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A new formalism for the statistical dynamics of planar spin systems
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Abstract. The relaxational dynamics of a classical planar Heisenberg spin system is studied
using the Fokker-Planck equation. A new approach is introduced in which we attempt to
directly calculate the eigenvalues of the Fokker-Planck operator. In this connection a number
space representation is introduced, which enables us to visualize the eigenvalue structure of
the Fokker-Planck operator. The mean field approximation is derived and a systematic
method to improve the mean field approximation is presented.
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1. Introduction

The dynamical critical behaviour of the macroscopic systems is a well studied subject.
Starting with the pioneering work of Van Hove (1954) and Landau and Khalatinkov
‘ (1954), the subject has now reached a mature stage, in which the advanced theoretical
. techniques like renormalization group have been brought to bear upon the problem
(Hohenberg and Halperin 1977; Enz 1979). However, most of the recent theoretical
developments have been confined to basically two kinds of models. The first kind are
the so-called ‘kinetic Ising models’ while the second kind are a variety of field theoretic
models, known more familiarly as time-dependent Landau-Ginzburg models. Though
these models bring out very fascinating and germane physics, both these classes of
models are either somewhat idealized abstractions of the physical systems they intend
to describe, or are semi-microscopic approximations of the microscopic equations of
motion (Kawasaki 1970). For example, in the kinetic Ising models the dynamics is
described in terms of a master equation for the joint probability distribution of spins,
as the spins as such have no dynamics of their own (Glauber 1963). While in
Landau-Ginzburg models (Ma 1976) the order parameter field and the other relevant
fields are allowed to assume values over an infinite range, and the basic nonlinearities
of the problem, viz interaction between fields and restrictions on their range are
simplified by taking them to be the simplest polynomials,

Given the complexity involved in the study of the dynamics of macroscopic systems
it is not surprising that so much attention has been given to these models, which are
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particularly amenable to treatment by renormalization group methods (Halperin et al
1972) and field-theoretic method (Martin et al 1973; De Dominicis et al 1975). However;
the main rationale for the study of these models does not arise from their simplicity, but
rather from the concept of universality, which has been rather firmly established for
static critical phenomena. If one accepts the notion of the universality classes for the
dynamical critical phenomena, it suffices to determine the behaviour, i.e. exponents,
scaling functions etc. of the theoretically simplest member of each class (Hohenberg
and Halperin 1977). It should, of course, be noted that the dynamical universality
classes are not expected to be as wide as the universality classes for the static critical
phenomena. There can be a number of models having different dynamic behaviours
but with the same equilibrium properties. The universality classes for the dynamic
behaviour are thought to depend upon the conservation principles obeyed by the
equations of motion of the basic variables (conserved densities and order parameter
field) involved, and the couplings amongst them determined by their poisson-bracket
relations, in addition to factors that decide the static critical behaviour. Though the
principle of universality classes for dynamic critical phenomena has received impress-
ive justification through the use of renormalization group methods, these concepts
have been tested only within the context of Landau-Ginzburg models. It is clear that
since the macroscopic systems can have different kinds of dynamics and constraints,
decided by their set of relevent vaiables, the dynamic behaviour is much richer and
needs to be explored over a much wider class of models, before the universality
principles can be firmly believed.

This has motivated us to study the statistical dynamics of the fixed-length vector
spin systems. Such models, eg. classical Heisenberg model and planar spin model
have been extensively studied in statistical mechanics, as the classical spins form
rather good models for microscopic degrees of freedom in many situations. However,
their relaxational dynamics have only been inferred from the study of their TDGL
analogs. The purpose of the present paper is to develop a method to study the
relaxational dynamics of a planar spin system. Our method is based on the
Fokker-Planck equation (FPE) for the joint distribution function of the spins. The
basic idea of our approach is as follows. The FPE is a linear equation, which can be
generally written as

0P/dt= — ZP, )

where P is the joint distribution function and % is a linear operator to be called the

Fokker—Planck Operator (FPO). The essential problem of dynamics can be reduced
to determining the eigenvalues of the operator. To do this, it is necessary to find an
appropriate representation. We present here a natural representation, which allows
a simple visualization of the nature of the eigenvalues and the eigenstates of the FPO
of the planar spin system. Additionally, this representation allows for a systematic
perturbation theory to be built around the mean field result of dynamics. In fact, the
method described here closely parallels the methods in quantum mechanics. Our
method is not just confined to planar spins, though it admittedly is the simplest case.
In a subsequent paper, we shall extend the method to three dimensional spins.

The paper is organized as follows. In §2, we present the basic formalism of the
Fokker-Planck equation for the planar spins. We show how a Heisenberg like picture
for dynamics can be obtained and obtain convenient expressions for the correlation
functions. In §3, expressions for the response functions are derived and the fluctuation-
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response relations are obtained in this formalism. Section 4 is devoted to developing
a number space representation for the FPO and its adjoint. We further show how a
mean field approximation can be very naturally made in this representation. Section
5 takes upon the task of developing systematic improvements over the mean field
approximation. This section is of demonstrative nature, as the detailed analysis of
the improved approximation and its physical consequences are not presented. We
conclude with some remarks regarding the potential of the present work for further
studies in critical dynamics. ‘

2. Relaxational dynamics in the Fokker-Planck approach

We consider a d-dimensional lattice of N two-dimensional spins, which are unit
vectors. The Hamiltonian of the systems can be written as )

H=41Y 621 J;;cos(6;~0;), 2)
i i,j

where 8, denotes the angle the spin vector at site i makes with a fixed axis in the
plane, 6, is the time derivative of 6;, I denotes the moment of inertia and J;; is the
exchange interaction between spins at sites i and j. The Langevin equation for the
spins can be written as

10,+n0,=— Y. J,;5in (6, 6) +1{0) ()
J

where 76, denotes the viscous damping due to heat bath and f;(t) is the usual random
force due to heat bath fluctuations. f(t) is assumed to be Gaussian random process,
characterized by zero mean and correlation function, given by

(St S5(t2) > =2/mB)o;o(t, — t2), 4)

where f=1/k,T, and the brackets denote the average over the distribution of f;. In
this work we are only interested in the overdamped regime and at times ¢, such that
t>I/n. Under these conditions the first term in (3) can be dropped and a Fokker-Planck
equation for the time-dependent joint probability distribution of s, to be denoted
by P({0;},t) can be written to be (Edwards and Auderson 1976)

oP 1 | 0 e o*pP

r =;1—B—Z[5é—l{z ﬁJijsm(Bi——Qj)P}-kEg?]. (5)

i J

Comparing it with (1), we note that the Fokker-Planck evolution operator £ has
the form :

1]1 o 9\ . 0?
$=mﬁ—ﬁ[Eéﬁj""(é@~56?>sm(0i_0j)+259~?]' (6)

J

“Equation (5) describes the evolution of P({6;},t) as t— oo towards the equilibrium
distribution function P,, ({6,}) given by

1 1
Peq({Bi})=-Zexp [EIZJBJUCOS (Oi—Bj):| )
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where Z is the partition function of the system. For the purpose of defining correlation
and response function, it is convenient to consider the conditional probability
distribution G({6;},t(6;},t,) for t>t,, which is the solution of (5) with the initial
condition

G({6:}, to; {9:'}>to)=l__[ o(0; — 6;). ®)
Formally, G can be written as

G({83, & (83}, to) =exp (—(1— 1) L) [ 56— 0) o)

We now define a correlation function C for any two observables 4,({6;}) and A4,({6,})
by the following equation

Caya0)= J-I;I d6, d6,A,({0:})G({6;}, t; {63}, 0)45({6:})Peg({63})- (10)

We first note that for t=0, C reduces to equilibrium average

CAI,AZ(O) = JI;I deAl({Bi})AZ({Bi})ch

={ 414,70 (11)

where (), denotes the equilibrium average as defined by the integral in (11). Further,
noting the fact that G— P, like any other solution of the FPE,

Capax(0)=CA1D0{A2)0- (12)

For the calculation of correlation functions, (10) is not very convenient. So we can
recast it in a Heisenberg representation, in which the dynamics is transferred from

the conditional probability distribution G to the operators. Using (9), the formal

solution for G, we can write (10) as

Canarlt) = ﬁ;[ d, 6L exp (—£"1)4,({6:})] H (6, —6))

x A,({01})P.o({6:}) (13)
= {4,425 (14)

where we define |
Alt)=exp(— LA (15)

and " denotes the adjoint of & over a space of functions periodic in 6;’s. #' given by
1 1 . o 0 0?
Fl=——| -V 8J..5sin(0.—0)[ ——— —

nﬁ[ 32;Plusin @, ’)(aoi ae,-)*?ae?]‘ 19

F ufther note

(A4 > =4, 45(t)) 17

ol

-%
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where (17) follows by noting that
g(AZPeq)z(ngZ)Peq (18)

which can be explicitly verified. In the following, we shall work with the Laplace
transforms of the correlation functions defined as

[e¢]

Caonal2) = f exp (izt)C 4, 4,(t) dt

0

1

Equation (15) enables us to write the equation of motion of the correlation functions,

given by
10 o2
ro at CA1 Az( ) Z<(5~é—?—Al(t)>A2(O)>

~§izjﬁ.lij<sin(9 6,)(6’;6() a’;(;(_t))Az(O)> (20)

where I'y = (18)~ . Equation (20) is a basic equation which would be utilized to arrive
at the various physical conclusions in this method. At this point, it may be useful to
recall that the first term on the r.h.s. of (20) represents the action of diffusion caused
by the heat bath, whereas the second term is the time change due to the Hamiltonian
of the system. At T = oo(f#=0), only the diffusion term survives.

3. Response functions and fluctuation-dissipation theorem

In this section, we study the linear response of the system to an external potential
and thereby establish the form of the response functions and the fluctuation-dissipation
theorem in the present formalism. We add to the Hamiltonian a time-dependent
perturbation

V(t) = — AV({0;})F(2). , | (21)

Now the Fokker-Planck operator becomes
L(t)=L +ZL e (t)
with
5(5 V)

If we now assume that the perturbation is switched on adiabatically at t= — o0, and

P(t= —©)=P,,, the solution of the FPE to the first order in .Z,,, is

P({ei},t){l - f " exp(—(t—t')z).%e,t(t')]P.,q. (23)

-
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Substituting for Z.,, yields

t

v 6V oP,
P({Bi},t)=Peq+%J q:|

dt'F(t')exp(— (t——t)g’)Z[aez

- 60 00
= [1 —BA f dt'F(t")exp(—(t—1t)&) (,S”TV):l P.,. (24)
Let us now consider the expectation value of an operator B at time ¢
<B(t)>=<B>o~ﬁlf dt'F(t) { Bexp(—(t—1) ) (L'V) o (25)
=(BYo—pi J dUF() <BE—t)V Do (26)

(26) can be used to obtain an expression for the frequency dependent susceptibility,
x(w), to be :

xw)=—p f ) dt exp (i(w + ig)t) { BT)V D (27)
0

This is the familiar fluctuation-response relation which shows how a response function
is related to the correlation function. Another useful way to write (27) is

i
X(w)”X(O);ﬁ<VmB>O. (28)

4. Number space representation for %' and mean field theory

~In order to evaluate the correlation and response functions discussed above, we need
to find a convenient representation for %', Since all the functions of interest are
periodic in 0 in the interval (0,2x), we construct a basis set in which at each site k,
the basis is the set {exp(in,0,)} with n, being an integer ranging from — co to + co.
Another advantage of this basis is that the diffusion part of #' is diagonal in this
representation. A typical member of this basis is denoted as

(01,...Hglnl....nN)=(27r)"N/2 exp (Zi@knk). | (29)
3
Noting that
0 . '
5B—k|n1...,nk,...)=mk|n1,...,nk,...>. (30)
and
exp (iR, sty =ny,...,mE1,..). (31)

it is straightforward to write the action of #' on a typical member of the basis. This
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is given by -
3T|{"k}>="rol:;nlfl{nk}>+%;.ﬁjkj(nk_nj)

X {I...nk—f—1,...nj—1,...>—~|...nk-1,...nj+1,...)}:|. (32)

This representation is not only mathematically convenient, but is also very helpful
in a physical visualization of the action of #". First note that #' connects states
only within a given subspace defined by C=3, n, i.e. C is a conserved quantity of
the above dynamics. This conservation principle is a reflection of the rotational
invariance of the Hamiltonian, though note that the magnetization is not a conserved
quantity in the above model. The conservation of C allows one to seek eigenvalues
in a subspace of fixed C.

To obtain further physical insight, let us turn off the interaction term (i.e. f=0).
Then we have a discrete set of diffusion excitations at each site. For example, for
C =1 these excitations have eigenvalues 1, 3, 5, etc (in units of I'y). Thus for a lattice
we have an N-fold degeneracy at each of these eigenvalues. When the interaction is
switched on, the diffusion excitations at different sites are coupled. One result of this
coupling is that a collective diffusion mode arises, which also results in the lifting of
the N-fold degeneracy and formation of bands about each of the discrete diffusion
eigenvalues. From this it is evident that for a given values of C the eigenvalue structure
of %' consists of bands of excitations, which are well separated at high temperatures at
least. As the temperature is lowered, the band widths increase being governed by BJ,
allowing for the possibility of overlap. The present problem is not linear, as part of
the coupling causes interactions between different bands of these modes. Nevertheless,
from the point of view of kinetics, this feature is very useful, as it allows us to
distinguish between fast and slow modes. For understanding the long time relaxation,
one can integrate out the higher bands corresponding to the fast modes successively,
thereby building a renormalization group scheme.

The above remarks are best illustrated by considering the action of #' on the
simplest of C=1 state in which n;=4.

2N0,..m=1,..>=To[l0,...m,=1,..5 +33 BJy
J

(0, em=2,..mj=—1,...5=[0,..1=0,...n/=1,... >} ]. (33)

Now note that the second term has the diagonal expectation value, K=Y, n# =5,
which implies that its relaxation band is around 5T;. So at long times the second
term may justifiably be dropped. The equation is now linear and the eigenvalues for
a uniform system are given to be

r=To(1—$57@)) (34)

7(q)=; Jijexp(ig-(ri—r)) 35)

where

Within t>h’is, approximation, the value of the correlation function Cy=
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{cos(8;()—0,(0))> is given by
Cj =Re (exp(i0;(1)— 000>

= L ReT explia-(R,— R exp [~ Totl1~+5T(a)] 36

This is equivalent to the mean field approximation of Edwards and Anderson (1976)
and also that of Suzuki and Kubo (1968) for the kinetic Ising model. We would like
to emphasize that the present derivation provides its justification in a somewhat
different way than the earlier work. Moreover, the range of validity of the approxima-
tion is clearly identified to be (i) high temperatures (i) long times.

5. Beyond mean field theory

The main strength of the above formalism is that it enables us to improve upon the
mean field approximation in a systematic way. There are various possibilities in this
direction and here we present preliminary result of one approach. The idea behind
this approach is to obtain successive approximations for the long time relaxation by
including successively higher bands of relaxation rates. In other words, we want to
incorporate the effects of coupling of higher bands on the lowest lying band, which
is the one responsible for long time behaviour in a set of controlled approximations.
For this purpose, we define a set of Green’s functions, the first one of which is

G,(R;,t|R;)= {exp[ifi(t)]exp[ - i0;(0)>, t>0
=0 | t<0. 37

We also define its spatial fourier transform and time-Laplace transforms through the
following relations

Gi(q.t)= ) exp[ig-(R;— R)G(R;;t|R;) (38)

Gig; z)=J exp[izt]G,(¢g,t)dt, Imz>0. (39)
0

4

The other Green’s functions are defined generally by the following equations

Guymgs - (R1, R, EIR) = <exp<i2nk6k(t))exp(—i9j(0))> t>0
k

=0 t<0 (40)

Gm,nza .- -(‘11, q2>-. 92) = Z J dtexp(izt)exp[iqu-(Rj—Rk)]
k

R Ry J0

Gpyongse - (Ry, Ry, tR). (41)

A further point about riotation is that if any of the n’s is negative, we denote it by
putting a bar over it, ie. G,_, is written as G,;. The equations of motion of G’s
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also involve the equilibrium correlation functions, which we denote as

C,,h,,z,...(Ri,Rj,...)=<exp(Z innk>> . (42)
k 0

The fourier transform of the correlation functions are defined in the same way as in
(38). We now write down the equation of motion for G,(R;; t|R;) for t>0.

0 . :
7 O1(Ris tIR) = —< (<L exp [i0t))exp [—i0,0)>
= -FOEGI(Ri;t'Rj)+%zk: BJ ik
x {G,1(R;, Rk;thj)'—Gl(Rk;t‘Rj)}]- (43)
Taking its Fourier and Laplace transforms yields

~ 1 1 ~

=\ C ——> K (9—91,91; 44
G(q,2) (“iz/ro)+rq[ 11(9) ZNE: (91)627(4 —91: 4, 2)] (44)
‘where K(q)=pJ(q). To go beyond mean field theory, we now write the equation of
motion for G,y, which follows by considering the equation

ralgfl...ni=2,...nk= —1,...>=5|...ni=2,-.nk= "—1,...>

+%B[ Z 2Jil{,|...n,-=3,...n,=—1,...nk= “"1,...>
I k)

—-I...ni=1,...n,=1,...nk=*—1,...>}
+3J,-k{|...ni=3,....nk=—2,...>—-|...ni=1,...>}

- Z Jkl{l...ni=2,...nl= '—1,...>
I(#1)

-—|...ni=2,...nk=——2,.,.n,=1,...>}]. (45)

From this equation, it is clear that the equation of motion for G,; will introduce a
number of higher order Green’s functions, and to make things mathematically
manageable, we must introduce a procedure to truncate these equations. Such a
procedure can be based by generalizing the considerations discussed in the previous
section. The different terms occurring here correspond to different bands whose mean
position is approximately given by the diagonal expectation value K, of that term.
The mean field approximation was obtained by retaining terms up to K=1. The next
order approximation is obtained by keeping terms with K <5. Retaining such terms
reduces (45) to

Ioiet. n=2..m=—1,..0=5..m=2..n=—1..)

”%;_ﬁjkzl---ni=2,...n,=-1>

LY BTy m= =1, = — 1,
I(+k)

—3BJul...m=1,....0. . (46)
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Using this truncated equation, one obtains the following equation for 52,1(611,612;2)

- 1
P C ,
GZ,I(q13q23Z) (“iZ/r0)+4+rq[ 21T (ql q2)
- 1
+%K(42)G1(ql +42§Z)+N‘Z K(Q'a)Gx,I,l(% — 43, ‘12,4352):I- (47)
q;

Next, in order to write the equation for G, we consider the action of %' on such
states. Omitting states with K> 35, one has

rglng...n-=l,...n,=—-1,...nk=1...)
=3l..m;=1,..np=—1,..m=1.)

m# Lk
+ Z Klml ........ n,-=1, nm=—1, nk=15 > 4—%4
m# ik LS
+ Y Kile-mi=1,..m=—1, >}]
m#i,l
"‘K!ll nk—l >_Klk|...ni=1...>- - L
Using (48), one obtains the following equation for G 191,92, 93;2) 1@\

1 : p{
(—iz/ro)+rq,+rqz+rq3 [Cﬁn(‘ha‘ha‘h)] :

+N{5q: +qz,0K(ql)61(‘I3 ;2) +5q2 +43,0 K(72)61(41 ) Z)}] - (49)

We now see a closure is obtained within our scheme, which includes the relaxation
rates of order 5I;. Clearly till the temperature is high enough to keep this band well N
removed from the lowest band, this should be an excellent approximation. Equation
(49) can be substituted into (47) which in turn can be substituted into (44) to yield
the following expression for Gl(q, z)

Gm(‘h: 92,93 2)=

ol — A(q’ Z) :r
R S Es Ty (50 |
with '
3/4K*(q,)
Z(g,2)= Z{ —iz/To)+4+r,
Ks(ﬁ) } (51) B ;
[(«-12/1"0)+4+rq1)] [(—iz/To}+r,+2r,)] .
and :
K(91)Cri(9—41,4,) 1
A4 2)=Ciala) - (=iz/To)+4+r, 2N?
Z (%)K(Qa)cuu(%s q2:93) (52)

ovas [(—12/T0) + 447 DILL(=i2/To) 1, 47, 470, )]
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These equations have interesting implications which can be fully understood only by
their numerical evaluation. However, we do not present such results here as in a later
paper we intend to present a systematic study of the perturbation expansion and its
consequences for the critical dynamics.

6. Concluding remarks

To summarize, we have introduced in this paper a new method to deal with the
statistical dynamics of planar systems. Since the method is different from the usual
field-theoretic methods, we expect that further studies by this method will lead to
elucidation of the notion of universality in dynamic critical behaviour. The method
also reveals interesting qualitative features about the hierarchy in the relaxation
spectrum of planar spin systems. This hierarchical feature which we believe has been
pointed out for the first time, should provide new methods to implement renormaliza-
tion group ideas in the dynamic studies of the spin systems.
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