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Susceptibility and magnetisaﬁon of a random Ising model*
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Abstract. The susceptibility of a bond disordered Ising model is calculated by con-
figurationally averaging an Ornstein-Zernike type of equation for the two spin correla-
tion function. The equation for the correlation function is derived using a diagram-
matic method due to Englert. The averaging is performed using bond CPA. The

magnetisation is also calculated by averaging in a similar manner a linearised molecular
field equation.
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1. Introduction

Recently, considerable attention, both theoretical as well as experimental, has been
given to the study of thermodynamic properties of magnetic alloys (Montgomery
et al 1969; Oguchi and Obokata 1969; Lagendijk and Huiskamp 1972; Breed et al
1973). Experimental studies on several systems have indicated that the data can be
quite successfully interpreted in terms of disordered Heisenberg and Ising models.
Lagendijk and Huiskamp (1972) have obtained good agreement of their data on
specific heat and susceptibility of CO,Zn,_, Cs;Cl; with theoretical considerations
based on Ising antiferomagnet. Breed ef al (1973), who have made measurements on,
KMn,Mg,_, F,, KsMn,Mg,_. F, and Ky,Co.Mg,_, F,, find again that their data on
specific heat and susceptibility can be well interpreted in terms of a diluted antiferro-
magnetic Heisenberg model. The theoretical approximation employed in the above
cases is the two spin cluster theory of Ougchi and Obokata (1969) or similar generalisa-
tions of the constant coupling method (Bhargava and Kumar 1976).

Given the fact that there exist magnetic systems which correspond closely to the
idealised models it is of obvious interest to improve theoretical approximations
to see if the comparison between the experiments and theortical predictions is indeed
justified. Further, there exists a class of experiments like elastic neutron, scattering,
which measure wave vector dependent properties. Such properties provide even
more detailed tests of the theoretical features of the model. For calculation of
wavevector dependent properties one has to go beyond the cluster approximations
employed for calculation of free energy and other bulk thermodynamic quantities.

*Part of the work was done, while one of the authors (DK) was visiting International Centre for
Theoretical Physics, Trieste, Ttaly.
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The purpose of this paper is to present a calculation of the two site spin correlation
function and hence the wavevector dependent susceptibility. We have also employed
our method to calculate magnetisation for the Ising model in a new approximation,
Our calculation is based on the recently developed techniques of multiple scattering
theory (see Elliot ez al 1974 for review). Here we first derive an Ornstein-Zernike
type of equation for the two site correlation function in the random system using the
diagrammatic procedure of Englert (1963). The approximation involved in the
above derivation is the well known random phase approximation or the high density
approximation of Brout (1965). This equation being linear in correlation function
can be cast in the same form as the Green’s function equation of motion for a particle

propagating in the random potential. On comparing the RPA equation with. the

particle problem we find that the randomness occurs in the off-

diagonal matrix
elements,

which in the Ising problem are simply the direct correlation functions
BJiy’s. The energy-like parameter of the corresponding particle problem is simply
unity (in appropriate units), while the potential depends upon temperature. The
configuration averaging is performed using a ‘ bond CPA ’ type approximation. This
gives us the averaged correlation functions and susceptibility. Some earlier workers
workers (Montgomery et a/ 1969, Tahir-Kheli 1972, Harris et al 1974) have discussed

random Heisenberg model in spin wave approximation. The single spin wave prob-

lem corresponds exactly to the particle problem and the use of multiple scattering

formalism is quite straightforward there. The spin-wave theory is valid only at low
temperatures, whereas the work described

here is valid at temperatures above Curie
temperature,
The random phase ap

proximation employed here has an obvious disadvantage.
For the pure system,

> pu its predictions for the thermodynamic quantities like uniform
susoepubﬂ?ty and Curie temperature are same as those of molecular field theory.
For the disordered system too, we find that our results for the above mentioned

quantities are not too far from the predictions of molecular field theory. It should,
however, be noted that the

wave-vector dependent generalisations of molecular field
theory for the disordered System are not as straightforward as they are for ordered
syst_ems. The reason is that the disordered systems are inhomogeneous and the
varlous operators are not diagonal in the g-space, as they are for the ordered systems.
For ﬂ_llS Teason, the linear RPA equation prove the most suitable one. The RPA
tquation and its generalisations have much theoretical value and have given a good
qualitative account of the neutron scattering experiments. It, thus, seems worthwhile
to ;ee the pl‘ed%ctions of such an approach for the disordered systems.

&Onoi.:jlﬁ?hng. the averaged magnetisation, we linearise the molecular field equa-
avera ‘gnetisation, The hnea}nsed equation can again be configurationally
camga? using ﬂ_le Gre.en’s function method mentioned above. Unlike earlier
fact ihmog; g:;;ﬁf;h 1972), our approximation takes explicit account of the
mation is ot expected £ ;)?) in a_dxsordered System is inhom ogeneous. Ou‘r approxi-
cular field eq ] ¢ valid near Curie temperature, where the linearised mole-

uation fails in an obvious

We s ‘ X way. .

the abt:wu:y némﬁdm?x? ¥der Problem, which is not really appropriate to discuss
cribed as site-disor, Thr1a¥s, as disorder in these materials is more properly des-
treat, as the imlmrity‘ po t:ni‘liz disorder problem is mathematically more difficult to
. T extends to ; . .
vrdination number of the lattice, at least Z+1 sites, where Z is the co

The method described here can be generalized to
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deal with this more complex problem by using the cluster generalizations of single
bond CPA. Such a project is not undertaken here, as we intend to use a more
realistic Hamiltonian for this problem.

2. Calculation of susceptibility

We consider a random I sing model defined by the Hamiltonian
H=— 2 J,00) o))

) ‘ )]
where o’s are the spin variables taking values - 1 the sum {ij) is over all the nearest
neighbour sites, and the exchange integrals are taken to be random variables. Our
explicit calculations are done for the following probability distribution : Jiy=J, with
probability x and J,;=J, with probability 1—x. ,
We are interested in, calculating the spin-correlation function C;; defined as
Ciy = o () ¢ (). . )
This calculation will be performed by deriving an Ornstein-Zernike type equation for
the correlation function. This equation for the random system may be derived using
the diagrammatic method developed by Englert (1963). Referring the reader to the
paper of Englert for terminology and proofs, we have merely outlined the procedure.
To calculate the correlation function Cy;» we draw all possible linked, irreducible
graphs joining the points i and J. This means that the graphs have no disconnected
parts and there are no vertices where the graph can be split into different pieces by a
line passing through a vertex that does not cut any bond. The rules for calculating
the contribution of these graphs are: (i) to each line i— J» we attribute a factor gJ, s |
(i) to each vertex, we attribute a renormalised semi-invariant M, (i), where » is the ?
number of lines arriving at the vertex, (iii) we divide each graph by an appropriate
symmetry factor and finally (iv) we sum over all the internal sites. The renormalised H
semi-invariants are obtained as follows :’

M(i) = exp [ z ) 2?] M2 (%) 3

x=0
where

n
MO(x) = fi-_ In cosh x (C))
xn
and Gy(i) are the renormalized self-energy parts terminating with %-lines. The
typical diagrams for the correlation functions and self-energy parts are shown in
figures 1 and 2.

! )

i
(la) (ib) {ic)

Figure 1. Some diagrams for the correlation function C;;. (1a) irreducible, (Ib) reduci-
ble at vertex k and (Ic) reducible at vertices k& and /.
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Figure 2. Some typical diagrams for self-energy parts Gy, G,'%, and G;'®. Gy is
obtained by renormalising the vertices occurring in diagrams of G,.°.

Following Brout (1965), we make the high density approximation of retaining onl.y
those diagrams in which the two sites 7 and f are connected by only one path. This
approximation gives the leading order terms in the parameter Z-1 where.Z denotffs
the number of sites connected by Ji;. For the homogenous Ising model, this approxi-
mation is equivalent to the RPA approximation. Furthermore, we renormalise the

semi-invariant at each vertex by first order self-energy G,. In this approximation we
have

Cu=MaOM()-+BI Mo DM)+5 5 Ty MoDMAPIM())
B 2 Ty oy MDD M YU @M ) . ®)

where the prime on summation implies that the internal sites p, g, etc. occur just once

in these terms. The corresponding diagrams are shown in figure 1. The semi-
invariants M; and M, are given as

My(i)=tanh [ 2 J,My(j)] ©)
J
and
My(D) =1-M,2(). M
We now define a more convenient variable gy as
_ Cu—M0OWM() ) (8)
M. (/)

In terms of g,;, we can write eq. (5) as

&1y

8u=PJ 1 Mai)+B2 %' M2(i)JIpM2(p)Jpj+ . )]

This is a simple iterative equation except for the summation restrictions. We can

convert it into an approximate integral equation, if we either ignore the summation

restrictions altogether and multiply the kernel by K/Z, where K is the connectivity
constant of the lattice,

K* gives approximately the number of self-avoiding walks
of n steps, for large values of n. Thus we write

gu""u*%““f Vip8p;

(10)
where vi;=BM,(i)J,,, and a=K|Z. For the pure system, this procedure leads to the
familiar random phase approximation—when we put e=1. The use of a, improves
slightly the value of the critical temperature. It should be mentioned further that
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this procedure is consistent to the leading order in Z-1. Equation (10) can be brought
into a more suitable form by defining

G=[l—av]? (11)
where we have used an obvious matrix notation. Then
g=Gv (12)

If we split v into a translationally invariant part and a random perturbation as
aVij‘—‘—V:; +74 , (13)
we can, write eq. (11) as follows

GIJ:G:‘ + Z';G; n‘;plGlj (14)
b

where G;. obeys the equation

S .. 0 0
G::’i, =8, Jer'vil Glj' (15)

Equation (14) is a familiar random equation that occurs in the theory of electronic
states in random crystals. The CPA type approximation is obtained by defining
a medium characterised by a self-energy matrix { of the form,

Euy=LeSu L Ay (16)

where 8;; is the usual Kronecker delta function, and A,; is unity when i and J are
nearest neighbours and is zero otherwise. We now write eq. (14) in terms of the

medium Green functions GZ? which are defined as

G"=G+-G° { G™ an
% Equation (14) is then
| Gy=G; + z Gy ViyGy S (18)
bl
Where Vpl='fipt~—§pl. (19)

Equation (19) is now expanded in a perturbation series in terms of potential V. The
terms of this series are arranged in a familiar T matrix expansion in which the succes-
sive terms involve coherent scattering from one bond, two bonds, three bonds, etc.,
respectively. In CPA method (Sovan 1967 Elliott et al 1974) the self-energy is self-
}. consistently determined by requiring that the averaged T-matrix of the single bond
scattering be set equal to zero. This requirement gives

(TH) = (V¥ [1—@mI yil1y = 20)
where T, V¥, G' are 2 2 matrices of the form
. Vii— —{ avy—{;
. avy—{ ) @D
g | i Gij
Gi G7 I ¥er)
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Equation (20) thus provides a set of two equations from which the quantities {, and
{, can be evaluated as a function of temperature.

However averaging over ¥’s presents problems in this case, since v involves the
factor of M, (). Above Curie temperature M,=1, so we simply have v, i=BJiy— Vi
Below Curie temperature, we must obtain a probability distribution of M,(i) in terms
of the given probability distribution of J,’s, by solving eqs (6) and (7). Equation
(6) couples all the random variables M;(i)’s and is too complicated to solve without
further approximations. So we replace eq. (6) by

M, =tanh [B<3_Z'L > M,] (23)
- tanh [; M1]

where T, will be determined by the divergence of high temperature susceptibility.
By making this aproximation we neglect the segttering that arises due to fluctuations

in r.nagnetisation. This approximation does not seem so serious as we expect magneti-
sation to be more or less uniform except in cases of extreme disorder i.e. when A
is large, |
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Figure 4. Plot of inverse susceptibility versus temperature for x=04,

The susceptibility may be calculated from the average Green’s function (G - Gn,
The expression for the wave-vector dependent susceptibility is

x4, T) = M, {g(g, T))
_ M,
B I*Co—(v0+§1)s(q)
where s(g) = %‘ €% where. s denote nearest neighbour lattice vectors; v,==BJ,.

24

Equation (24) is also of the 0Z form, Z, and {; denote temperature dependent cor-
rections due to disorder. We have solved eq. (18) numerically for various ratios of
(1—Jo)/J, and concentrations x. The results for static susceptibility X (O) are shown
in figures 3-5. The plots of X-1 ys T show only slight deviations from linearity. The
Curie temperature is determined by the equation

1=44(Be) =Z (BoTy+14(B)) =00 (25)

A plot of Curie temperature vs concentration is shown in figure 6 for some ratios

The values of Curie temperature obtained in this approximation are close to the
molecular field values, The reason is that the Curie temperature in the 0Z approxi-
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Figure 5. Plot of inverse Susceptibility versus temperature for x=0-5.

mation for the pure System is the same as that in the molecular field approximation.
The present theory being a self-consistent perturbation theory over the- mglecular
field approximation of the random system, cannot give significant quantitative cor-
rections for the Curie temperatures. The main advantage of the present theory is
that we have obtained g-dependent susceptibility and spin correlation functions _for
the random system. Moreover this calculation demonstrates the use of multiple
Scattering theory in a novel context. An obvious way to improve the calculation, of
Curie temperature is to start with the Bethe-Peirels-Weiss approximation in the -form
developed by one of the authors (Kumar 1976). There again, one can obtain an
equation for the correlation functions, which may be treated by multiple scattering

obtained in this manner may be comparable to
§ approximations (Bhargava and Kumar 1976).

3. Calculation of magnetisation

In this section we consider the calculatio
purpose we also assume that an external
first linearise eq. (6) about a mean valu

0 of magnetisation using eq. (6). For this
uniform magnetic field A is present. We
¢ m and then average the resulting linear
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equation in the manner described in the last section.
M\(@) = m + 8m, (25a)

where m is determined by eq. (21), i.e.

m = tanh ( guBH + ;fm ) 26)

Then for dm,, we have

8m; = tanh B [J,(0)m + guH + JZ' Judmy — tanh B[ J (0) ++ guH] (27)

where J;(0) = 2 J;; and J(0) = (/1 (0)). The linearisation of eq. (27) yields

J.E (Bsy — vy) 8my = X, ‘ (28)
where

| X =m(1—m?) B (J,0)—J (0)). (29)
Thus

| =% GuXi | (30)

e
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The averaged magnetisation is

(my = Z (GyX)
J

— ZG(X)+ = /GuTy G,,,Kj>. 31)
J

Lbm

The first term vanishes. For the second term we use the Born approximation i.e.

replace T, by ¥y, This may not be a bad approximation since G™ already contains
self-consistent self-energies. From eq. (31), we obtain

(8m) = ZPm(1—mH*({J? ) — (JY?) G(q=0)[Gyg + Goa]. (32)

From this expression it is clear that the corrections from average values are small at
small temperatures. They become larger with the incresing temperature due to factor
G(q—0). In fact they diverge as (T,—T)/2. Thisis an obvious contradiction to
our assumption that average magnetisation becomes zero at the critical tempera-
ture. This should be taken to mean that the process of linearisation about the mean
progressively fails as one approaches the critical point.
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