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Abstract. Two site spin correlation function for an Ising model above Curie tempe-
rature has been calculated by generalising Bethe-Peierls approximation. The
results derived by a graphical method due to Englert are essentially the same as
those obtained earlier by Elliott and Marshall, and Oguchi and Ono. The earlier
results were obtained by a direct generalisation of the cluster method of Bethe, while

our results are derived by retaining that class of diagrams, which is exact on Bethe
lattice.
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1. Infroduction

The two site spin correlation function has been extensively studied (Elliott and
Marshall 1958, Brout 1965, Fisher 1967). This quantity plays an important role
in the study of phase transitions (Fisher 1967). The idea of length scaling which
is a dominant theme in the present day theories of critical phenomena is asso-
ciated with the study of spin correlation function. Moreover, this correlation
function is directly -related to the nmeutron scattering cross-section from magietic
systems (Elliott and Marshall 1958, Marshall and Lowde 1968, Oguchi and Ono
1966).

The two site spin correlation function has been calculated previously by several
authors (Elliott and Marshall 1958, Oguchi and Ono 1966, Mori and Kawasaki
1962, Tahir Kheli and Callen 1964). The first detailed calculations of the spin
correlation function valid near critical temperature were done by Elliott and Mar-
shall. Their method consisted in generalising the cluster method of Bethe and
Peierls (Hill 1956); subsequently Oguchi and Ono using similar ideas and constant
coupling approximation (which in case of Ising model yields identical results to
BP approximation) derived a similar result which differed from Elliott and Mar-
shall’s result only by an insignificant multiplicative factor of order unity. In
this paper, we derive tlie same result (our result again differs from earlier results
by a multiplicative factor) by a graphical method.

In the graphical method, originally due to Englert (1963), we obtain our approxi-
mation by including only that set of diagrams which occur on a Bethe lattice of



“

Spin correlation function for Ising model 29

the same coordination number as the real lattice under considecration. It has
been well known for some time that BP approximation is an exact result on the
Bethe lattice. Here we show that simple generalisations of the cluster method
{BP) can also be obtained by considerations based on.Bethe lattice. A further
advantage of the present derivation is that it can be easily generalised to disordered
system. A study of correlation in random Ising model will be published
elsewhere. .

Our formulae involve connectivity constant of the lattice. If, instead of using
Bethe lattice value of the connectivity constant, we usc the exact value deduced
numerically, we can improve upon the Elliott-Marshall calculation. The Curie
temperatures arc reduced by an order of 109. Further, the constant r;2 occurring
in the formula for longitudinal susceptibility is also reduced, bringing it closcr
to experimental values.

2. Corrzlation function on a Bethe lattice

We consider the Hamiltonian

] = — 2 J,ijcrl.cr, (l)
(17)

where ' denotes summation over all the bonds on the lattice, J;; is the exchange
) :

constant, which is taken to be same for all the bonds, and ¢,’s are the spin variables

which take two values + 1. We are interested in calculating the corrclation

function C,, defined as

_Tr (e=BH GpTg) ’
Coa = “Tr(epr) - (2)

Equation (2) can be recast in a different form in the following manner (Hill 1956)

Tr [exp (B ([Z") J1j0,03) 0,04
Tr [exp (B (2) J1,0:95)]

Cna =

Tr [(H cosh BJ;; [1 + o0;tanh B J,] 0,0,]

N OF)!

~ Tr [ II cosh BJ4[l + 040, tanh B J]] (3)
¢

i,j)

Tr [ 1T (1 4+ 11’,-).0%0].) [
(‘.J‘) (4)
Tr [ IT (L ++ wyo40,)]
(4.4)

where w;; stands for tanh BJ,. This expression can be evaluated by means of
graph theoretical methods developed by Englert [Englert 1963, Stell 1964]. It
can be easily shown that diagrammatically the correlation function is the sum
of the contributions of all the connected graphs rooted at points p and ¢g. A bond
between two sites occur just once and gives a factor w;; — A vertex at which »
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bonds meet gives a contribution M, ), where M, is the cumulant average

M9 = (o) ()
Above Curie temperature and in the absence of magnetic field,

M©® =0

Mo = 1. | 6

In order to motivate the approximation we shall evaluate eq. (4) for a Bethe
lattice of coordination number Z = K + 1. Since there are no closed paths in

a Bethe lattice and there is only one self-avoiding path between any two sites, we
have ’

Chog = WpWiiWyp ** * Wpq [M©]" (7)
= w" 8

where n is the number of nearest neighbour bonds required to connect sites p and

g on the Bethe lattice. We can now calculate the static susceptibility which is
given by the formula

X _
BN (gr)® — L+ ZC' ©)

r=+o

where gu,o; is the magnetic moment associated at the site i and N is the total
number of sites. The sum in eq. (9) can be easily performed by noting that the
number of points seperated by n bondslengths from a given origin is (K1) K*-1,
where Z == K + 1 is the coordination number of the lattice.

Equation (9) becomes

N
_____X — 1 1 Nl Nt
VB (zr° + Z; K+ 1DK"™1w

1k 2l 1___(12*3”“) LA (10)

Equation (10) leads to the following Curie temperature

kT, L 177
7= [t | (11)

Both the results in eqs (10) and (11) are identical to those obtained by the usual
cluster treatment of Bethe-Peierls approximation.

3. Correlstion function for real Iattices

For a real lattice, the number of diagrams contributing to C,, increases mahi-
fold, and their enumerations become a very difficult problem. Horwitz and
Callen (1961) and Englert (1963) have introduced the procedures of vertex renor-
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) Figure 1. A typical diagram contributing to the corre-
', lation function Cg,.

malisation and bond renormalisation which considerably reduce the class of
diagrams to be considered and ensure the internal consistency of any approxi-
mation. However the actual carrying out of these procedures still remains very
difficult and has not been gone through. In view of this we propose the following
approximation. Even for real lattices, we consider the same set of diagrams that
made contribution in Bethe lattice. This set of diagrams is essentially same as

was used by Brout for high density expansion of Ising model (Brout 1965). The
typical diagram is shown in figure 1. Then we obtain

Coq = Wy + X" Wy Wig + 4‘;" W Wiy Wig —F 0 (12)
i 13

where prime on summation indicates that none of the indices being summed can be

equal among themselves or equal to p or g. Equation (12) would be a simple

iterative equation but for the summation restrictions. We can convert it into an

approximate integral equation by multiplying by conmnectivity constant K, where

K" gives approximately the number of self avoiding walks of »n steps for large n.
Thus we write

K
Cra= Vo + 5 ) Wi Ca (13)

Equation (13) can be solved by taking Fourier transform.

It yields the following
expression for the correlation function

C(g) = Z ws (q)

1 — Kws (gq)
_ Zs(gq)tanh pJ '
~ T—Ktanh (87)5 @ (14)
when
s=5 ) et (15)
7

where 8’s denote the nearest neighbour lattice vectors. The wave vector dependent
susceptibility y (g) is given by

X Dxo=14+C ()

14+ (Z—K)s(g)tanh BJ (16)
~ 1 —Ktanh BJs (g)

Here y, denotes N (guo)? B.
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4. Discizssion

Equations (14) and (16) are the main results of this paper. Several points should.

now be noted. Firstly, for high temperatures, i.e., fJ <€ 1, eq. (14) essentially
reduces to Ornstein-Zernike approximation

BJs (q)
C@) = —y ) (17)

where we have put K= Z — 1. In order to compare our results with the earlier

theories, wc put our results in the standard form for small wavevectors (Van
Hove 1954).

x'e) 3 1 (18)
Xo 4ry? Ky® + g?
we find
Z 1 —Ktanh BJ :
2 K2 = 19
@ K= 5% " Tanh BJ (12)
and
3K tanh BJ
. 2 2 . T
W = 57 TH(Z —K) tanh B (20)

where a denotes the lattice constant.
Now if we use for K, the Bethe lattice value Z — 1, we get

z 2 —Z (1 —e287)
2 K2 o '
CRE= 3z =D —E (21
and
’.”2 _ 3 (Z -_— 1) . _2f3ef
wr = Az (e (22)
On the other hand, the results obtained by Oguchi and Gno are
o 2 Z  2—Z(l —e k) a
@kt =T T —ef7 (23)
and
apa_ 3(ZF D) Y
mla? = —_Z_Z__——(l - € "g") (24)

Though the temperature dependences of the two quantities ry and K, are same,
the numerical factors differ, by a factor of 2 or so.

We expect that if for real lattices true values of K are used better results will
be obtained. Numerical methods give a value K = 4-5 for simple cubic lattice.
Thus, the Curic temperature in our approximation is lowered by 109 for S.C.
lattice. In figures 2 and 3, we have plotted our results (K,4)2 vs. 7" and ry2la®
vs. 7. On the same diagrams are also plotted the results of Cguchi and Ono.

Our results for r;® are some-what lower than theirs. Although we have only

considered an Ising model of spin %, our results are in better agreement with the:



Spin correlation function for Ising model

¥
20

\
S]
kT /T

Figure 2. Plot of (K, @~ with tempe-~
rature. For comparison, also shown
results due to Oguchi and Ono. Solid line
shows our results and dotted line shows
Oguchi and Ono’s results.
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Figure 3, Plot of r2/a® with tem-
perature. For comparison, also
shown are the results of Oguchi
and Ono, Solid line shows our
results and dotted line shows
Oguchi and Ono’s results.
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neutron scattering measurements on iron. Experimentally measured values for
r, in iron (Marshall and Lowde 1968, Oguchi and Ono 1966) ate around 1-4 A

while our theory gives 1.6 A.

This method can -be easily generalised to temperatures below T, The only
change is that we have to use cumulants M, which are appropriate in the
presence of spontaneous magnetisation. This matter will be pursued and reported

separately.
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