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1. Introduction

An age-dependent branching Markov process consists of a finite collection of particles
distributed in R in which each particle lives for a random length of time and upon its
death gives rise to a random number of offspring. Further, during its lifetime the offspring
migrates according to a prescribed Markov process starting from the position where its
parent died. The motion process, offspring distribution and lifetime distribution are all
independent of each other.

In our model the motion process is allowed to depend on the age of the particle. The
lifetimes are not necessarily exponential. The state space R is chosen mainly for technical
convenience and plays no role in the proofs of our results. We assume that the system is
critical, i.e. the mean of the offspring distribution is one. We shall describe the model more
precisely in the next section.

We study three aspects of such a system. First, at time 7, conditioned on non-extinction
(as such systems die out w.p. 1) we consider a randomly chosen individual from the popu-
lation. We show that asymptotically (as t — ©00), the joint distribution of the position
(appropriately scaled) and age (unscaled) of a randomly chosen individual decouples (see
Theorem 1.1). Second, it is shown that conditioned on non-extinction at time ¢, the empiri-
cal joint distribution of the age and the normalized position of the population converges
in law as ¢ — oo to a random measure characterized by its moments (see Theorem 1.2).
Finally, we establish a super-process type limit in a special case. We assume that the
motion is governed by an age dependent diffusion and the lifetimes are exponential (see
Theorem 1.3).
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Biological applications have motivated the study of branching Markov processes.
Branching Brownian motion where the branching part evolves as a standard Markov
branching process, lifetimes are exponential and the movement of each individual is
Brownian motion has been studied in [13]. More recently, Athreya and Kang [2] studied
the case of discrete time Galton—Watson branching process where the movement was
modelled as a positive recurrent Markov chain. The above papers focussed on the super-
critical case, where the population size diverges to infinity over time. There are many
situations, such as in population genetics (see [12, 15]) where the population evolution is
not supercritical but critical, wherein the population dies out in finite time with probability
one. However, conditioned on non-extinction, the appropriately normalized process has a
limiting distribution, called the Yaglom-limit (see [5] or [17]). The study of the size, age
and location spread of such population is of interest.

Limit theorems for critical branching Markov processes where the motion depends on
the age does not seem to have been considered in the literature before. These are addressed
in this paper.

1.1 The model

We begin with the description of the particle system. Suppose we are given the following:

(1) Lifetime distribution G(-). Let G(-) be a cumulative distribution function on [0, c0),
with G(0) = 0. Let u = [;° sdG(s), and assume [;* s*dG(s) < oo.
(i1) Offspring distribution p. Let p = {pr}x>0 be a probability distribution such that
pr<lm=Y kpy=1andthato? =Y 22, k?pp — 1 < o0.
(iii) Motion Process n(-). Let n(-) be a R valued time-inhomogeneous Markov process
starting at 0. We assume that for all 0 < ¢ < oo,

E(n(n) =0, v(t) = E*(1)) < 00, sup v(s) < 0o,

0<s<t
o0
and Y :/ v(s)G(ds) < o0. (1.1)
0
Branching Markov process (G, p, )
Suppose we start with an initial configuration Cy = {(aé, Xé):i =1,2,..., No}, Ngp < 0.

aé , X 6 respectively denote the age and position of the i-th particle at time 0. The i-th particle
present in the system at time O lives for a random length of time L; with distribution G and
upon its death gives rise to a random number of offspring & with distribution p. During its
lifetime L the particle moves in R, according to the process {x + n(¢): 0 <t < L}, where
x denotes the position of its parent at the time of its birth. More precisely, if an individual
is born at time 7 and at location x and has lifetime L, then it moves during [z, T + L) and
its movement {X (#): T <t < v + L} is distributed as {x +n(t — 7): 7 <t < v+ L}
and thus the movement of any individual is a random function of its age. We assume that
the three objects (L, &, n) associated with each particle are independent and the family of
triplets (L, &, ) over all particles in the system are i.i.d.
Let N; be the number of particles alive at time ¢ and

C={d,X):i=1,2,...,N}) (1.2)
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denote the age and position configuration of all the individuals alive at time 7. Since
m = 1 and G(0) = 0, there is no explosion in finite time (i.e. P(N; < oo) = 1). Also
P(n(L) € R) =1 for each particle. Thus C; is well-defined for each 0 <t < oo.

Notation 1.1. For a particle chosen at random from those alive at time #, let M;,
{L;i, {nti(u),0 < u < Ly}: 1 <i < M,}, denote the number of ancestors, the life-
times, and the motion processes of its ancestors respectively and {n;y,+1)(#): 0 < u <

t— Zle'l L;;} be the motion of the individual concerned. If M, = 0, then
a=a+t and X, =mn(a+1)—na)+ Xo, (1.3)

where a and X are the age and the position of the particle at time ¢t = 0. If M; > 0, then
the age and position (a;, X;), of the particle are given by

M,
a=1-Y Li+a, (1.4)
i=1
and
M;
Xi = Xo—n0(@) + Y mi(Lai) + i 41 (@) (1.5)

i=1

Note that given {M;, L;;, 1 < i < M;}, the collection of stochastic processes {n:; (1),
0 <u <L, <i < M,} have the same distribution as {n(u): 0 < u < L} and are
independent of each other.

The above model of the particle movement may be contrasted with the models considered
in the superprocess literature (see [7]). In those models, given the full branching tree
generated by the offspring distribution p and the lifetime distribution G, the motion process
for each line of descent is a Markov process 7 with a given transition function. Thus, the
position of a sampled individual at time ¢ has the same distribution as 7(#) and this is
different from (1.5).

Let B(R4) (and B(R)) be the Borel o-algebra on R, (and R). Let M(R4+ x R) be
the space of finite Borel measures on R; x R equipped with the weak topology. Let
MRy xR):={ve MRy xR):v=3",84x(,),neN,aq €Ry,x; €R}.For
any set A € B(R;) and B € B(R), let Y;(A x B) be the number of particles at time ¢
whose ages are in A and positions in B. As pointed out earlier, m < 0o, G(0) = 0 implies
that Y; € M,;(R4 x R) for all # > 0 if Y; does so. Fix a function ¢ € C,jr (R4 x R) (the
set of all bounded, continuous and positive functions from R, x R to R ), and define

N; ) )
.1 = [ oar =Y pta. XD, (1.6)
i=1

Since 7 (-) is a Markov process, it can be seen that {Y;: + > 0} is a Markov process and we
shall call Y = {Y;: t > 0} the (G, p, n)- branching Markov process.
Note that C; determines Y; and conversely. The Laplace functional of Y, is given by

Lt¢(a, Xx) = Ea,x[e_(¢’Y’>]

=E[e™ MYy =8,x], t>0, and ¢eC/ Ry xR).
(1.7)
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From the independence intrinsic in {Y;: ¢t > 0}, we have
Eyy i [e™ 9] = (B, [e” DY) (B, [e™ 911, (1.8)

where E,[e~ ¢ 1)) .= E[e~ Y |Yy = v] forv € M, (R4 x R). This is usually referred
to as the branching property of Y. In particular, if v = )| 84, »,, n < 00, then (see [10])

n
EyJe” @] = ] Lo (ai, xi) = elloetd),

i=1
1.2 Main results

In this section we describe the main results of the paper. Let A; be the event {N; > 0},
where N; is the number of particles alive at time ¢t. As pg < 1, P(A;) > 0O for all
0 <t < oo provided P(Nog = 0) # 1. Let ¢ be as defined in (1.1).

Theorem 1.1 (Limiting behaviour of a randomly chosen particle). On the event A; =
{N; > 0}, let (a;, X;) be the age and position of a particle chosen uniformly from those
alive at time t. Assume (1.1). Then, conditioned on A;, (at, f;—%) converges ast — 00,

to (U, V) in distribution, where U and V are independent with U a strictly positive,
absolutely continuous randomvariable with density given by /lt(l —G(+))andV isnormally
¥

distributed with mean 0 and variance o

Next consider the scaled empirical measure Y, € My(Ry x R) given by Y;(A x B) =
Y;(A x /tB), A € BR}), B € B(R).

Theorem 1.2 (Empirical measure). Assume (1.1). Then, conditionedon A; = {N; > 0},

the random measures {%} converge as t — 00 in distribution to a random measure v,

characterized by its moment sequence my(¢) = E[(v, ¢)k],f0r¢ € C;r Ry xR), k> 1.
An explicit formula for m(¢) is given in (4.3) below.
Remark 1.1.

(i) Theorems 1.1 and 1.2 can also be extended to the case when n(L1), with L 4 G, is
in the domain of attraction of a stable law of index 0 < o < 2.

(i) Equations (1.4) and (1.5) suggest that Theorem 1.1 should follow from the central limit
theorem. But conditioning on non-extinction introduces dependencies in the lifetimes
of the ancestors of the chosen individual. To take care of this we prove in §2 four
propositions on age-dependent branching processes which are used in proving the
result (see §3).

We now study the super-process scaling limit for the age-dependent branching process.
For a review of the super-process literature we refer the reader to [7], [10], [11] and [16].
One may view a super-process as a renormalized limit of the empirical measure of a
sequence of branching Markov processes. When motion depends on age or in the branching
Markov process the position of the parent at the time of its death and the positions of
its offspring (at the time of their birth) are not the same, the system is said to be non-
local. In such systems the standard super-process scaling limit procedure does not work.
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References [6] and [8] have considered two special cases where such a scaling limit has
been obtained. In [6] an age-dependent branching process is rescaled (i.e. the particles do
not perform any motion) and in [8] a general non-local super-process limit is obtained
when the offspring distribution is given by p; = 1.

In order to obtain a super-process type limit, we scale the age and the motion differently.
In the limit we obtain an age-‘averaged’ super-process. To illustrate this idea we consider
a specific sequence of branching Markov processes (G, Pu, n){n>1} denoted by {Y/":
t > 0}y>1) given by:

Notation 1.2.

(a) Initial measure. Forn > 1, Yg = 7,,, Where 1, is a Poisson random measure with
intensity nv, for some finite product measure v = o x u € M(Ry x R).

(b) Lifetime G"(-). For alln > 1, G" = G is an exponential distribution with mean %
0< X <oo.

(c) Offspring distribution p,. Foreachn > 1,let F,(u) = > 1o pn,kuk be the generating
function of the offspring distribution p, = {pn.k }x>0. We shall assume that F}, satisfies,

lim sup |n*(F,(1—u/n) — (1 —u/n)) —cu*| — 0, (1.9)

n—00 0<u<N
for some ¢ > Oand all N > O.

(d) Motion process n,(-). Foralln > 1,

t
{nn(t) = %/0 o (u)dB,(u), tzO,} (1.10)

where {B, (t): t > 0} are independent standard Brownian motions starting at O and
o: R4 — R is a continuous function such that for each n > 1, n, satisfies (1.1).

We now define the limiting age-averaged super-process.

DEFINITION 1.1

Let f € ClJr(R+ x R) (the set of all nonnegative, continuous functions from R x R to
R with finite limits at infinity). Let {B;: t > 0} be a standard Brownian motion and £ an
exponential random variable with mean %, 0 < A < oo, independent of {B;: t > 0} and
let ¢ be as defined in (1.1). Let

U fx)=E(f(E x+/AYB)), xeR,r>0.
Let u;(f) be the unique solution of the integral equation
t
us f(x) =Us f(x) — ck/ Uy (us(f)*)(x) ds, xeR,t>0. (111
0

LetY = {);:t > 0} be a M(R; x R)-valued Markov process such that Vg = € x u, i.e.
Yo € M(Ry x R) and for any f € Cp (R4 x R),

(f, Vo) = A / fla,x)e™ da p(dx),

R+XR
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and whose Laplace functional is given by
Egyule V) = E[e™ )y = € x p) = e~ (D), (1.12)

The function ug(f) in the second term of (1.11) is interpreted in the natural way as a
function on R4 x R with us(f)(a, x) = ug(f)(x) foralla > 0, x € R. It can be shown
that there is a unique solution of the nonlinear integral equation (1.11) and there exists a
M R4 x R)-valued Markov process ) satisfying (1.12) (see [7]).

Note that in the process YV = {);: t > 0} defined above, the distribution of the age (i.e.
the first coordinate) is exponential and does not change with time. The spatial evolution
behaves like that of a super-process where the motion of particles is like that of a Brownian
motion with variance equal to the averaged (over lifetime) variance of the age-dependent
motion.

Theorem 1.3 (Age structured super-process). Let € > 0. Let {Y': t > 0},>1 be the
sequence of branching Markov processes defined above (i.e. in (a), (b), (¢) and (d)).
Then as n — oo, {JI' = %Y},’t,t > €} converges weakly on the Skorokhod space

D([e,00), MRy x R)) to {V;:t > €}.

The rest of the paper is organized as follows. In §2, we prove some preliminary
results concerning age-dependent branching processes. Using a central limit type theorem
(Proposition 2.3) proved in this section we prove Theorem 1.1 in §3. In §2, we also show
that the joint distribution of coalescent times for a sample of k > 1 individuals chosen at
random from the population at time ¢ scaled by ¢ converges, as t — oo (see Theorem 2.1).
This result is of independent interest and is a key tool in the proof of Theorem 1.2 in §4.
Finally in §5 we prove Theorem 1.3.

2. Results on branching processes

Let {N;:t > 0} be the age-dependent branching process with offspring distribution { px }x>0
and lifetime distribution G as defined earlier. Let {¢x}x>0 be the embedded discrete time
Galton—Watson branching process with ¢ the size of the k-th generation, k > 0. Recall that
A; = {N; > 0}. On this event, choose an individual at random with uniform distribution
from those alive at time ¢. Let M, be the generation number and a, be the age of this
individual, respectively.

PROPOSITION 2.1
Let Ay, a;, M; and N; be as above with Ny = 1. Let i and o be as in §1.1. Then
(a) lim tP(A;) = 2,
t—00 g

. N —2ux

(b) forall x > 0, lim P(T’ > x|At) =e o2
11— 00

. M, 1 — 0

(c) foralle > 0, zlinolo P(|4 - ﬁ| > €|A;) = 0;

(d) forallx > 0, lim P(a; < x|A;) = 1 f(f(l — G(s))ds.
t—00 ®

Proof. For (a) and (b), see chapter 4 in [5]. For (c), see [9] and for (d) the proof from [3]
for the super-critical case can be adapted. O
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PROPOSITION 2.2 (Law of large numbers)

Let € > 0 be given. For the randomly chosen individual at time t, let {L;;: 1 < i < M;}, be
the lifetimes of its ancestors. Let h: [0, 00) — R be Borel measurable and E(Jh(L1)]) < 0o

with L 4 G. Then, ast — o0,

1 M
P <‘ﬁ, ;hm» — E(h(L1))

> e|A,> — 0.

Proof. Let € and €] > 0 be given and let k{(t) = t(ﬁ —€) and k(1) = t(ﬁ + €).

By Proposition 2.1 there exists § > 0, > 0 and #y > 0 such that for all # > #,

tP(N; >0)>68 and P(N; <tnlA;) < €q; 2.1

P(M; € [ki(t), k2(D]|Ar) < €. (2.2

Also by the strong law of large numbers for any {L;};> i.i.d. G with E|h(L)| < oo,

J
lim P (sup th(Li) — E(h(Ly))

k— 00 j=k|J P

> e) =0. 2.3)

Let {¢k}k>0 be the embedded Galton—Watson process. For each ¢t > 0 and k > 1, let
Ck: denote the number of lines of descent in the k-th generation alive at time ¢ (i.e. the
successive lifetimes {L;};>1 of the individuals in that line of descent satisfying Zi‘: 1 Li <
t < Zkill L;). Denote the lines of descent of these individuals by {¢x;j: 1 < j < {ie).

1

Call Ckej bad if

> €, 24

1 k
© 2 ML) — E(h(L1))
i=1

where {L;j;}i>1 are the successive lifetimes in the line of descent &;; starting from the
ancestor. Let &, , denote the cardinality of the set {¢;j: 1 < j < {x, and &y is bad}. So,

P (the chosen line of descent at time ¢ is bad, M, € [k (1), ko(¢)])|A;)

k(1) )
_ . itk fﬂ»b; A,
P(Ay) N,

Consequently,

1 M
P ( i Zlh(Lm — E(h(L1))

i=

> €|A[)

= P (the chosen line of descent at time 7 is bad|A;)
< P (the chosen line of descent at time ¢ is bad, M, € [k1(t), ko()])|A;)
+ P(M; € [k(1)), ka(1)]°| Ay)
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ka (1)
1 2k Sird
= ;A P(M; € [ki(2)), k2 (1)]°|A
PN, S 0) N |+ P € ki), ka0 1A)
ko (1)
1 Zj2=k1(t) Cjtb
= ; Ny > tn
P(N; > 0) N;
ka (1)
1 i~k (1) Sitb
+ Z]_kl([) " ;0< N, <1
P(N; > 0) N,
+ P(M; € [k (1)), ka(t)]°| Ar)
ka (1)
1 Dk Sitb
< = st )
P(N; > 0) n

PO < N; <tn)
P(N; > 0)

1 ka(1)

= Y EGi)
mP(N, > 0) j=k21:(t) Sitd

+ P(M; € [ki (1)), ka(1)1°|Ar)

+ PO < Ny <9[Ny > 0) + P(M; € [ki (1)), ka(D)]°|Ap). 2.5

For t > 9 by (2.1) and (2.2), the last two terms in (2.5) are less than €;. The first term is
equal to

— E(jtp)
tnP(N; > 0) )

1 ko (t)

4
mP (N, > 0) E 1 jri 1s bad
tnP(N; > 0) j:kzl(t) ; {¢jri is bad}

| k()

Jj+1

xP(XJ:Liﬁt<ZL,-, >6>,
i=1 i=1

where the {L;};> are i.i.d. G. Using (2.1) and (since m = 1) E(¢;) = E(Zp) we can
conclude that

1d
— Y h(Li) = E(h(L1))
i3

1 ko (1)

— E(Cji,p)
tP(N; > 0) F%:(t) bt



Age-dependent branching Markov processes 371

LS hL) — EG(Ly)| > €

P (S“szk. ®

< E(%o)

LS (L) = EG(La)| > €)
né

P (SUPJ' >k (1)

< E(%0) , (2.6)

which by (2.3) goes to zero as t — 00. So we have shown that

1 &
lim sup P <‘ﬁz ;h(lan’) — E(h(L1))

1—>0o0

> e|A,> < 2€.

Since €1 > 0 is arbitrary, the proof is complete. O

In the following, for any collection A of random variables, o (A) will denote the
o -algebra generated by .A.

PROPOSITION 2.3

Assume (1.1) holds. Let {L;}i>1 be i.i.d. G and {ﬁi.}izl bei.i.d. copies of n and independent
of {Li}i>1. For0 € R, t > Odefine p(0,1) = Eei90  Then there exists an event D, with
P(D) =1andon D, forall 6 € R,

ﬁ¢(9 L) Gy
—,L;)—>e¢ , as n— 0o,
o\

where ¥ is as in (1.1).

Proof. Recall from (1.1) that v(t) = E((t)) < oo fort > 0. By the strong law of large
numbers and (1.1),

> v(L))

— ¥ wp. L. 2.7
n

Note that,

- 6 105" Xy

[]¢ Lj | = E@7 =), 238)

i=1 ,/Z;'.:l v(L;)
where

ni (L)

Xni = for 1 <i <n,

S v

and F = o(L;:i > 1). We need to prove a central limit theorem for the triangular array
{Xnj: 1 < j < n}.Given F, {Xyui: 1 <i < n}isatriangular array of independent random
variables such that for 1 <i <n, E(X,|F) =0, Y 7_, E(X’%i|]-') =1.

Let € > 0 be given. Let

n
La(e) =Y E(Xy: Xp; > €| F).
i=1
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Let D be the event on which (2.7) holds. Using the dominated convergence theorem, we
have

n—o0 n—0o0

hmsupL(e)<hmsupw—ZE(|n,<L)| i (L) ”Zwuf)

< lim sup lim sup 1//— ZE(Im(L D7 i (L)* > k| F)

k—>o00 n—o00

. 2
< hmsupEEam(Ll)F: Im (L) > k)

k— 00
=0,

on D. Thus, the Lindeberg—Feller central limit theorem (see [4]) implies, that on D, for
alld e R,

. 05" X, =02
Tim B Xm0 F) > e

Combining this with (2.7) and (2.8) we have the result. O

PROPOSITION 2.4

For the randomly chosen individual at time t, let {L;;, {n:; (u):0 <u < L} 1 <i < My},
be the lifetimes and motion processes of its ancestors. Let H; = ﬁ Zﬁ] ni(Lyi), and
‘Ct = U(Mt, Ln‘: 1 < i < Mt) Then

E(EE™|L,) —e 2 ||A) — 0. (2.9)

Proof. Fix 0 € R, €1 > 0 and € > 0. Replace the definition of ‘bad’ in (2.4) by

_6%y
< th]l) —€ 2

> €. (2.10)
By Proposition 2.3 we have

]’[¢<9 >—e—922‘” >e|=0. (2.11)
Vi

Using this in place of (2.3) and imitating the proof of Proposition 2.2 (since the details
mirror that proof we avoid repeating them here), we obtain that for ¢ sufficiently large

M & 0%y
(1o ()
i=1 v M; l

Now for all 6 € R,

(’Qwa)—]%[as( ’ )
Nea

hm P (sup

> 61|A,) < €. (2.12)
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So,
gL Moo 02y
lim sup E(|E(e'9W‘Tf Lin m(L”)U.:z) —e 2 ||Ap)
11— 00
M,
0 0%y
= limsup E ——, L) —e 2 ||A
[-)oop ( ll:!¢ (m tl) t)
M;
0 02y
< €1+ 2limsup P (—,L<)—e_2 > €1|A
m sup (gqs e L A
= €] + 2e.
Since € > 0, €] > 0 are arbitrary we have the result. O

The above four propositions will be used in the proof of Theorem 1.1. For the proof of
Theorem 1.2 we will need a result on coalescing times of the lines of descent.

Fix k > 2. On the event A; = {N; > 0}, pick k individuals Cy, C3, ..., C, from those
alive at time ¢ by simple random sampling without replacement. For any two particles
Ci,Cj, let TC;,Ciot be the death time of their most recent common ancestor. Let 74— ; =
sup{rcj,c;,,: i #j,1 <i,j <k} Thus t4_1, is the last time and before ¢ there are k — 1

ancestors of the k individuals Cy, C2, ..., Cr. More generally, for 1 < j <k —1,let 7},

be the last time before r when there are j ancestors of the k individuals C1, Cy, ..., C.

Theorem 2.1.

(i) For any i, j, tlim P(w < x|At) = H(x) exists for all x > 0 and H(-) is an
—00

absolutely continuous distribution function on [0, 1].

(i) Conditioned on A; the vector T, = %(Ij,t: 1 <j<k-—1)ast — 0o converges
in distribution to a random vector T = (Th,....Ti) With0 < T) <Th < --- <
Ti—1 < 1 and having an absolutely continuous distribution on [0, 11

Proof. The proof of (i) and (ii) (Case k = 3) can be found in [9]. It suffices to prove (ii).
Below, for 1 < j <k —1, t;, will be denoted by 7;. It can be shown that it suffices to
show thatforany 1 <i; <iz--- <ip <kandO <ri <rp <---<rp<rpy <l=

rp+27

. T; T; T Tk—1
limP(L<r<2<rm<-o<—L<r, <= <r 1 < 1A
t t t b t P

(2.13)

exists and is absolutely continuous.

Suppose that at time ¢r; there are n; € N particles of which k; have descendants that
survive till time ¢r5. For each 1 < j < ki, suppose there are ny; € N descendants alive at
time 772 and for each such j, let k2 out of the ny; have descendants that survive till time
tr3. Letky = (kop, ..., ko) and k| = Zl;lzlkzj. Inductively, fori = 3,..., p + 1,
at time ¢r;, there are n;; descendants for the j-th particle, I < j < |k;_1]|. For each such
J» let k;;j out of n;; have descendants that survive up till time #7; 1 (see figure 1 for an
illustration).
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t7'1 t’l'g t’f'g
ki1 =6,,k2 =(2,0,1,1,0,1),| k2 |[=5,k3 = (0,2,1,2,1), | ks |=6
n11 = 51,ne = (12,7,5,4,1,7),ng = (5,14, 9, 10, 8)

Figure 1. Tracking particles surviving at various times.

Let Ny = {(n1,k1): n1, k1 € Nykj < ni}.Fori =2,...p+ 1letny = (n;1,n;2,
Ki_
i) Ki = (it K2, - Kijlg_y)). such that ngj ki € N, and [Ki| = Y151 k.

Let N; = {(n, ki): kij < njj for2 < j < [ki_1|} and N = I—[;:-ll N,
Let fy = P(N; > 0|[Ng = 1). Now,

T Ti T Thk—1
P(%<r1<%<r2<-~-<7p<rp<7<rp+1<1|A,)

— Jn ((2) (fra) (1 = f,m)’“_'”) PNy, = n1INir, > 0)

p+1 ki1l .

i=2 j=1
& .
szl X
Sk ’

X

x PINY = nijING) > 0)g(k)E (

with u; = rig1 —rii = 1,2,...,p + 1, Nt(,{i) is the number of particles alive at
time ru; of the age-dependent branching process starting with one particle namely j,
g(k) = g(ki, ..., kp) is the proportion of configurations that have the desired number of
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ancestors corresponding to the event of interest in (2.13), X W 4 N (N W 0)

tup+1|( tuer]
k
and S = ZL:‘T‘ XU,

Let g = [~ and g; = °

1

Proposition 2.1(a) and (b) repeatedly we can show that P(r;—' <r < r’% <r <<

.
2 <rp, < ®L < < 1]A;) converges to

t
1 1
— Z /dxe_"(qlx)kl—e_xq‘
k!

,
b ekl

p+1 |ki—1] (qix)

- 1 —
xnnfmxk,w«m>
=< ]

/k+1 lxi _ ]v(Jr]l)r (xk+l)|kp+1‘_(k+l)
e ~i=1M
"“ xi)k (lkpr1| — (k+ 1))!

l 1 X

ptl kil
(g:)
a2 g mmme®

kelel 1l i=1

k+1 k [kpy1l—+1)
[Tizi xi skl () TPF
dx; [ L= . 2.14
<[ e ((Z"* . )e (Ikpa] = (k -+ 1)! e

Consequently, we have shown that the random vector 7; converges in distribution to
a random vector 7. Since the right-hand side of (2.14) is a differentiable function
of (r1,r2,...,7k—1), it follows that T has an absolutely continuous distribution on
[0, 1751, m

ri

3. Proof of Theorem 1.1

Using Notation 1.1 we have

M;
ar=1— ZL”’
i=1

whenever M; > 0 and is equal to a + ¢ otherwise; and that

M;
X =Xo+ Z Nei (Lei) + e, +1) (ar).

i=1

Rearranging the terms, we obtain

)
_ (Cln \/ng) + (o, (\/E_ \/g) H,) +0. ) + (0, %)
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M; .
where H, = Zizy ML) and J; = %ﬁn,(M,Jr])(at). We shall show that as t — oo,
LA, 5o, 3.1
and
1 d
ar, —H; | |1A; — (U, V). (3.2)
Ji

As i(—[‘; £ 0, an application of Proposition 2.1(c) along with Slutsky’s theorem will yield
the result. So we now prove (3.1) and (3.2).

Proof of (3.1). Let € > 0 be given.
P(J:| > €|Ay) < P(IJi] > €, ar < k|Ay) + P(|J;| > €, a; > k|Ay)
< P(lJ:| > €, a; < k|Ay) + P(ar > k|Ay)

_ EQP Ly <t AD)

< d + Pla; > k|A)).
€

By Proposition 2.1 and the ensuing tightness, for any n > 0 there is a k;; such that
Ui
P(at > k|At) < 5
forall k > k;,t > 0. Next,

E(1Ji* Loy <k, |AD) = E(La <k, E(1J: 71 £) | Ar)

v(ay)
=E (Ia,gk,,T’m,)

sup,, <, v(u)

t
Hence,

sup, <, V) g

P(lJ, €lAy) < —~.
(Ui > €]Ay) = 12 )

Since € > 0 and n > 0 are arbitrary this proves (3.1).

Proof of (3.2). Now we consider the second term. For A > 0, 0 € R, as a, is £, measurable
we have

0 4 02y
Ee e Vi A) = B (B L) — e 20 A))

02y
+e”  E(eTMA)).

Proposition 2.4 shows that the first term above converges to zero and using
Proposition 2.1(d), (3.2) is immediate. O
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4. Proof of Theorem 1.2

Let ¢ € C; (R x R4). We shall show, for each k& > 1, that the moment-functions
E ( o) y‘ |A; ) converge as t — 00. Then, by Theorem 16.16 in [14] the result follows.

The case k = 1 follows from Theorem 1.1 and the bounded convergence theorem.
We shall next consider the case k = 2. Pick two individuals Cy, C, at random (i.e. by
simple random sampling without replacement) from those alive at time ¢. Let the age and
position of the two individuals be denoted by (a!, X!),i = 1, 2.

~ 2
(%2
Z,{\;’]‘sz(‘ln_)*—zu ' ( X_;t)¢(alj’§_é>
N?

—E L%&(f X_£>|A

SN & i)
S (e )
N2 A= “ )

i#j
# e (5 (o ) ) )
= _— a , — =
Nt t \/; t t
SR (el e (e ) m )
+E|(———E a; , — N )|A
( N,2 d) t «/— ¢ t «/— | t I t
e (e (atxb—o(at ) (. ) ) )
= a, , — a, , — a
Nl‘ 1 1 \/; 1 \/E 1 1
1 2
oo ) ) ) )
Vi Vi
e (e (atxt = (o) o (45 e) )
= . _— a
Ny “ v Vi)t
X, > X7
+ FE a,, — a, — | |A; ). 4.1
(o 2)o ) ) o
As ¢ is bounded, the first term on the right hand side in (4.1) is bounded above by a constant
times E(NL[ |A,), which goes to 0 as  — oo by Proposition 2.1(b). We will now analyse the
second termin (4.1). Let t; = ¢, c,,: be the death time of the common ancestor, say D, of

C1, Cy. Let the position of D at time 1, be given by X 7, - Let the net displacement of Cq and
C, from D be denoted by X! _ > = 1, 2 respectively. Then X; i = Xr, +X,_.,i=12

=147
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Conditioned on the history up to the death of D, say G;, the random variables
(af, X;_ ,t) i = 1,2 are independent. By Theorem 2.1(i) conditioned on At, converges
in distribution to an absolutely continuous random variable 7' (say) in [0, 1]. Also by

N =2
to {(U;, Vy),i = 1,2} whick} are i.i.d. with distribution (U, V) as in Theorem 1.1. Further,

using Theorem 1.1 again, X—;’f conditioned on A;, converges in distribution to a random
variable § distributed as V and independent of {(U;, Vi), i =1, 2}.
Combining these one can conclude that {(af, X7;;>l = 1, 2} conditioned on A;

converges in distribution to (Ui, VTS + JA=T)V;),i = 1,2}). Thus for any
¢ € Cp(R4+ x R) we have, by the bounded convergence theorem,

- ol X
i £ ([T (o )

2
=E[[oWi. NTS+/ (A =T)Vi) =ma(g) (say). (4.2)
i=1

Hence we have shown that the second term of (4.1) converges to m3(¢) and we are done.
Next, we consider the case k > 2. For any ¢ € C; (R x R4) one has

BAL Ni(N; — (N, =2)--- (N, —k '
E(<¢th> |At>=E< (N, — 1)( thk) )Zl_[¢< )|A>

t ieCy j=1
+E(0 1 |A
N, t]s

where Cy is the collection of indices of the k particles sampled without replacement from
the particles alive at time #. We shall deem C; = on the event {N; < k}. Consider one such
sample, i, and trace the genealogical tree T € 7j(k),(Z;(k) is the collection of all possible
labelled trees with & leaves given by i), until their most recent common ancestor. For any
leafij in 7, let 1 = n(ij, 1) < n(i;,2) <--- < n(ij, N;;) be the labels of the internal
nodes on the path from leaf i; to the root. We list the ancestoral death times on this by
{t1, Tn(i S e Ty, ij)} Finally, we denote the net displacement of the ancestors in the
time intervals

Theorem 1.1 conditioned on G; and A;, {(a{ , Xy ) i=1, 2} converges in distribution

[0, 7], [71, Tniij 2015 - - s [Tnij N =10 TntijNi )1 [Ty i) 2

by

- - Ni; -
fll.lj (t1), '7,'2]. (Tn(i;.2)5 T1)s - -+ i, j (TutijN; ) fn(ij,N,-,.—l)), n,fj (t, Tn(i N ))-

Given the above notation we have

k . ij
() (e

TeT; j=1

N,'j

+ Z 7 (Tt jomys Tnijm=1) + 717, (& Tt N ) 1A
m=2
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Now by Theorem 2.1,

(T1, TG 2)s - - - » Tn(ij,N,-j))

d
p Ay —> (T1, Tuiij.2)s - - - » Tn(ij,N,-j))-

Further using Theorem 1.1 repeatedly, with appropriate conditioning as in the case k = 2
we obtain

lim E <¢’Y’>k|A —E ZZﬁ Ui, Si /T
Pt Nk t ) — ¢ ijsOij 1

t ieCy TeT; j=1

N; .

J

+ Z Z?;\/Tn(ij,m) - Tn(ij,mfl) + Zz{j 1- Tn(ij,N,'j) |At
m=2

= my(9), 4.3)

where S,-J., Zlfj, Z;:?, m=2,..., N,-J. are i.i.d. random variables distributed as V, and
U,-j are independent random variables distributed as U. For ¢ € C,(R), the sequence
{my(¢): k > 1} is necessarily a moment sequence of a unique probability distribution on

R. This being true for each ¢, by Theorem 16.16 in [14] we are done. O

5. Proof of Theorem 1.3

As stated in the theorem we scale the age and motion parameters differently, to obtain a
super-process limit. Theorem 1.1 is used in establishing the limiting log-Laplace equa-
tion (Propositions 5.2 and 5.3). Tightness of the underlying particle system is shown in
Proposition 5.4 and the result then follows by the standard techniques (see [7]).

Let Cp (R4 x R) be the set of bounded continuous functionon Ry xR and C ;’2 R4 xR)
be the set of bounded functions which are differentiable in the first variable and are twice
differentiable in the second variable. Let Z be the branching Markov process Y described
earlier, with Yy = §(4.x), lifetime G exponential with mean A, p; = 1 and n 4 N (see
(1.10)). Note that Z; has the representation given by (1.3)—(1.5) with Xg = x. For any
¢ € Cp(R4+ x R), define the semigroup

Sip(a, x) = E(a,x)[<Ztv P) = E(a,x)[d’(“ta Xl
Conditioning on the first birth we obtain the following evolution equation for S;:
t
Sipa.x) =e M Tp(a, x) + /0 ds e ™ To(Si—s(9)(0, ))(a, x),  (5.1)

where T; is the semigroup associated to £ given by

2
Lf(a,x)= %(d,x) + g 2(a)

Af(a, x), 5.2)
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with f € C ;’2(R+ x R) and A being the one-dimensional Laplacian. Making a change
of variable s — ¢ — s in the second term of (5.1) and then differentiating it with respect
to ¢, we have

L 5@)a ) = —re Mg, x) + e LT, 1) + 15, @)0, )
+ /O dsh(—ae )T, (S6)(0, )@ )
i /O Cdshe 0 LT, (5,(6) 0, ) @, x)
= AS;(¢)(0, x)+(L—1) [e—“w(a, x)

t
+ / dsre T, (S, ()(0, ~))(a,x)]
0

= 181(9)(0, ) +(L—1)S1 (#)(a, x)

2
_ 058 @
da

Hence the generator of S; is given by

ASip(a, x) + A(S:(#)(0, x) — Si(¢)(a, x)).

Rif(a,x) = Lf(a,x)+1(fO0,x) = fla,x)), feC Ry xR).
(5.3)

For each n > 1, define (another semigroup)
X
Ri¢(a,x) =Eqp <¢ <Cl17 x+ 7}%)) . ¢ € Cp(Ry x R).

Now using the representation (1.3)—(1.4) and (1.10), it is easily seen that the semigroup
R} is the semigroup S; with o replaced by \/%7 Hence, from (5.2), (5.3) it follows that the

generator of the semigroup R} will be given by

R"f(a,x) = L"f(a,x) +1(f(0,x) — f(a,x)), 5.4
where

9 2
L' fla,x) = %(a,x) + 0251“)

Af(a,x), feCy Ry xR). (5.5)
PROPOSITION 5.1
Lete >0andt > €. Let ¢ € C;“(]RJr x R). Then,

sup  |Ry,(9)(a, x) — Ui(p)(x)| — 0. (5.6)
(a,x)eR; xR

Proof. Lett > e. Applying Theorem 1.1 to the process Z, we have (am, %) LN U,tv).

The proposition is then immediate from the bounded convergence theorem and the fact
that ¢ € C;" Ry x R). O
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PROPOSITION 5.2
Let 1,y be as in Notation 1.2. The log-Laplace functional of V;' is given by

Eg, Je” @] = g9, (5.7)

where
W (a,x) = R"n(l — e~ 7)(a, x) — A /dsRZ(t s)< v, ( Z(p))(a,x),
(5.8)

where

Y (@)(a, x) == [Fp(1 —¢(0,x)) — (1 —¢(0, x))].

Proof. For any n € N, let Y/* be the sequence of branching Markov processes defined in
§1.2. It can be shown that its log-Laplace functional L} satisfies

nt
L".¢(a,x) =e T [e?)(a, x) + / dsre ™™ T [Fy(L",_ (0, N(a,x), (5.9
0

where + > 0 and 7 is the semigroup associated with £". Using the fact that e ** =

1— (¥ dsre forall u > 0 and a routine simplification, as done in [10], will imply that
0 p ply

nt
L ¢(a,x) = T,f’,[ef‘P](a,x) + )»/0 T, _(F(LY¢(0,-) — Lip)(a, x)ds
(5.10)

Therefore v}’ (¢)(a, x) = 1 — L} ¢(a, x), satisfies

v d(a, x)

nt
=T'(1 —e ?)(a, x)+/ AsT"_ (1 = v"p) — F,(1 — v)$ (0, ) (a, x)A.
0
(5.11)

Then for 0 <s < t,

d n(t A)(vilY(¢))(a Xx)

d
= —(R"RY ) (Wl (@) (@, ) + Rl (gvzs«p)) (a,x)

= —(R") Ry _) (v (#))(a, x)

+ R (L T (1= e™?) + nA((1 = vj¢) — Fu(1 — )9 (0, ))(a. x))
+ Ry (/0 drn L (T, (1 — v () — Fu(1 — v)e (0, ~))> (a,x)

= Ry (=2 (v (9)(0, ) — vy (9)) + A((1 — vy @) — Fr(1 — v,)(0, )))(a, x))

— Ry (1 (V) @, ).
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Integrating both sides with respect to s from 0 to 7, we obtain that

t
v (@) (@, x) = R} (1 —e %) (a, x) — / ds Ry, ;) (nWy (vy8))(a, x).

(5.12)
If m,,, is a Poisson random measure with intensity nv, then
7Tnu [e (#, yl >] = E”nv [e_(%’y’?’)] = e(L;l (%)_1”“}) = e—(rzv;’(%),\)).
Set ul (¢) = nv;l’,(%) From (5.12), it is easy to see that u} (¢) satisfies (5.7). O

Forany f: Ry xR — R, welet || flloo = sup, vyer, xr |.f (@, x)|. With a little abuse of
notation we shall let || f|looc = sup, g | f(x)| when f: R — R as well.

PROPOSITION 5.3

Lete > 0. Let ¢ € Cl+ (R4 x R) (from Definition 1.1) and u}} (¢) be as in Proposition 5.2
and u; (@) be as in Theorem 1.3. Then fort > €,

sup  |uy (9)(a, x) — ur(¢)(x)| — 0. (5.13)
(a,x)eR4 xR

Proof. For any real u € R, define ¢, (1) = Anz(Fn(l — %) - (1 — %)) — acu?. So,

uy (¢)(a, x)
t n¢
=R;n(l—e n)(a x) — / dsRn(t s)< v, ( )) (a, x)
_¢
=Ry n(l —e n)(a,x)
t
- / AsRY o (e ($(0))) (@, )
0
t
—,\c/ ds R, _ (0, )*)(a, x).

Now

u"t(@)(a, x) —us($)(x)
=R (n(l —e n))(a x) = U(@9)(x)

t
= fo ds R (En (0, )@, x)
t
+he /0 ds (Ur—s (4, )2) (@, ¥) — R, (a0, ) (@, X))
= R".(n(1 — e~ "))(a, x) — Uy ($) (x)

/ dsR2, ) (e (@0, ) (@, )
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! 2 2
+ )»C/O ds Ry ((usd)” —ui¢(0, )")(a, x)

t
+ re /0 ds (Us—((us$)*) (x) = Ry, _ (us$)*) (@, x)).

Observe that R" is a contraction, ||u” () |lcc < l|Plloo and [|u.(d)]lcc < ||@|lco for ¢ €
Ci (R4 x R). Therefore, we have

llug (@) — ur (@)oo =< IRy (n(1 — ) — Ui (@)lloo + tll€n (ug (@0, Nlloo

t
+2Ac||¢>||oof0 ds () — s (é)loc

t
+ )\c/O ds||(Uy—s — RZ(,_S))(Ms(f))z”oo-

For ¢ € C;(R4+ x R), note that U, is a strongly continuous semigroup which implies
that u(¢) is a uniformly continuous function. So using Proposition 5.1 the first term and
the last term go to zero. By our assumption on F, |l€, (u} (¢(0, -))[lco Will go to zero as
n — oo. Now using the standard Gronwall argument we have the result. m|

PROPOSITION 5.4
Let € > 0. The processes Y" are tight in D([€, 00), M(R4 x R)).

Proof. By Theorems 3.7.1 and 3.6.5 (Aldous criterion) in [7], it is enough to show

Vs d) — (V0. 9) -5 0, (5.14)

where ¢ € C1+ R4 x R), §, is a sequence of positive numbers that converge to 0 and T,
is any stopping time of the process )" with respect to the canonical filtration, satisfying
O<e<rt,<TforsomeT < oo.

First we note that as ()", 1) is a martingale, for y > 0 by Chebyschev’s inequality and
Doob’s maximal inequality we have

1 1
Py, ¢)>y) = ;C1||¢”00E( sup (Y7, 1) < ;C2||¢”oo~ (5.15)

e<t<T

By the strong Markov property applied to the process )" we obtain that for «, 8 > 0, we
have

Lo(u; @, B) = E(exp(—a (V" .5 . d) — B, )
= E(exp(=(Vy,., us, (@) + B¢)))
= Eexp(—(V! _ . ul(u} (@) + pp)))).
Therefore
ILn (0 o, B) — L (Bns ct, B)
< llug (ug, (@d) + Bo) — ul (@ + B)P)lloo E(sup(V;', 1))

t<T

< cllug (ug, (@g) + Bp) — u (@ + B9 oo,
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where the last inequality is by Doob’s maximal inequality. Now,
llug (s, (@) + B) — ug (e + B)P)lloo

< Ry (uf, (2g) — ad)lloc
+ 2l /0 dallug (us, (@) + BP) — ug((@ + B)P) oo + dn (),

where d, (¢) = A [ dalle, (ujy (uf (@) + B9)) + €n(uj (e + B)h))lloo. Observe that
| Rye (s, () — adp)lloo
< IRy (u5, (ag) — Rys (@)oo + IRy (Ryys, (@) — o) o

< llus, (@¢) — Ry, @P)lloc + 1Ry (15, (@) — Ry (@)oo

< IR, (n(1 =€) — ai)lloc

4, n
n u, (o
+ / da RZ(an _a) <n2lpn ( a( ¢) )) H
0 n 00

IR s, @) — Rl (@)oo

ap
< ln(—en) —adlloo + uca(lpl2, + 1)
+ IRy e ts,) (@®) — Ry (@d)lloo
= e, ().
Consequently,

lul @} (@) + B) — ul (@ + B o

€
< en(@) + dn(9) + 2ll@ll0o /0 dalluy (us, (¢) + Bo) — uz (@ + B)P) oo
By Proposition 5.1, e, (¢) — 0andd,, (¢) — 0by our assumption F;,. Hence by a standard
Gronwall argument we have that
[Ln(0;5,7) = Ly(n; s, r)| — 0. (5.16)

By (5.15), {()%,, ¢);n = 1,2, ...} is tight in R, . Take an arbitrary subsequence. Then
there is a further subsequence of it indexed by {nx; k = 1,2, ...} such that ( ?nkk, o)
converges in distribution to some random limit b. Thus we get

VI (@), VI (@) = (b, b) as k — oo,
But (5.16) implies that

(%%

Tny

@),V 15, @)~ (b,b) as k — oo

This implies that ()" o) — (VI ) LN Oask — oo. So (5.14) holds and the

Tny, +8nk ’ Tny?
proof is complete. |
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Proof of Theorem 1.3. Proposition 5.3 shows that the log-Laplace functionals of the pro-
cess YV} converge to ); for every ¢t > €. Proposition 5.4 implies tightness for the processes.
As the solution to (1.11) is unique, we are done. O
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