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ABSTRACT

Rapid eye movement sleep (REMS) loss affects most of the physiological processes, and
it has been proposed that REMS maintains normal physiological processes. Changes in
cultural, social, personal traits and life-style severely affect the amount and pattern of sleep,
including REMS, which then manifests symptoms in animals, including humans. The effects
may vary from simple fatigue and irritability to severe patho-physiological and behavioral
deficits such as cognitive and behavioral dysfunctions. It has been a challenge to identify a
molecule(s) that may have a potential for treating REMS loss-associated symptoms, which
are very diverse. For decades, the critical role of locus coeruleus neurons in regulating REMS
has been known, which has further been supported by the fact that the noradrenalin (NA)
level is elevated in the brain after REMS loss. In this review, we have collected evidence
from the published literature, including those from this laboratory, and argue that factors that
affect REMS and vice versa modulate the level of a common molecule, the NA. Further, NA
is known to affect the physiological processes affected by REMS loss. Therefore, we propose
that modulation of the level of NA in the brain may be targeted for treating REMS loss-related
symptoms. Further, we also argue that among the various ways to affect the release of NA-
level, targeting o, adrenoceptor autoreceptor on the pre-synaptic terminal may be the better
option for ameliorating REMS loss-associated symptoms.
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Key Messages: Elevated level of NA in the brain is a key molecule that induces REMS loss-associated symptoms.
Modulation of presynaptic o.,-adrenoceptors, which are autoreceptors, is a better target and option to counter the
elevated level of NA as a treatment of REMS loss-associated symptoms.

INTRODUCTION as compared with waking, during REMS

the EEG and EOG apparently resemble
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Rapid eye movement sleep (REMS) is a
unique behavioral phenomenon and is an
integral component of sleep. Different
states of sleep and wakefulness have been
objectively identified by the simultaneous
presence or absence of associated classical
electrophysiological signals recorded from
the brain, the electroencephalogram (EEG),
eye movements, the electrooculogram
(EOG) and muscle tone and the
electromyogram (EMG). REMS is
classically and objectively identified and
quantified by desynchronized EEG, atonia
in the antigravity muscles, rapid eye
movements and appearance of ponto-
geniculo occipital (PGO) waves. Thus,

that associated with waking, while EMG
shows an opposite expression. Therefore,
this sleep state has also been referred to
as “active sleep” or “paradoxical sleep” or
“desynchronized skeep.” Further, as this stage
is often associated with dreaming, this stage
has been termed as dream state of sleep,
although it is known that sometimes dream
may appear during non-REMS as well. The
REMS has been identified in almost all the
higher species in evolution recorded so
far, including humans.!"” To this effect, we
reiterate our argument that as one of the
primary characteristic features to identify
REMS is the recording from the brain the
EEG signals, consequently this stage of
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sleep has been identified in species higher in evolution
possessing developed and evolved brain. As a corollary, it
is also obvious that because of a lack of fundamental bio-
molecular markers, it is yet to be confirmed if this stage
is present, may be even in a rudimentary form in other
lower species.

The quantity of REMS varies among species; it is affected
by life-style changes and under various psycho-somato-
patho-physio-logical altered conditions.! Under normal
conditions, the quantum of REMS reduces with ageing;
however, normally, this stage is never absent through
life.> The essentiality of REMS to maintain normal
life processes may be supported by the fact that it is
not under voluntary control, it is affected in almost all
disorders, its loss is followed by a compensatory rebound
increase during the post-deprivation recovery period,
its prolonged loss may be fatal and, finally, its basic
regulatory mechanism lies at the core of the brainstem
as that of controlling other absolutely essential functions
for living, e.g. heart rate, respiration, blood pressure and
sleep-waking, which, however, may be modulated by
other factors.

Involvement of noradrenaline (NA) in REMS-loss
associated symptoms

REMS loss is often associated with expressions of a
number of specific and nonspecific symptoms, many of
which may or may be apparently unrelated. Although it
may be difficult to associate REMS loss as an exclusive
cause or effect of a disorder, we propose that in the case
of REMS disturbance (directly or indirectly as a cause
or an effect), the neural mechanism regulating it must
be affected. Therefore, targeting a common factor, if
any, which is known to be essentially expressed during
REMS as well as under conditions of REMS loss, may
be targeted to help the sufferer. Altered REMS is one of
the common symptoms associated with many disordered
states, including hypertension,” hyperglycemia, hyper-
excitability,®” lack of concentration, memory loss,!"’
Alzheimer’s disease,'"!?l Parkinson’s disease!"®l and
depression.!" The level of NA is altered in most of
these altered states (dysfunctions) and, interestingly, NA
is elevated after REMS loss as well.l"l By and large, NA is
at least an important common causative factor inducing
many of the REMS deprivation (REMSD)-associated
symptoms, including neuronal cytomorphometry,!'*'®
apoptosis in brain neurons,!'” increased Na—K ATPase
activity®! and thermoregulatory changes®! that were
prevented by adrenoceptor (AR) antagonists.” Therefore,
we propose that targeting mechanisms(s) that maintain
the NA level in the brain could be a possible way to
address treatment of REMS loss-associated symptoms.
However, before we proceed to justify in support of our

proposition, what role NA plays in REMS regulation
needs to be evaluated.

Neural regulation of REMS and its relation with
brain level of NA

REMS has a well-regulated cyclic appearance; at least
in humans, its frequency and duration per episode
increases with the depth of sleep.l! Lesion, transection
and stimulation studies have shown that neurons located
in the brainstem are its primary regulators, while neurons
in other brain regions modulate REMS by influencing
these primary regulators.”” On the basis of temporal
correlation of firing rate of neurons during REMS,
neurons have been classified as REM-ON (those are active
during REMS) or REM-OFF (those are silent during
REMS).” It is classically known that REM-ON neurons
are presumably ACh-ergic and are concentrated largely
within the latero-dorsal tegmentum/pedunculo-pontine
tegmentum (LDT/PPT), while the REM-OFF neurons
are NA-ergic and largely located in the locus coeruleus
(LC).) It is important to note that some neurons in
other parts of the brain have also been found to behave
phenotypically as REM-OFF and REM-ON neurons;
however, they have not been studied as extensively as
those in L.C and LDT/PPT. The LDT/PPT and LC
neurons have reciprocal projections,”**”! which could
be a direct connection or through GABA-ergic,?¥
glutamatergic or glycinergic®! interneurons. Additionally,
these REMS-related neurons receive projections from
widespread areas in the brain, including those involved
in regulating sleep and waking (reviewed in*). Thus, it is
evident that modulation of the activity of REMS-related
neurons would be complex and so will be the regulation
of REMS.

In an attempt to explain the neural regulation of REMS,
based on single neuronal recording in freely moving
normally behaving animals in isolated experiments, a simple
model based on the Lotka-Volterra principle explaining the
reciprocal interaction between REM-ON and REM-OFF
neurons was proposed.’™!'The temporal relationship
of reciprocal behavior of the REM-ON and REM-OFF
neurons was confirmed by simultaneous recording of a pair
of REM-ON and REM-OFF neuronal activities, along with
waking—non-REMS (NREMS) and REMS in chronically
prepared freely moving normally behaving cats.***"
Subsequent extensive systematic zz vivo and in vitro studies
during the past two decades have confirmed the role of
GABA-terminals and GABA-interneurons acting pre- and
postsynaptically on REMS-related neurons**Y for REMS
regulation. These findings have been consolidated recently
and a working model that activation of a de-activation
process is responsible for REMS initiation and regulation
has been proposed.!
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Figure 1: Noradrenalin (NA) concentration at the synapse is ultimately responsible for manifesting its effect. Its action is mediated by NA-level and its action on the
postsynaptic adrenoceptors (ARs). However, the level of NA at the synapse is modulated by changes in either or combination of some or all of the following factors:
(i) firing rate of NA-ergic neurons and (i) changes in (a) TH activity, (b) NA transporter activity, (c) MAO activity and (d) number of :2-ARs and their activation of the
NA-ergic neurons. Left panel (A) represents that if any one sub-type of receptor (e.g., by antagonist of o.1-ARs as shown here) is blocked, relatively more NA becomes
available to act on other sub-types of ARs, which may then express nonspecific side-effects (symptom). Although as an example we have shown that by blocking o:1-
ARs, a similar effect may be evident by blocking any other one type or combination of ARs types Right panel (B) represents action of NA on the pre-synaptic o.2-ARs

(autoreceptors) and thus modulating the release of NA

Factors affecting LC-NA-ergic neurons modulate
REMS and may induce REMS loss-related
symptoms

The REMS is a multifactorial complex phenomenon; its
regulation is also likely to be multi-dimensional. The role
of many neurotransmitters and neuropeptides directly
or indirectly have been implicated in the regulation of
REMS.P>*IThe LC is the primary site of NA-etgic neurons
in the brain.’” These neurons normally cease activity during
REMS;P# howevet, they do not cease activity during
REMSD.* On the other hand, if the LC-NA-ergic neurons
were kept active for a short- or long-term by electrical
stimulation* or by preventing GABA-ergic inhibitory
input to act on them!®! or by increasing the Na—IK ATPase
activity on the LC neurons,* REMS was reduced. Many
factors that modulate REMS have been shown or proposed to
mediate their action by modulating I.C neurons. For example,
normally, REMS does not appear during waking because
wake—activel® areas including orexinergic perifornical
area (PeF)** activate, while the NREMS-areas!*! in the
brain inhibit*! the neurons in L.C, the site of LC-REM-
OFF neurons. Further, neuronal activity is modulated by
microinjection of neurotransmitter agonist and antagonist
into the LC-altered REMS.*> As the decrease in REMS is
due to increased excitation and sustained activity of the LC—
REM-OFF NA-ergic neurons, it is imperative that the later
would elevate the NA level in the brain during REMSD and
vice versa. Also, after REMSD, as tyrosine hydroxylase (TH)

is increased and monoamine oxidase (MAO) is decreased,
there would be increased NA in the brain.P"> The possible
mechanism of REMSD-associated elevated synaptic NA
level at NA-ergic synapses and the brain at large is shown
in Figure 1. Thus, in principle, either by modulating LC—
NA-ergic neuronal activity, which in turn would control the
quantity of NA-release, or by preventing the action of the
elevated NA on potential target(s), REMS loss-associated
symptoms may be ameliorated.

Modulation of effect of NA in the brain: A
possible therapeutic approach to ameliorate
REMS loss-associated symptoms

Normally cessation of NA-ergic REM-OFF neuronal
activity is a prerequisite condition for generation and
maintenance of REMS.FY If they do not cease activity,
REMS does not appear and as a result of noncessation (i.e.,
continuation of activity) of LC neurons, there is likely to be
elevated level of NA in the brain. This elevated NA in the
brain in turn has been reported to induce many, if not most,
of the REMS loss-associated symptoms.'c1"1">> These
propositions may be supported by the fact that many of
the diseases associated with REMS lossP® show an elevated
level of NA or express symptoms that could be due to
elevated level of NA.P) Therefore, effective neutralization
of the action of released NA, particularly at the site of its
release/action, could be a natural and preferred choice of
therapeutic intervention to counter the REMS loss-induced
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effects and associated symptoms. This could be achieved

by either or combination of the following:

(i) Blocking the postsynaptic AR to prevent the action of
NA;

(i) By elevating the level of monoamine oxidase that
breaks down the released NA;

(iii) By increasing the NA-transporter and reducing the
effective concentration of NA at the synaptic sites;

(iv) By modulating the synthesis and release of NA;

(v) By influencing inputs on the LC-NA-ergic neurons
thereby altering their activities and release of NA; or

(vi) By targeting the presynaptic ARs at the NA-ergic
terminal and thus modulating the release of NA

Various possibilities targeting the release of NA at the
terminal, along with their advantages and disadvantages,
have been discussed in the following sections considering
each one of them as a potential therapeutic approach for
the treatment of REMSD-associated symptoms.

NA-ergic AR

NA acts through ARs that belong to G-protein-coupled
receptor and may give rise to a variety of responses. There are
mainly three subtypes of ARs: ., o, and B-ARs; they share
a high degree of amino acid homology, especially within the
ligand binding pockets around the transmembrane regions.™”
Ligand-binding residues confer subtype-specific selectivity
to a particular receptor. 0.,-ARs are further sub-classified
as o, o, and o types and are coupled to the Gq/11
family.*"l Stimulation of these o, ARs recruits signaling
pathways involving activation of phospholipase C, D, A2
and MAP kinases and, subsequently, modulate transcriptional
activation of early and late response genes. For example, it
has been reported to affect the expression and activation of
Ca?* channels, Na"/H" exchangers and K* channels, /"
which in turn are reported to modulate neuronal functions.
At least in neurons, NA has been reported to close L-type
Ca’*channels by acting on o,-AR.%I

The subtypes of B-ARs, viz. B, B, and B,, activate
effectors by coupling to G_or G, molecules in a time-
and dose-dependent manner.ls Although the action
of NA on different types of cells might not have been
studied, at least in cardiomyocytes, stimulation of B-AR
by nonselective agonist results in G -mediated enhanced
cAMP generation and activation of the related downstream
events. The B-AR-mediated effects enhance contractility
of the cardiac muscles cither by one or in combination
with increasing Ca** influx through L-type Ca®* channels,
increased reuptake of Ca** by disinhibition of sarcoplasmic
reticular Ca®"-ATPase and modulation of myofilament Ca**
sensitivity."” %! The B,-ARs can also couple to G, protein

to inhibit the downstream effectors.%7?

The 0. -AR family has o, , o, and o, receptor subtypes,
and they are encoded by three distinct genes. The o,-AR
couples to the G, subunit and is involved in the modulation
(usually inhibition) of NA release.”™ Activation of G,
leads to inhibition of adenylate cyclase, which results in
decreased cAMP generation. Coupling to several other
signaling pathways has also been reported upon activation
of 0,-ARs for modulation of neurotransmitter functions.
These include activation of K* channels, inhibition of Ca**
channels, activation of Na*/H"antiporter, mobilization of
intracellular Ca®" and activation of the mitogen-activated
protein kinase (MAPK) cascade.>"”

Targeting the postsynaptic o -ARs

o,-ARs are distributed on the neurons throughout the
brain, including those in the areas responsible for REMS
regulation as such as well as on neurons responsible for
functions related to REMS. Presence of o -ARs on the
wake—active neurons in the pedunculo-pontine tegmentum
(PPT)"™ and on thermosensitive neurons in the preoptic
area” have been reported, which in principle may mediate
REMSD-associated changes in brain functions. o,-AR
antagonists like prazosin (PRZ) have been widely used
in the treatment of sleep (including REMS) disturbance,
hypertension, posttraumatic stress disorder (PTSD) and
anxiety.™! Methoxamine, an o -AR agonist, increased
wakefulness while decreasing NREMS and REMS, !
which was reversed by PRZ. In stress-sensitive WKY
(Wistar Kyoto) rats, REMS was fragmented by electric
shock, and this was prevented by PRZ.* Similatly, in lower
vertebrate model using zebrafish, PRZ treatment reduced
the effect of sleep deprivation on anxiety.™ REMSD
caused many changes, including cellular morphology and
biochemical parameters, and molecular expressions of
Na—K ATPase have been shown to recover by treatment
with PRZ.I"57#48] These studies support that blocking
o,-AR activation could reduce the REMS loss-associated
symptoms. Mignot ez a/.* investigated the role of central
o,-ARs in cataplexy in genetically modified narcoleptic
Doberman pinschers. Treatment of narcoleptic dogs
with PRZ exacerbated cataplexy, whereas treatment
with o -agonist, methoxamine, ameliorated it. However,
there are a few conflicting reports as well. For example,
oral administration of PRZ shortened quiet waking and
REMS but increased active waking and slow wave sleep,®”
whereas other 0 -AR antagonists, thymoxamine and
mesoridazine increased REMS in humans.®¥¥1'Thus, the
conditions induced by sleep loss, including REMS-loss,
were rescued/recovered by activating/deactivating (as
the case may be) the o -ARs supporting our contention.
These findings suggest that if NA was prevented to act
on 0 -ARs, REMS was increased and the REMS loss-
associated symptoms were decreased.
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Targeting postsynaptic 3-AR

Improvement in sleep disturbance-associated mood disorder,
severe depression and sleep apnea have been reported by
treatment with 3-AR blockers in both animals and humans.
P94 Also, REMSD-associated aggressiveness has been
suggested to be mediated by NA acting on B-AR.”! B-agonist,
isoprotetenol, suppressed while B-antagonist, propranolol,
consistently enhanced REMS episodes.”! Although the
amelioration of REMS loss-associated symptoms could
be due to improved REMS, their causal and temporal
relationship need validation. Microinjection of isoproterenol
into the medial septal region of the basal forebrain
significantly increased the time spent in wakefulness, while
there was a near-complete suppression of REMS.”” Based
on these findings, it has been postulated that NA released
from the LC REM-OFF neurons acts on 3-ARs present on
REM-ON neurons and inhibits those preventing REMS
generation.’” As a corollary, it has been suggested that
B-blockers would withdraw the NA-induced inhibition of
the REM-ON neurons and facilitate their activation, leading
to the generation of REMS; however, there are differences
in specificity of chemicals acting on receptors. For example,
Kostis and Rosen (1987)" reported that hydrophilic
-blocker (e.g;, atenolol) do not affect sleep, while lipophilic
B-blocker (e.g., pindolol) disturbs sleep continuity. Similarly, in
another study, 3-AR blockers, acebutolol and metoprolol, did
not show any effect on sleep pattern.” Acute administration
of fB,-AR agonist, C1.316243 reduced while its prolonged
treatment did not affect REMS."")

Thus, although it has been well established that the
adrenergic system plays a significant role in REMS
regulation, the precise mechanism of how it (B-blockers in
particular) mediates the action needs further study. It may
be noted that these drugs are widely used in cases of cardiac
arrhythmias and hypertension; however, their associated
undesirable side-effects of sleep disturbances and insomnia
limits their use.""! Hence, it is important to understand the
use of these chemicals as drugs possibly after classitying
patients so that these drugs may be used in combination
with other molecules to reduce the side-effects. In addition
to the application of agonist and antagonist mentioned
above, molecules activating reuptake and/or breakdown
of NA by MAO-A [Figure 1] at the synaptic terminal also
have been used in the treatment of sleep disturbances.!""*'")
In this strategy also, ultimately, the effective level of NA
at the synaptic cleft is altered.

Targeting the release of NA

Like any other neurotransmitter, NA is released from
the presynaptic terminals and it acts on the pre- and
postsynaptic receptors for inducing its action. Thus, all
other conditions remaining unchanged, the quantity of
NA at the synaptic site decides its effect on expressing

a behavior. We have discussed above how the effects of
the released NA (due to loss of REMS) could be reduced
by directly inactivating (NA degradation or re-uptake) the
released NA or by preventing the released NA to act on
the postsynaptic receptors. Another option of modulating
the action of a neurotransmitter at the synaptic site is to
modulate the release of neurotransmitter per se (NA at this
instance) from the presynaptic site, which has also been
used in treatment as well as in research.!">107

Here, we propose that manipulation of auto-regulatory
mechanism of release of neurotransmitter than
preventing the action of already released NA possibly
would be a better option to maintain the effective level of
NA at the synaptic site. This is because use of antagonist
of one subtype of AR, although preventing the action of
NA on such receptor subtypes, the already released NA
remains ot becomes available to act on other subtypes of
ARs leading to added complications. This is because, for
example, under normal conditions, the released quantity
of NA will be such that it acts on an optimum number of
one or more subtypes of ARs to geta function expressed
at an optimum level. However, if a subtype of AR is
blocked by its antagonist, the equilibrium of the ligand
(NA in this case) to subtypes of receptor (ARs in this
instance) would shift and, although a function may get
modulated, possibly toward a desired level, other functions
may get affected or get biased, expressing undesirable
side-effects possibly as compensatory effect(s). This
could be due to various reasons including overcoming the
threshold of activation of another subtype of ARs, which
was not significantly affected under normal condition,
under the condition of blocking of one subtype of AR.
After blocking one subtype of AR, the available NA
might reach the threshold of activation of one or more
of other subtypes of ARs expressing undesirable side-
effects. This view may be supported by the fact that NA
acting on different subtypes of ARs in the same brain
area, viz. preoptic area, modulates sleeping-, waking- and
thermo-regulation."” The literature on experimental as
well as clinical practices mentions many such side-effects
or associated phenomena that are often ignored due
to lack of recorded consistent effects. Although in all
cases we do not know the cause and effect relationship,
our reasoning offers explanation for the same, which is
justifiable and testable. Hence, we propose that in order to
target REMS loss-associated induced symptoms, a more
effective strategy could be to target modulation of the
release of NA itself. However, the limitation is how to
design site-specific moderation of release of NA.

Targeting the presynaptic o2 auto receptors
There are many examples where patho-physiologial
processes have been reported to be modulated by targeting
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the 0 -ARs. Initially, it was believed that 0. -ARs are present
exclusively on the presynaptic site; however, recent reports
suggest that in addition to the presynaptic site, they are
present on the postsynaptic site as well.’ The unique
property of 0 -AR being present on the presynaptic site
is that excess NA at the terminal (synaptic cleft) activates
these 0,-ARs, preventing further release of NA; thus, the
level of NA is auto-regulated at the terminal. The released
NA inhibits the influx of calcium ions and thereby prevents
further release of NA.I'"I As there are collateral feedback
inputs on the NA-ergic neurons in the LC,""" it is likely that
the collateral inputs on to itself and rhythmic release of NA
due to auto-regulation of NA maintains the rhythmic firing
of the LC-REM-OFF neurons and prevents appearance
of REMS, especially during waking, -1l

The o,-AR agonist, clonidine, has often been used as the
treatment to reduce NA release. For example, clonidine
and its analogue has been used in treating patient suffering
from Crisponi syndrome.""” In humans, a lower dose
of clonidine increased while a higher dose decreased
REMS.'"Y The findings suggested that before assigning a
therapeutic role to an agent, its dose, time and secondary
or associated physiological impact should be evaluated.
Dexmedetomidine, a more selective o, -AR agonist than
clonidine, has been reported to decrease sleep and reduce
c-Fos expression in the LC neurons."™ The spindles
observed under sedation with dexmedetomidine are
qualitatively similar to those during natural sleep. However,
it has associated problems, e.g. it works even when NA
level is severely depleted by various other agents like
reserpine and DSP-4.""1 Yohimbine (3 mg/kg), an o, -
AR antagonist, augmented waking and reduced sleep.!"
Activation of o, ARs in and around L.C reduced NA release
and, consequently, reduced NA-mediated effects in the
central nervous system.!'"”""¥ o -ARs have been shown
to be involved in REMS-associated thermoregulatory
responses.!'"”! REMSD-induced increased NA was
responsible for impairment in learning and memory in
rats, which was significantly improved by treating with
o,-AR agonists.!'*

Proposed model for the treatment of REMSD-
associated symptoms

In the brain, the L.C is the primary site of NA-ergic neurons.
As these neurons project throughout the brain and are
responsible for most of NA in the brain, alterations in the
activity of these LC-NA-ergic neurons ultimately modulate
the level of NA in the brain. These neurons normally cease
firing during REMS; however, they do not stop firing upon
REMSD. Therefore, during REMS, although normally NA
is washed-off from the NA-ergic projected sites, up on
REMSD those sites have an increased level of NA. The LC

neuronal activities are affected by the inputs they receive from
within the brain as well as from the periphery; also, they are
influenced by many other physico-chemical factors. Thus, it
is understandable that the REMS is affected by wide varieties
of inputs originating from within or from external inputs
and, upon REMS disturbance, there will be changes in the
level of NA in different parts of the brain. This explanation
supports the observation that REMS is affected (may be
even secondarily) in almost all altered states, e.g. acute fever
to chronic and complex psycho-somatic disorders.

Although until now we do not know the exact details, REMS
disturbance appears to be a primary cause of many acute to
chronic disorders and, depending on the specific neurons
that are affected and their projections in the brain, the level
of NA would be modulated. This altered NA level would
then modulate the physiological activities, which then get
expressed as REMSD-associated symptoms. In other case(s)
where the level of NA in the brain is elevated as a primary
cause, the REMS-loss may be induced as a secondary effect
and the associated pathological symptoms are expressed
depending on the susceptibility of the neurons affected and
their projections where the NA level is increased. Further, as
most NA in the brain is released from the L.C neurons, which
is generally of the REM-OFF type, the REMS s also affected
as a secondary/associated effect/response. Itis possible that
initial change in the level of NA due to REMS-loss could be
a compensatory effect, which is often beneficial. However,
if the loss is continued, it leads to chronic disorder and the
mechanism needs to be understood in detail.

Based on the arguments given above, we propose that
diseases associated with REMS loss need to be treated
by a combination of factor(s), 0.-ARs agonist, which
would reduce the release of NA along with agonist or
antagonist of such receptor, which presumably is the
primary cause of modulating the LC neurons. It may be
a tough call on how to decide on the latter; however, we
think that it could be done symptomatically on the basis
of expressed symptoms. Although apparently it may be
difficult to conceive at present, at least it may be said with
certainty that all sleep/REMS disorder patient cannot be
treated in the same manner (by the same drug) and, if this
is done, including due to self-medication, it would create
more complications as is often experienced; however,
which might not have been reported as frequently due to
a lack of consistent expression of symptoms. Finally, we
propose that modulation of NA-release is likely to be the
desirable treatment for REMS loss-associated symptoms.
This may be achieved by modulating the firing rate of the
LC-NA-ergic neurons in combination with or without
independently modulating the presynaptic o,-ARs;
however, the challenge is to design such a targeted delivery
system to be used as a therapy.
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Basic principle of such targeted drug delivery
system as a proof of principle

As discussed above, in principle, delivery of o -AR agonist
to a desired site is the likely solution. However, the challenge
is how to deliver the drug to a desired target, e.g. where the
NA-ergic inputs are on the postsynaptic neurons possessing
specific subtypes of receptors (cholinergic, GABA-ergic, etc.
for instance). Subject to experimental verification, we suggest
(propose) that the desired 0. -AR agonist could be packaged
in liposomes having affinity for the target site where the drug
(the cargo) needs to be delivered; the affinity of the designed
molecules on the liposomes could be made of various
combinations. Once such designed liposomes (the vehicles) are
targeted at specific sites, the drug (the cargo) will be delivered
at the desired site; the vehicle may be designed as per need.

CONCLUSION

REMS is a complex behavioral phenomenon and its loss
affects various psycho—patho-physio-logical processes. NA
level is elevated in the brain upon REMS-loss, which has been
reported to be responsible for inducing several REMS loss-
associated symptoms. We propose that reduction of NA-
release either by modulating the NA-ergic neuronal firing
rate alone or in combination with activating the presynaptic
0.,-ARs is likely to be preferred and promising strategies
for treating REMS loss-associated symptoms. Subject to
confirmation, as a proof of principle, we have also proposed
a possible approach for targeted drug delivery.
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