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Abstract. The relaxational dynamics of a classical vector Heisenberg spin system is studied
using the Fokker—Planck equation. To calculate the eigenvalues of the Fokker—Planck
operator, a new approach is introduced. In this connection, a number space repesentation is
introduced, which enables us to visualize the eigenvalue structure of the Fokker—Planck
operator. The mean field approximation is derived and a systematic method to improve the
mean field approximation is presented.
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1. Introduction

In a previous paper [1] we introduced a new formalism to study the relaxational
dynamics of a planar ferromagnet. This formalism was based on the Fokker-Planck
equation for the time-dependent joint probability distribution of the spins in the
system. Unlike most recent work [2,3] on relaxational dynamics, particularly at the
critical point, our work deals with fixed length spins. Our method mainly consists in
finding out the eigenvalues of the Fokker—Planck operator, which are the relaxation
rates in the system. To achieve this, we construct a convenient representation, which
is somewhat analogous to the number space representation of second quantization.
In this representation a new conservation principle becomes immediately obvious
and certain, hitherto unnoticed, features of the relaxation eigenvalue spectrum of
planar spin system are brought forth easily. Furthermore the formalism offers a
systematic method of doing a perturbation expansion, renormalization group analysis
and systematic 1mprovement over the mean field approximation in problems involving
dynamics of fixed length spins.

The purpose of the present paper is-to extend this formalism to vector spin systems.
The formalism for vector spin systems is considerably more complicated than that for
planar spins due to additional degrees of freedom, namely azimuthal angles at each -
site. The paper is organized as follows. In § 2, we develop the Fokker—Planck equation
for a system of classical spins interacting via Heisenberg Hamiltonian. This
development is a generalization of the earlier work of Kubo and Hashitsume [4] on
the relaxation of a single moment. In §3 we construct a representation for the
Fokker-Planck operator which is diagonal in the rotational diffusion operator. This
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operator is independent for different spins and the interaction term acts to couple
diffusion on different sites leading to a band structure for relaxation eigenvalues. It
is shown in §4 that the mean field approximation ignores all the bands except the
lowest one. This observation then allows us to construct approximations which are
systematic 1mprovements over the mean field approximation. In §5, the first such
approximation is constructed. This section is of a demonstrational nature as the
detailed analysis of the improved approximation and its physical consequences are
not presented. We conclude with some remarks on the potentiality of the present
work for further numerical studies.

2. Fokker-Planck equation for spin system

We consider a lattice of classical spins S; of unit magnitude, interacting according to
the Heisenberg model, with the Hamiltonian

{ :

where J,’s denote short-ranged exchange interactions and H, is an external field,
which we shall take to be along z-axis. The relaxational dynamics of the system is
described through a set of Langevin equations for each spin, which are straightforward
generalizations of the Landau-Lifshitz equation [5] for a single magnetic moment
in_interaction with heat bath. These are

ds,;
— =y[h,+H(t)] xS, —yn(h, x S;) x §, (2.2)
where
h,= ZJUS}+H : (2.3)
—
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Figure 1. The figure denotes the direction of forces occurring in equation (2.2).
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Statistical dynamics of vector spin systems

- where y is the gyromagnetic ratio, # the viscosity coefficient and H(t) the random

magnetic field at site i. The physical meaning of the various terms of (2.2) is as follows
(see figure 1). The first term yh, x S, describes the precession of the spin S, about the
local field h, and this term conserves the energy h;*S,. The remaining terms describe
the effect of heat bath. As shown in figure 1 the frictional term yn(h, x S;) x S; acts
to align the spin vector S, along the direction of the local field h,, and is dissipative
in nature. Finally the Brownian random force term is S, x Hi(t). Note both these
terms are perpendicular to S, so that the magnitude of the vector is preserved. Hi(z)
are taken to be Gaussian white noise, with the following usual properties for its
components, H; (t), :

CHiy(t)y =0, (2.4a)

22 CHi, (8 Hy(t,)) =0,;0,4 [;1— 0, +(1— 6{”);1—]. (2.4b)

i 4

Now we follow the treatment of Kubo and Hashitsume [4] for the single moment,
in writing down the Liouville equation for time-dependent distribution function
p(S;,...,Sy,t). This is given by

P 9
(8,8, Su=—Y

3 .~ S y ‘ 2.5
at o1 i aSia( mp) ( )

where S'l.a denotes the time derivative of S, . Using (2.2), (2.5) can be written as

0 . , :
_51; = ; [h; -+ H;()]-Lyp —iyn Z h;-(L; x S,)p, (2:6)

where L;s denote angular-momentum-like operators given by
L= -iSJ.x-;S—. . (2.7)
J
Our next task is to average over the random fields H;(t). This can be done using the
interaction representation, for which purpose we write (2.6) as

%f - i+ 2 (O)]p (28)

Zo=72 [y L, +nh(L; x S;)] (2.9)
and

Z'(t) =72 Hit)'L,. (2.10)

Equation (2.8) is now solved in the interaction representation, the exact formal solution
being

p(t) = exp[—iZ Jexpy [—i J 'dt'zH;.(t'>~L,j(r'>]p<0>, 211
0 J
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where exp, denotes the usual time-ordered exponential and
L, =exp[i& ]Lexp[—iZ 1] (2.12)

Using the Gaussian properties given in (2.4) and denoting the average value of p(t)
by P(t), one averages (2.11) to find

P(t)=exp[—i$ot]expT[ fdt}k:{T (L2, (t))?
I

+*((L () + (L (e ))2)}]0(0) (2.13)

T

= exp_[ ~iPt— % Y {i (LE)* + 1 (LE? + 1 L) } p(0). (214

k ’C” T) T_L

The last step is permissible as the two operators in the exponential are commuting‘
and L? and L? are time independent.
From (2. 14) the Fokker-Planck equation follows as

° _ _wp | (2.15)
ot
with ;
th[h L, +nh (L x )] + = Z[ (L2 + (L7)2+T—1—(L§)2}
J L
" (2.16)

The first term in the Fokker—Planck operator W is the Liouville term, while the

second one corresponds to rotational diffusion of spins. It is straightforward to verify

that the steady state solution of (2.15) is the equilibrium distribution function, P, (S;),
given by

Peq(Si):-Z“lexp[ ZJU S+ fH, - Y. Si]- (2.17)
i
provided the following Einstein relation holds
1 . ‘
— =2ynkgT. (2.18)
TL

Further Z is the equilibrium partition function for the system of (2.1). Note that only
1, enters the Einstein relation. This is due to the fact that 7, controls the precessional
motion (azimuthal angle) about the local field direction, while 7, controls the
relaxation towards the local axis (f-angle). Clearly only the latter is of relevance for
establishing thermal equilibrium. If we let f({S,}, t; {S;},0) denote the conditional
probability distribution, which is the solution of (2.15) with initial condition

f8}15{8;10=[1o6,-8) (2.19)
then we can write the correlation function between any two operators 4,({S,}) and
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A,({8;}) as

C, 0= j [T dS.5,4, (1S, 7(18.) 5150, 0) x Ay (S)p.o((S))
(2.20)

This correlation function can be recast in a Heisenberg-like representation By noting
that formally the conditional probability distribution function can be written as

S({8), 5 {8;},0) = exp(— tW) [ 8(S, - S)).

Further we define inner products and adjoints by the following equations
9,,9,)= j dQgt(Q)g,(Q)

(gl,Agz)zfdQ(A’“gl,gz),

where ¢s represent functions of angular variables Q corresponding to vector S and
the integration is over the solid angle. Now

Cesld = [ [ TTa8814,0050e7 1565, ~ )4, P18

= [Tase 4, spa(s P
= (A, (04, 2.21)

where ¢ ) denotes the average over the equilibrium distribution function and
A(t) = exp(— tW ) A. 22
Further note |

dd

Y wea » | (2.23)

At this point, it is useful to display the full form of W*, which is

, 1 i
Wt = “‘i?HogL l’))ZijS ‘L, +2r JZ ngk(Skaj)‘(Lk—Lj)
+—Z(Lz +———Z{ L3y +(12)*} (2.24)
21.'" k 2

It is also of interest to write down the equations of motion for S;, using (2.24).
These are

ds;@ _ 72,(5,%S) LB, x8)xS,), ———S’() (2.25a)
dt 2Tl J !
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dsx(t) , 1
= H,S (t)—z:§ BJ,L(S; x S,.)Nx‘S,.]xy+y§:JU(Sj xS,),
! <l + —1—> Sx(t) (2.25b)
_ 2 T" T,
ds’ '
—~—~—-d't(t)=——yH S50 ———zﬁJ,,[(s x8) x 8],
i1 1

(S, xS), ———+— |8 2.25

+y§Ju(ijs!)y 2<r"+n>s‘(t) (2.25¢)

In deriving (2.25) we have made use of the following relations

Lf Sy=(—1 BWS? : (2.26a)
and

L2S¢ =28t ‘ (2260)

Though (2.25a—c) are in Heisenberg representations, in the present context their
physical meaning is obtained only when we take averages of over the equilibrium
distribution function.

This dynamics in which the random noise has been averaged out differs from the

Langevin equation essentially by the replacement of the random field term by the
diffusion term.

3. Number space representation for Fokkel;wPlanck operator

Since we are dealing with only periodic functions of angles at each site, we can

introduce a basis of a complete set of spherical harmonics at each sne A typical
member of the basis is denoted as

omslomys > = 1%, @ 89 (3.1)

where k runs over all the spins.

The utility of this basis lies in two points. First, the diffusion operator is diagonal
~ in this basis. Second, the operator W™ contains products of vector operators and
angular momentum operators which can cause transitions in which / and m at a site

change only by + 1 or 0. Just to set the notation, we record here the operation of
basic operators in this basis

L2{L,,m}> =10+ DI{L,,m}> (3.2)
Li{l.m}>=m/|{l,m}> »~ (3.3)
LE|{l,m}> =B (L,m)|...l,m +1,..> ' (3.4)
Sil{lom > =A, om)l. L +1,m..>
+A,_(,m)l...L,—1,m,...> (3.5)
S;Hlem3>=A, (L,m)l...L+1Lm+1,.>
+A4,_(,m)...L,—1,m+1,..> (3.6a)
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Scieom > =A_ (Lom)... [+ Lm =15 5
+A__(L.m)...[,—Lim —1,..> (3.6b)

where ST =S$* +iS" and L* are similarly defined. The coefficients {B, } and {4}
are collected together in Appendix-1 for ready reference. Using (3.2) to (3.6) it is
straightforward to write the action of W* on a typical member of the basis. To see
this we explicitly work out the action of the second term of W+ ((2.24)), ie.

L7k Lulthomd> = kz Jeo LS5 L+ 38, L 38, L W{lom 3D
k.p y
= :L:‘,Jk'p["lkag’_ . AOU(I))’ nlp)l... Ip i g, ’np" . .>

1
+EB+(Ik’mk) A_U(Ip,mp)l...lk,mk-i- 1,...,I”i6,mp— l,..

c=+%1
1 ,
+EB'(lk”nk)a=¢1 A+6(lp,mp)|...1k,mk—— L.l tom,— 1,...)}
(3.7
First, note that in the transitions caused by this. term the total azimuthal quantum
number, i.e. C = ;mk, does not change. An examination of the other terms in w

shows that this is not just the property of the second term, but that the entire W™
conserves C. : ,
We shall now write the action of W* on a basis function in a compact form

W {l,m )=~ iVHo§mk[{lk"-nk}>” |

—1y Z Z Jk,pg(lks My My Ip,mp, ap”'tp)|"'lk’

k,p cr,;‘,;t,,
Myt s L, 0 m, D
1
+——Z[)’Jk'p Yy f(lk,mk,ak,uk;lp,mp,ap,up)l...lk+ak,
T kp Tl les
Hp,Tp
mk+uk,,...,'lp+crp,mp+up,...)
1 1 1 1 5
Foy =L+ D+ ——— | m{l,m}> (3.8)
2 k T.L T” TJ_ : ’

where o, s take values + 1 only, whereas 14, s take values 1, 0, — 1, with the constraint
t + 11, = 0. Note that the first two terms on the right hand side of (3.8) are imaginary.
These correspond to the inertial precession of a spin in the external field and the
internal field due to the other spins. In most of what follows we shall set H; =0 and
drop the spin precession term which contributes an imaginary part to the eigenvalues
of W*. Clearly for the long time relaxation such a term is relatively less important.
With Hy =0, we can set t, =7, =7. Now the off-diagonal terms come from the
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friction part of the operator, ie. the third term on the right hand side of (3.8). Here
we have 8 off-diagonal terms corresponding to the possibilities p = p,=0; g, =1,
u,= — 1; combining with o, = £1,0,=%1. The coefficients f and g are listed in
Appendix-1.

4. The mean field approximation’

We shall now use the above formalism to calculate the Green’s function G10 10
(R,,t/R)) defined as

G1o.10R,- tIR) = 0O Y] (6,(1), 6,(8) Y1(6,,,))- (4.1)

where 6(t) is the step function.
The equation of motion for this function is

U G010, tIR)=C o (R IR) — OO [W* Y0(6,,6,)] Y1(6,,¢))>

4.2)

where C,,, (R, |R)) is the equilibrium correlation function given by
Cio.10RIR) =(Y1(6,,9,) Y1(6,,9))) @43

Now, setting the external field to zero and ignoring the precessional term, the
action of W* on Y$(6,,¢,) is given by

1 |
Wl o= Lm=0,.y =l .h=1m=0,.)

1
"Egﬁlkp[gl...lp=1,mp=(),_‘_>

3\/5 Lh=2m, 0 l—lm—O .01 4.4)
The explicit use of the forms of spherical harmonics in (4:4) shows that (4.4) is indeed
equivalent to (2.25). Further (4.4) shows that the equation of motion for G4, involves
higher order Green’s functions, as is expected in any many-body problem. To set up
a systematic scheme of approximations, we note that in the above representation, at
each site we have a discrete set of rotational diffusion states with eigenvalues / I+ 1)/
which are coupled by the interaction term. There are two physical effects of this
coupling. First, the site levels broaden into bands which are well separated at high
temperatures (because f is small). Second, it causes transitions bétween bands, by
having a pair of coupled sites change their local states (see figure 2). For long times,
clearly the lowest band is the most important one. So one can develop a set of
approximations, by projecting out the higher bands from the calculations. The simplest
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Figure 2. (a) The relaxational eigenvalues when J=0. These correspond to
relaxation of uncoupled spins due to thermal rotational diffusion. (b) Schematic
structure of eigenvalues when J # 0. Now the rotational diffusion at different sites
gets coupled leading to formation of bands much like tight-binding approximation.

of such approximations is clearly the one in which we just keep the lowest band. At
the next level one can include a group. of higher bands to which the lowest band
couples directly and see their influence on the relaxation eigenvalues of the lowest
band. Now we show that the simplest approximation discussed above leads to an
analog of the mean field theory discussed by Edwards and Anderson [6] in the
context of the planar spin glass. In this approximation, we drop the third, fourth and
fifth terms on the right hand side of (4.4) as these correspond to a local excitation
level of tK =2, [ (I, + 1) = 8. Now the equation of motion for G, , , can be written as

—:—t GlO,iO(Rk9 t|Rj) = B(t)<[W+ Y?(Gka d)k)] Y?(Bja ¢1)> + Clollo(R)JRj)

1 Jii
= 2 <5 - 53“) G1o,1o(Rpe t‘Rj) + ClO,lO(Rk|Rj)

Tp

which for a translationally invariant system yields the following solution

J
6,0 10RtIR,) = Zcmo(q) exp— (1—ﬁ 3("))expzq< R)
.5)

where C,, ,,(4) and J(g) denote the spatial Fourier transforms of C,, ;,(R,IR;) and

Pramana — J. Phys., Vol. 43, No. 4, October 1994 297



Kamlesh Kumari and Deepak Kumar

J,; respectively. These are written as
CLO‘,IO(q) = Ek:exp DQ(Rk - RJ)] C1o,10(Rk|Rj)

J(q) = Z_kaexp[iq'(Rk—— R_,)]

eq. (4.5) is the analogue of Edwards—Anderson mean field result for vector spins.
Note that this result has been derived here not by any ad hoc decoupling procedure,
but by a systematic projection procedure. This procedure makes the nature of the
result clear in the following way. It is seen that EA results amount to keeping the
lowest band of relaxation eigenvalues, which clearly is good at long enough times.
The correction to these results arise by considering the higher band of eigenvalues.
These bands are certainly important at shorter times, and moreover since the couplings
cause interband transitions, they also renormalize the lowest band and thus affecting

the long time behaviour. The next section describes the procedure for improving the
mean field result.

5. Beyond mean field theory

In this section we discuss a systematic procedure to incorporate the effects of the

coppling of higher bands on the lowest lying band, which is the one responsible for
long-time behaviour.

.Now, we define a set of Green’s functions,

G1o,10(Rp EIR)) = (Y1(6,(1), 8,(0)) Y(l)(ajs ¢;)>, t>0

‘ =0, t<0 (5.1)
Ghnu.lzmz,...(R thj) - <H Y 0 (t ¢k(t)) YO(B_,, ¢ )> t>0
=0, t<0

(5.2)

We also define their spatial Fourler transform and time-Laplace transform by the
following relations

GIO,IO(q’t)=?exp[iq-(kj_Rk)]GIO,lo(Rk’tIRj) (5.3)
G1o.10@2) = J exp[izt] G,q ,o(q, t)dt, Imz>0 (5.4)
0
Gz,ml,lzm,,..(qpqz,---,2)=R; f eXP[izt]dteXP[iqu-(Rj—Rk)}
1.K2,.. JO k .
X Glm:.lzmz,..(Ri’Rz" . "thj) (55)

A point about notation: if any of the m’s is negative, we denote it by a bar over it, i.e.
G, _, is written G, ;. The equations of motion of the G’s also involve the equilibrium
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correlation functions, which we denote as

Chml,lzmz,..(Rl ? RZ’ ' ) = < l_k] Y;:lck(gk’ ¢k)> . (56)
0

The Fourier transform of the correlation functions are defined in the same way as
the Green’s functions.
We now write the equation of motion of G, ,,(R,,t|R;) for >0,

2 Gra0lRestIR) = = (LW Y0, 8,00] Y2060,

1 1
== Go.10R:tIR)) +§ ZJkp[—3— Gio10R,,tIR))
p

1

+..____
2./15

1
- Gz’o,m(RpRp’thj)iI- (5.7

NG

Taking its Fourier and Laplace transform yields

{GZI_'“(R“’ RI” tIR]) + G21.1f(Rk’ Rp’ tllfj)}

~ 1 1~
Gio,10@2) = m [Cio,m(q) + —2\% :L: J(q,) [5‘\/——1'3{6;21“,11(‘1 —q,,9,;2)

~ 1 «~
+G,, ,79—4,,9,;2)} ———=G,0,0,(@— 9,9 ;Z)]] (5.8)
21,11 1 1 3\/5 20,10 1 1

. _._l(l_ﬁj_(@)_ (5.9)
q T 3 .

where

1
G,11, and G,y o which follow by considering the action of W* on |...], =2,
mk=1,...lp=1,mp=—1,...>,1...lk=2,,mk=—1,...lp=1,mp=1,...>and|...lk=2,
mk=0,...lp=1,mp=0,...).
The action of W* on ...l =2,m =1,...] =1,m = —1,...) state is given by the
following equation -
wH|...1 1,...1 =1 1 4 I =2
k=2,mk= seent, = ,mp=—~ ,...>—:c" =4

mk-‘-=1,...lp=1,mp= —1.,...>

©

+-ﬂ—[z Jpj{_z—‘"'lk=2’mk=1""lj=1’mj= —1""lp=‘2’

4t | j#k 3\/5
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2| 2./2
=3 Lh=2m=1 L =1lm=—1.)- Vls...lkm?.,
mk=1,...lj=1,mj=l, lp=2,m=—2 >
2
+~—1;‘...lk=2,mk=1,...IJ.=l,m.=0,...lp=2,mp=——1, >
4 lL=1lm=-1,...1 =2 0
-—g——g. L=2m =1, .L=1lm=~1.. =2m =0, >
2 —4
—_— | =2m=1,..1l=1m=—1 .>}+J { =3,
3 /5 Tt ! Sl OVET1
m, =2, lp=2,mp=~2, >
2 2
+g——‘; l,‘=3,mk=0,...lp=2,mp=0,...>—~——3—g l,=3,m=0,.>
2 2
—"5—-—3- lk=1,mk=0,. .lp=2,mpr=0 > '-—-i—s‘ lk=1,mk=0, >
+ 6 I =3,m=0,.1=2m =0 >+6 Il =3m =0,..>
5 7 s ly s My > P s ) r——35 otk >k ?
4 Il =1,m =0,.1=2,m =0 >+4 L =1,m =0,..>
p 7 " My A p sy s ,—-—-35"'!( LY )
6 |2 2
g\[;]—‘...lk=3,mk=1, lp=2,m——1, )—gl L=1Lm=1,
.lp=2,mp=—1, >
2 2 4
+- /= ...lk:3,mk=1,...lp=2,mp=—1,..5>-§\...lk=l,mk=1,...

4 ~
N L=3m =21 =2m = —2,v...>}]. (5.10)
35

From this equation, it is clear that the equation of motion for Gyyi7 will introduce
a number of higher order Green's functions, and to make things mathematically
manageable, we must introduce a procedure to truncate these equations. The different
terms occurring here correspond to differenit bands whose mean position is
approximately given by the diagonal expectation value K of that term. The mean
field approximation was obtained by retaining terms up to K = 2. The next order

approximation is obtained by keeping terms with K < 8. Retaining such terms reduces
(5.10) to :

4
Wl h=2m=1 L =tm= =1y = L =2m =1L =1,
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oLl )
m=—1,..>+—| —14+— J|..L=2m=1,...
P ’ 4z 3 \/3 j;k il k

2

2 1
...lj=l,mj= ——l,>+Jkp{—g<»—:/+\—/—§>llk=1,mk=0,

12
...lp=2,mp=0,...>+——(:+—-—~)....lk=l,mk=0,...>

-—§...lk=1,mk=1,...l =2,mp=—-1,...>}:|. (5.11)

Using this truncated equation, one obtains the following equation for 62 1.11(91,9552),

~ 1
G,y1.111959552) = ﬁ(

) 3
—iz+r(g)+-+—
T 61

|:C21.1f(q1’q2)

1
1——|J
\/5) (q,)

~ ~

2 |
- gJ(qz) {<\7 i 75) ( 5 G20,10@1-95:2) + _\/'—g G1o,1o(‘1‘1;2))
Gzcll(ql,q,:Z)H. (5.12)

W

Similarly, one can obtain the following equations for 621‘,11(‘11’(12;2) and

~

G0.10(4;:4,52)

- v 1
G,14:04;,4552) = 3 B 1 l:czf.n(qqu)
—i PR (SR
lz—i-r(,m-i—T 61( \/§> (q,)
B 1/ 1 2\ = ) 3 o
_EL_'J(Q2) '—"5' 'ﬁ"'ﬁ Gzo‘lo(qvlsqzsz)_5621,1]:(‘;1,‘]2’2)
' 1 ( 1 2 )~
+—|—=+—]G (q;Z)] (5.13)
\/-5- \/g \/7 10,10\1]1
and v |
~ 1 ,
Gy0.1001:4,52) = 2 7 [C20,1o(q1’q2)
—iz+r,, T, T = '1_5)8*](‘12)
_ﬁj(qz){_galo 10(‘11;2)_”}—621 1I(q1’qz;z)+621' 11(‘11’(12;2)}] ‘
2t 5 > 5\/‘7 ’ '

(5.14)
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Since this is a closed set of equations, one can obtain an expression for G, , ,(q; z) to be

610,10(‘1; z) =

A(g,2) _
‘ H B 1 rz rzal 3
[rq_lz"—{?j\}%‘l(ql)_\/—l——s a3b3+—§-a1b1d2a2 +5T bya,
_2d2a2}:|
' 3./5
' (5.15)
with
1 r 3 2d
A(q;Z)=C10,10'(q)+ﬁ<b3d3+_5_3a1b1d2+_5_]_"2b3d3—-\/—g_)
X Cy0,10(d;592)
2d,b
+-1-(b +d,b,b, +rabdb +3I“2b3+3l“dbb 2 2)
J15 5 5 5 | \/3
: X Cyy1,1141592)
1
———(dbb+b +2abdb +3deb g—d—zﬁ)
J15 \/3
x C,r11ay,9,)
2 1 BJ(q,)
a=—+— I =
' ﬁ \/5 2 T
1
bl(q;2)=
—iz+r +3+ B 1__£_ J(q,)
(q1) 61: ) \/5 ql‘
1
d(g; z)=
—iz4r, +r +2_lﬁ~’(‘12)
(q1) (q2) T 15 T
d(q;2)
d N =
(®2) ,___ 6ab,dr}
25f(1——b r )
3I',b
b,(g2) = 2 31
5ﬁ(1~gb1r2>
az(q;z)=grz{1— 3“1b13r2 }
| \/5(1—51)11“2)
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I
a, (g 2) = 22 <1 —Ebll‘Z)(%— 1>.
V5 NS

These equations have interesting implications which can be fully understood only by
their numerical evaluation. They are in the spirit of usual field theory results as
corrections occurs by addition of self energy terms to the denominator and to the
spectral weight. However, we do not present such results here as in a later paper
we shall study these equations numerically and extend the formalism to the critical
dynamics.

6. Concluding remarks

To summarize, we have introduced in this paper a new method to deal with the
statistical dynamics of vector spin systems. The method builds a series of approxima-
tions by systematically restricting the Hilbert space for the Fokker—Planck operator.
Since the method is different from the usual field-theoretic methods, we expect that
its numerical study will lead to ehicidation of the notion of universality in dynamic
critical behaviour. The method also reveals interesting qualitative features about the
hierarchy in the relaxation spectrum of vector spin systems. This hierarchical feature
which we believe has been pointed out for the first time, should provide new methods
to implement renormalization group ideas in the studies of the dynamics of vector
spin systems.

Appendix 1

B, (L,m)=[(, Fm)( £ m,+1]"

[U+m+1)(I—m+1) 1/2
A°+(l’m)_[ 2+ )21+ 3) ]

(I 4+ m)(1 —m) :|1/2
Q2+ )2+ 3)

C [a+mEDiEm+)
A++.(l,m)—"[ Q1+ 1)(21+3) }

hwum=[

- 2
A, _(m= | DU 1)]
| @+1)@2i-1)
| _"U—m+DU—m+ﬁT”
A_+(l,m)—L @l +1)(21+3).
_[a+mi+m—1n7"
4_-(1»’”)—L QI+ 1)Q2I-1) ]
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gl...lk,mk—l-yk,...,lp-}-ap,mp-kup...)
=mk{Ao+(lp,mp)|...lk,mk,...,lp+ Lm,...>

+AO_(lp,mp)l...lk,mk,...,lp— l,mp...>}
+%B+(lk,mk){A_+(lp,mp)|...lk,mk+ 1,...,lp+ l,r'np—l,...>
+A__(Gm)l dom 1,0~ 1,mp—1,...>}
+—21—B_(lk,mk){A++(lp,mp)l...lk,mk—1,...,lp+ Lm,+1,...>
+A _m)]dym =1L —1m +1,..5}

Y f}...lk+ak,mk+uk,...,lp+ap,mp-{-,up...>

TkiTpabticsllp
=mk{A++(lk,mk) y A_ﬂp(lp,mp)l...lp-i-ap,mp~~ 1,...,
op=7
L+1Lm. +1,..5

+A, _(om) ¥ A_ (Lm)l...l +a,m —1.., L~ Lm +1,..)
ap=+ .

—A_ Uom) ¥ Ay, (Lm)Lto,m + 1. L+ Lm—1,..)

ap=1=+

~A__(,m) Y A+ap(lp,mp)|...lp+ap,mp+1,...,lk—1,mk—1,...)}‘
gp=+

+B_(lk,mk){A0+f(lk,mk—l) Y A, (Lm)l..l +o,m +1,...
ap=+
CoL L+ Lm =100

+Ao-(lome=1) Y A, (ymy)l...L+0,m+1,...,m—1..>

op=+

— A Uom—=1) T Ag (Lm)l.l +o,m, .. L +1m,.>
op =

+

ap=1t

—A, _(,m -1 AOGP(lp,mp)l...lp+ap,mp,...,lk——l,mk,...>}

+ B+(lk,mk){A_+(lk,mk +1) X Ay, (m ).l +o,m,..

ap=1

A Lm0

+A__(l,m +1) Z_:+AOUp(lp,mp)[...lp+o—p,mp,...lk—-1m >

s My ene
p= X

304 Pramana - J. Phys., Vol. 43, No. 4, October 1994




Statistical dynamics of vector spin systems

Ao (lom+1) X A, (Lym)...L+om,.. L +1m+1,..>
gp=+

—Ay_(L,m, +1) Zi A_dp(lp,mp)l...lp+ap,mp,....,lk— Lm, — 1,...)}
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