using geometric

concepts in [1]. A complete non-geometric proof of this lemma is also possible.

Lemma 2.1. The components χα of the ray velocity χ corresponding to the eigenvalue c

are χα = lB(α)r
lAr

, and hence along a nonlinear ray

dxα

dt
=

lB(α)r

lAr
=: χα, α = 1, 2, . . . , d. (2.4)

We take the first relation in (2.3) and post-multiply by r. This gives wavefront velocity

c = 〈n,χ〉. We also use nα = ϕxα/|∇ϕ| and c = −ϕt/|∇ϕ| and get an eikonal equation

for the nonlinear wavefront

Q(ϕt ,∇ϕ) := (lAr)ϕt + (lB(α)r)ϕxα = 0. (2.5)

Since l and r depend on n, this equation is a first order nonlinear PDE in ϕ.

Remark 2.2. Take a general χ , not necessarily given by (2.4) and consider the PDE ϕt +

χαϕxα = 0. We shall be tempted to conclude that χ is a ray velocity according to which

the surface ϕ(x, t) = 0, t = constant, evolves. However, in order that χ qualifies to be a

ray velocity, is must satisfy a consistency condition

nβnγ

(

nβ

∂

∂nα

− nα

∂

∂nβ

)

χγ = 0, for each α = 1, 2, . . . , d. (2.6)

A proof is available in [7]. It has also been proved there that the ray velocity with

components χα = lB(α)r
lAr

of a hyperbolic system does satisfy (2.6).

The ray equation (2.4) is not complete, since we need an equation for another unknown

n appearing in l and r. The equation for n was first derived in [5] (see also [6] and [7]) in

the form

dnα

dt
= −

1

lAr
l

{

nβ

(

nγ

∂B(γ )

∂ηα
β

− c
∂A

∂ηα
β

)}

r = ψα, say, (2.7)

where we note that

d

dt
=

∂

∂t
+ χα

∂

∂xα

,
∂

∂ηα
β

= nβ

∂

∂xα

− nα

∂

∂xβ

. (2.8)

The system of equations (2.4) and (2.7) are bicharacteristic or ray equations of a nonlinear

wavefront in the chosen k-th characteristic field.

Now, we proceed to derive the shock ray equations but we need the eikonal equation

of a shock, i.e., the shock manifold partial differential equation (SME) [4, 6] in the (x, t)-

space. The jump relation or RH condition across a shock S(x, t) = 0 for the system of

conservation laws, with the well known notation [g] for the jump g(ul) − g(ur), is

St [H] + Sxα [F
α] = 0 (2.9)
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or, in terms of the velocity S and unit normal N of the shock, given by

S = −St/|∇xS| and N = ∇xS/|∇xS|, (2.10)

the jump relation becomes

− S[H] + Nα[Fα] = 0. (2.11)

The jump relation (2.9) is a system of n relations and we can derive (as shown in [4]) a

large number of scalar relations (containing components of ul and ur) which would qual-

ify for being a SME . Let us discuss here taking just one such relation. As the functions

ul and ur are defined only in the domains to the left and to the right of the shock, this

relation would be valid only on the shock manifold S(x, t) = 0 and not in neighourhood.

Hence it cannot be treated as a PDE in (x, t)-space. Assuming that ul and ur are smooth in

their respective domains, we extend them on the other side of the shock as smooth func-

tions. Now the relation would become a PDE [4]. Shock rays first appeared in the work

of Maslov [3] and the fact that non-unique extension of functions as smooth functions on

the other side of the shock does not effect the uniqueness of shock rays has been argued

in [4].

3. Proof of the theorem on weak shock

Existence of more than one shock manifold equations (SMEs) and the question of unique-

ness of shock rays for Euler equations have been discussed in [4]. Results for a weak

shock have also been obtained there. We state a theorem in the most general form for the

system of conservation laws (1.2).

Theorem 3.1. For a weak shock, the shock ray velocity is equal to the mean of the

ray velocities of the nonlinear wavefronts just ahead and just behind the shock, pro-

vided we take the wavefronts ahead and behind to be instantaneously coincident with

the shock front. Similarly, the rate of turning of the shock front, i.e., dN/dt , is also

equal to the mean of the rates of turning of such wavefronts just ahead and just behind

the shock.

These are approximate results correct up to first order in the shock strength.

Remark 3.2. We note that the nonlinear waves of the k-th family, on the two sides of the

shock, need not be of small amplitude.

Proof. We shall find an approximate form of the jump relations (2.9) of the system of

conservation laws (1.2) assuming the shock strength := |ul − ur| = ε to be small. We first

note that

H

(

1

2
(ul + ur)

)

= H(ul) −
1

2
〈〈∇u,H〉(ul), (ul − ur)〉 + O(ε2) (3.1)

and

H

(

1

2
(ul + ur)

)

= H(ur) +
1

2
〈〈∇u,H〉(ur), (ul − ur)〉 + O(ε2). (3.2)
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Subtracting and noting A(u) = 〈∇u,H〉 and B(α)(u) = 〈∇u, F(α)〉, we get

[H] =

(

1

2
(A(ul) + A(ur))

)

(ul − ur) + O(ε2). (3.3)

Similarly, we write approximations for F(α)( 1
2
(ul + ur)), α = 1, . . . , d, and deduce

expressions for [F(α)].

Substituting the above approximate relations in (2.9), and retaining only the leading

order terms in |ul − ur| = ε, we get

{

St

(

1

2
(A(ul) + A(ur))

)

+ Sxα

(

1

2
(B(α)(ul) + B(α)(ur)

)}

(ul − ur) = 0.

(3.4)

For a shock ul − ur �= 0. Let the approximate shock velocity corresponding to the

approximate values of [H] and [F(α)] as given in (3.3) etc. be Slr. Then the matrix

Mlr := −

(

1

2
(A(ul) + A(ur))

)

Slr +

(

1

2
B(α)(ul) +

1

2
B(α)(ur)

)

Nα (3.5)

is singular. Let Llr and Rlr be the left and right eigenvectors of the matrix Mlr.

From (3.4) we get an approximate value of the jump in u,

ul − ur = RlrW, W �= 0, (3.6)

where W = O(ε) is a measure of the jump in u and hence a measure of the strength of the

shock. Substituting (3.6) in (3.4), premultiplying by Llr and dividing by 1
2

Llr((A(ul) +

A(ur))RlrW , we get a scalar result

St +

{

1

2

(

LlrB
(α)(ul)Rlr

1
2
Llr((A(ul) + A(ur))Rlr

)

+
1

2

(

LlrB
(α)(ur)Rlr

1
2

Llr((A(ul) + A(ur))Rlr

)}

Sxα=0,

(3.7)

which is an approximate form of (2.9) correct up to first power of ε.

Let cl and cr be the velocities of the nonlinear wavefronts just behind and just ahead

of the shock front St : S(x, t) = 0 respectively and instantaneously coincident with it at

time t . Let ll and rl be the left and right eigenvectors of the matrix Ml := −A(ul)c(ul) +

B(α)(ul)Nα . Similarly we define lr and rr as the left and right eigenvectors of the matrix

Mr := −A(ur)c(ur)+B(α)(ur)Nα . Then it is easy to show that |cl −S| = O(ε) = |cr −

S|. We also note

Llr = ll +O(ε), Llr = rl +O(ε), Llr = lr +O(ε), Llr = rr +O(ε). (3.8)

Retaining only the most dominant terms, we can derive the following approximate

results

LlrB
(α)(ul)Rlr

1
2
Llr((A(ul) + A(ur))Rlr

=
llB

(α)(ul)rl

llA(ul)rl
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and

LlrB
(α)(ur)Rlr

1
2
Llr((A(ul) + A(ur))Rlr

=
lrB

(α)(ur)rr

lrA(ur)rr
. (3.9)

Finally, the approximate relation (3.7) is replaced by another approximate relation of (2.9)

correct up to O(ε) for a weak shock

Qlr(t, x,St ,Sxα ) := St +
1

2

{

llB
(α)(ul)rl

llA(ul)rl
+

lrB
(α)(ur)rr

lrA(ur)rr

}

Sxα = 0 (3.10)

which we shall like to treat as a SME.

We emphasize a point already mentioned at the end of the last section. Since the func-

tions ul and ur are defined only in the domains to the left and to the right of the shock, the

relation (3.10) is valid only on the shock manifold S(x, t) = 0 and not in a neighbour-

hood of it. Hence it cannot be treated as a PDE. Assuming that they are smooth in their

respective domains, we extend them on the other side of the shock as smooth functions.

The relation (3.10) now becomes a PDE.

Note that Ql := St +
llB

(α)(ul)rl
llA(ul)rl

Sxα = 0 or St + (χα)lSxα = 0 is the characteristic

PDE (2.5) of the system (1.3) with u replaced by ul and the normal n of the characteristic

surface replaced by the normal N of the shock front. We can give a similar interpretation

for the equation Qr := St +
lrB

(α)(ur)rl
lrA(ur)rr

Sxα = 0 or St + (χα)rSxα = 0.

Since the velocity with components lB(α)r
lAr

of a nonlinear wavefront does satisfy the

consistency condition (2.6), the sum llB
(α)(ul)rl

llA(ul)rl
+

lrB
(α)(ur)rr

lrA(ur)rr
gives components of a velocity

which also satisfies it with n replaced by N and does qualify to be a ray velocity. Now we

deduce from (3.10) that

dXα

dt
:=

(

dxα

dt

)

shock

=
1

2
{(χα)l + (χα)r} , (3.11)

where X(t) is the position of the shock at time t . Since ul and N appear in (χα)l in place

of u and n, (χα)l is the ray velocity of the the system (1.4) for a nonlinear wavefront just

on the left of the shock, provided we take the wavefront to be instantaneously coincident

with the shock front. A similar interpretation follows for (χα)r. This equation proves the

first part of Theorem 3.1. The shock ray velocity dX
dt

is the mean of the ray velocities of

nonlinear wavefronts just ahead and just behind the shock and instantaneously coincident

with it.

We now give a derivation the second part of Theorem 3.1, namely

dNα

dt
=

1

2
{(ψα)l + (ψα)r} , (3.12)

where (ψα)l and (ψα)r can be defined as (χα)l and (χα)r above. More explicitly (ψα)l is

the expression ψα in (2.7) with u and n replaced by ul and N respectively and represents

the rate of turning of a nonlinear wavefront just behind the shock and coincident with it.

A similar interpretation follows for (ψα)r. The proof is very simple and follows from the

second part of the ray equations of SME (3.10) as (2.7) follows from (2.5).
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The expressions for (ψα)l and (ψα)r, contain operators
(

∂
∂ηα

β

)

shock
. We note that the

operators d
dt

in (3.11) and (3.12) and
(

∂
∂ηα

β

)

shock
appearing in (ψα)l and (ψα)r have

explicit expressions:

(

d

dt

)

shock

=
∂

∂t
+

(

1

2
{(χα)l + (χα)r}

)

∂

∂xα

,

(

∂

∂ηα
β

)

shock

= Nβ

∂

∂xα

− Nα

∂

∂xβ

. (3.13)

�

4. Conclusion

Theorem 3.1 is for a curved weak shock in a k-th characteristic field. The theorem does

not assume that the nonlinear waves on the two sides of the shock are of small amplitude.

We have presented a very clear and complete proof of the theorem.

The problem of computing successive positions of a curved shock is extremely difficult.

A particular case of the theorem derived for Euler equations of a polytropic gas for small

amplitude nonlinear waves has been extensively used by us in many papers. By the use of

the theorem we avoided difficult calculations of the expressions for dXα

dt
shock and dNα

dt
as seen in [8], where we could work out only in two space dimensions.

As mentioned in the previous paragraph, only a particular case of the theorem has been

used when the nonlinear waves on the two sides are of small amplitude. But weak shocks

also appear in a solution which is not a small amplitude perturbation on a given solution.

Therefore, it is worthwhile using the theorem for tracing a curved weak shock fitted in

nonlinear waves, which are not of small amplitude. One suggestion is to develop a hybrid

numerical scheme for a hyperbolic system of conservation laws in which the weak shock

is automatically fitted in the numerical solution with the help of this theorem. Weak shocks

are diffused and hence tracing them is difficult in a numerical computation. Use of the

theorem in a hybrid numerical scheme will give a sharp position and clear geometry of a

weak shock.
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