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Introduction

THE idea of ‘quantum tracking’ for a single observable
first occurred in the measurement theory of von Neu-
mann', and generalized to two canonically conjugate ob-
servables by Arthurs and Kelly Jr (refs 2 and 3). The
nomenclature was probably used first by Arthurs and
Goodman®, who discovered the joint measurement uncer-
tainty relation which implies that the minimum uncer-
tainty product is twice that in Heisenberg’s preparation
uncertainty relation. Recently, several other applications
of the Arthurs—Kelly interaction Hamiltonian have been
discovered. They include an experimental bound on von
Neumann entropy, noiseless quantum tracking of conju-
gate variables, remote tomography and exact measure-
ments of correlations between conjugate observables such
as position and momentum. I shall review these applica-
tions, many of which require initial states of the appara-
tus or tracker particles which are more general than those
used by Arthurs and Kelly.

von Neumann and Arthurs—Kelly measurement
theories

The initial values of a system observable are to be in-
ferred from the final values of pointer observables of the
apparatus after a measurement interaction with the sys-
tem. To measure an observable of the system described
by a Hilbert space Hj, it is allowed to interact with an
apparatus in a Hilbert space H, for a time interval 7. The
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system—apparatus states are in H; ® H, and have a uni-
tary time evolution,

Ly (1)) =U) |y (0), ie [T)=U(T)[0), (1

if we denote for brevity, |y(7))=|T). The system—
apparatus initial state is assumed to be factorizable

10) =[¢(0)) | x(0)), (2)
where ¢, y denote the system and apparatus states respec-
tively. More generally, in case of impure states, the

density operator p(7) for the system—apparatus combine
obeys
p(T) =UMpOUD), p0)=p, ®p,. (3)

In the Heisenberg representation, observables have the
time evolution
X(T)=UD)' XUT), Trp(O)X(T)=Trp(T)X. (4)

Tracking (Arthurs and Goodman®). The apparatus ob-
servable X at 1= T ‘tracks’ the system observable 4 at
t=0,if

Trp(T)X =Trp(0)4 < Trp(0)(X(T)—-A4) =0, (5)

for all initial states p; of the system. Denoting averages
of any operator in the initial state by an overline

X(T) = Tip(0)X(T),
we write,
X({T)—A4=0, for every p. (6)

Noiseless tracking. If, in addition, X? at T tracks 4° at
t=0,1.e.

(X*(T)-4%)=0,

then the r.m.s. deviations of the observables also agree
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Ox(1) = O4, (7)

and we say that the tracking is ‘noiseless’. Let me intro-
duce another definition.

Faithful tracking. The apparatus observable X at T
tracks the system observable at ¢ = 0 faithfully, if X and 4
have the same spectrum

(A=x)|x); =0,(X -x)|x); =0,
and if for all functions f'(4), f (X) defined by

JA@ =2, f)xnlxh, F(X) =2, f()]x)(x ],
®)

Trp(T) f(X) =Trp(0) f(A) =0, for all p,.

Equivalently, the tracking is faithful if all projectors are
tracked

(| )2 (x 1y (T)=1x){x];) =0, for all p,.

It is clear that if the tracking is faithful, it is also noise-
less.

von Neumann measurement

von Neumann found an interaction, an initial apparatus
state, and an apparatus observable X which at ¢t = T tracks
any chosen system observable 4 at =0 faithfully. For
A= Q, the system position operator, the von Neumann
interaction Hamiltonian is,

H=KQP, )

where P; is the pointer momentum operator and K is a
constant so large that the free Hamiltonians can be ne-
glected during the time 7 of interaction. The Schrodinger
equation yields

l//(qa x]aT) =¢(q)l(x] _KqT)s (10)
where x; is the pointer coordinate. If we choose
2(x) =" expl—xf (2071, (1)

and KT = 1, we see that in the limit » — 0, the centre of a
narrow pointer wave packet shifts after the measurement
by an amount which yields the system position ¢ in the
individual measurement.
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The apparatus density operator is obtained by taking a
trace of the system—apparatus density operator over the
system coordinates. The diagonal elements are

[Paoe (D), =767 [dq | 4(a) P

x exp(—(x; —¢)* /b%)
—>|¢(g=x)[*, forb—0, (12)
Thus, if Xi(T), (f(X1))(T) denote Heisenberg operators,
von Neumann obtains

(XM - f(@) =0, for b—0, (13)
i.e. faithful tracking of position in the limit of narrow ini-
tial pointer states. However, the initial system density
operator cannot be deduced from the final apparatus den-
sity operator, e.g. probability density of the initial system
momentum cannot be deduced.

Arthurs—Kelly joint measurements of conjugate
variables

The uncertainty principle does not allow joint measure-
ments of conjugate variables to arbitrary accuracy.
Arthurs and Kelly, and later Arthurs and Goodman ex-
tended von Neumann’s idea to the best permissible joint
measurements of conjugate observables and discovered a
generalized Heisenberg uncertainty relation. Their idea is
that the system interacts with an apparatus which has two
commuting observables X;, X, and approximate values of
system position and momentum are extracted from accu-
rate observation of X, X,. The von Neumann—Arthurs—
Kelly interaction during the time interval (0, 7) is

H=K(QP, + PP,), (14)
where K is a constant, with K7'= 1 and the other symbols
denote the respective operators. During interaction time,
H is so strong that the free Hamiltonians of the system
and apparatus are neglected. Arthurs and Kelly start with
the system—apparatus initial state,

Y (g, 3,5, = 0) = () 1, (0) 22 (%), (15)
where

2(x) =707 exp(—x2 /(2b7)), (16)

12 (x) =714 (2b)"? exp((-2b°x3), (17)

and b/~/2 is the uncertainty of x; in the initial apparatus
state. The uncertainty of x, is chosen as above for opti-
mum results. The commutator of the two terms in H in
fact commutes with each of the terms. Hence
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exp(—iH?) = exp(-iKigp, ) exp(-iKipp, )

x exp(—iK*t* pyp, 1 2). (18)
If we work in the g, x|, p, representation, the three expo-
nentials on the right-hand side successively translate x,
g, x acting on the initial wavefunction. Hence the exact
solution of the Schrodinger equation is

(q,%, P2 | 8y = 11(x; — gKt +(1/2) p, K17

X X2(P2)9(q — p, K1), (19)
where ¥, denotes a Fourier transform of y».

The coordinate space wave function is given by a Fou-
rier transform. The final joint probability density of the
apparatus variables given by the diagonal elements in the
xl,f x12 representation of the final reduced density matrix

mal

p4 " of the apparatus turns out to be just the Husimi
function® of the initial system density operator ps = |@#){d|

final
P(x;,x,) = (X x, |/3Alml [ X1, %,)

_ |<¢[),xl Xy |¢> |2 _ <¢b,x| X, | pS |¢b,x| ,x2>
e (27)

b

where

(1 By ) =By, (@) = 2)

x b7 expliqx, —(xq —¢)* /(4b)) (20)
is a minimum uncertainty system state centred at g = x;,
p = x,. These are normalized non-orthogonal states. Their
completeness relation

J‘dx]de | ¢b,xl Xy ><¢b’xl X | /(272') = 1’ (21)
implies that,
Tr A= Idxldx2<¢b,xl,xz | A1y ) /(27). (22)

We then obtain (X7) =(Q), and (X,) = (P), but the disper-
sions in X}, X, are larger than for the system

(AX))* =(AQ)* +b7,
(AX, ) < (APY +—

TeR (23)

By varying b, we obtain the ‘measurement or noise’
uncertainty relation (in units 7 = 1),
AX|AX, 21, (24)
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where the minimum uncertainty is twice the ‘preparation
uncertainty’. This was later proved by Arthurs and Good-
man, as well as Gudder, Hagler and Stulpe to be inde-
pendent of any particular measurement Hamiltonian, and
a special case of the following theorem®.

Theorem. If Heisenberg operators R(7), S(7) correspond-
ing to commuting apparatus observables R, S track the
non-commuting system observables 4, B after interaction
for time T, then

2 (25)

where all expectation values are taken in the initial fac-
torized state of the system—apparatus combine.

This fundamental uncertainty relation for simultaneous
measurement of non-commuting observables is distinct
from the more well-known preparation uncertainty rela-
tion and the minimum value on its right-hand side is four
times the usual value. The extra uncertainty has been
ascribed to inherent and unavoidable extra noise in joint
quantum measurements.

We now discuss some other applications.

Bound on von Neumann entropy

I have noticed recently that an upper bound on the von
Neumann entropy S(p) of a system with density operator
p can be obtained from Arthurs—Kelly joint measure-
ments using the Wehrl entropy bound’ in terms of coher-
ent states and its generalizations using generalized
coherent states®. Using the Arthurs—Kelly results for a
pure initial state and the linearity of the Schrodinger
equation, it follows that the relation

2 | P 13,50 =By, | Ps | By, 2, ) /270)

also holds for impure initial states ps.

Recall first that the von Neumann density operator for
any state p s,

S(p)=-Trpln p=Trf(p), f(x)=-xInx, (26)
and that for c-numbers x > 0, f(x) is a concave function
(i.e. f"(x) <0). In the basis |k) of eigen functions of p, if
p=2Ap, where 0 < A, <1, 24 =1, then

S(PY =24 f(k|plk)) 22y 2 4 f (k| p; | 5))

22 4 Ly Kk f(P) Tk =2 48 (p)), 27

i.e. S(p) is a concave function’. The concavity of f(x)
directly gives the first inequality above, and the second
inequality follows from the lemma
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JKel A1) 24| f(A)])

valid for any concave function f(4) of a self-adjoint
operator A.
In the continuum case, the lemma also yields

S(P) = [ 4006 (B, | 1P| s, 20)

< [dnde /(0! (v )) (27,
where

pCI (x] ’ x2) = <¢b,x| X | P | ¢b,x| Xy >’ (28)

which is the Wehrl bound on von-Neumann entropy.
Notice now that (¢, . . |p |4, ,,) is just what is deter-
mined by the Arthurs—Kelly experiment if p= ps.
Hence the Arthurs—Kelly experiment yields an upper
bound on the von Neumann entropy. I find that a Wehrl-
type bound can also be derived in terms of generalized
coherent states, and exploited in conjunction with
Arthurs—Kelly experiments with such states as initial
tracker states.

Bound on von Neumann entropy in terms of
generalized coherent states

The generalized coherent states (see Roy and Singh®) are

|n,a) =U(a)|n), Ua)=explaa’ —a*a), (29)

where a is the annihilation operator for the oscillator and
a is a complex number, which is a linear combination of
g« and p, as for the usual coherent states (n = 0)

o = quJMo2h) +ipy /| N2hM o, (30)

(M =mass, o=angular frequency of oscillator). The
generalized coherent states are normalized over complete
states, and obey the completeness relation

I(dza/ﬂ)|n,a><n,a|=1. 31)

Using the concavity of the function (—xInx) and the
above completeness relation, it follows as in the paper by
Wehrl that the von Neumann entropy S obeys

S< —I(dza/ﬂxn,a) | p oy (e | p|n,ad).
(32)
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Note that
d*a = d(Rea)d(Ima) = dg, dp,, /(2h),

and that the ground state |0) as well as the coherent states
depend on the parameter M. We may thus optimize the
entropy bound for a given density operator p by varying
the parameter M@ and the integer n. Different density
operators may be tested and may need different values of
n for an optimum result. Experimental evaluation of this
bound requires Arthurs—Kelly experiments with general-
ized coherent states as initial tracker states.

Noiseless tracking, remote tomography and
entanglement swapping via von
Neumann—Arthurs—Kelly interaction

Before discussing these new results’, it is useful to recall
the usual teleportation protocol.

Teleportation (Figure 1) for discrete® and continuous
variables’, already realized experimentally'®'!, usually
involves four steps. (i) An EPR-pair £, E, is shared by
observers Alice (4) and Bob (B) at distant locations. (ii)
The system particle P is received by 4, who makes a
Bell-state measurement on the joint state of that particle
and E;, and (iii) communicates the result via a classical
channel to B, (iv) B then makes a unitary transformation
depending on the classical information on E; to replicate
the unknown system state.

We report here a method for remote tomography based
on noiseless tracking which replaces the four technologies
in usual teleportation by two steps (Figure 2): an interac-
tion between the system particle and two apparatus parti-
cles, and quantum transmission of the apparatus particles
to a remote location. At Alice’s location 4, a system par-
ticle P with unknown state interacts via an Arthurs—Kelly
interaction with two apparatus particles 4;, 4, in a known
state. When the particles are photons, the interaction can
easily be generated (see ref. 3). The particles A4;, 4, are

Teleported
A B State

()

Bell-state

Measurement : S
Classical Communication

Entangled

1/ \\

System

EPR Source

Figure 1. Usual protocol of the Bennett ez al.® for teleportation.
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then sent to a distant observer Bob (B). B makes quantum
tomographic measurements on them (quadrature meas-
urements in the case of photons) and reconstructs the
exact initial density matrix of the system particle without
ever having received that particle. Further, if another par-
ticle P' in Alice’s hands is EPR-entangled with P, it will
be EPR-entangled with the distant pair 4;, A,. Practical
implementation will require a quantum channel to send
the two apparatus particles from location A4 to the distant
location of B followed by tomographic measurements by
B: for photons, a generalization of single photon optical
homodyne tomography (see refs 12—14) to two photons,
which seems feasible and worthwhile.

From the ‘application point of view’, why is it practi-
cally useful to transport the apparatus particles with the
system state imprinted on them? Why can’t Alice directly
send the system particle to Bob? There can be several
reasons. For example, the system particle might be unsta-
ble; or in the case of a photon, it might have a frequency
unsuitable for optical fibre transmission. The apparatus
photons can be chosen to have frequency in the telecom
windows around 1300 or 1550 nm, where optical fibres
have very low absorption facilitating long-distance
transmission. The scheme we propose exploits the entan-
glement between the system photon and the apparatus
photons generated by the three-particle Arthurs—Kelly
interaction. Multiparticle interactions to generate entan-
glement have been previously exploited for quantum en-
hanced metrology"’.

A symmetry property

The Arthurs—Kelly system—apparatus interaction Hamil-
tonian is invariant under a class of simultaneous trans-
formations on the system and apparatus specified below

H = K(4p, + pp2) = K(GoPro + PoDrg)s (33)

System Photon P
(Entangled with P)

Tracker 1

Apparatus Pho\m;l 1

Interaction \ "~ Distant
System Photon P_ | Region Discarded Station
Apparatus Photon 2 B
Station A Tracker 2
Tomography
Strong|Pump Photons
Figure 2. Remote tomography and entanglement swapping via von Neu-

mann—Arthurs—Kelly interaction between system photon P and tracker
photons. If the photon P’ is EPR-entangled with P, the tracker photons
become entangled with P'.

CURRENT SCIENCE, VOL. 109, NO. 11, 10 DECEMBER 2015

where the rotated quadrature operators with subscript 8 are
defined using the rotation matrix R

HEHIEH!
Po P) \ P2 P>
cos@ sind
R=| ,
—sinf cosé
The operators 13]-’9 are seen to be just the commuting

momentum operators of the apparatus particles correspond-
ing to rotated coordinates x;,¢, for j =1, 2

(34)

Xig +1x 9 = exp(=i0)(x, +ix,), p; g = =10/ 0x; 5. (35)
We also define
X9 +1%, 9 = exp(—i0)(%; +ixX, ). (36)

Then, in the case of the apparatus being two photons with
annihilation operators a;, i = 1, 2

')%l',g = ai exp(—i 9)/\/5 + h.C., ]31-’9 = )ACI-’9+,,/2. (37)

The Arthurs—Goodman theorem on joint measurement men-
tions that noiseless tracking of non-commuting system ob-
servables is impossible using only commuting apparatus
observables (such as the apparatus variables x, x,) as track-
ers. We ask whether noiseless tracking is possible if we
allow that the apparatus observables tracking the conjugate
system observables may not commute. Let us generalize the
initial apparatus states of Arthurs and Kelly and choose

a1 () =74 exp[—x /(2b7))] (38)
and
12 (%) = 74 (2b))? exp[-2b5x3)]. (39)

The apparatus state contains two independent parameters
b1, by, whereas Arthurs and Kelly chose b, = by = b. They
obtained approximate g, p measurements by postulating
their correspondence with the joint probability distribu-
tion of the commuting variables x;, x, given by the dia-
gonal elements of the reduced density matrix of the
apparatus. This led to (i) arbitrarily accurate position
probability density for b — 0, (ii) arbitrarily accurate
momentum probability density for b — c and for other
values of b to approximate measurements of both subject
to the joint measurement uncertainty relation.

In fact, we find non-commuting apparatus observables
to do ‘noiseless tracking’ of all quadrature operators g,
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provided that (i) we also exploit the off-diagonal ele-
ments of the apparatus density matrix, and (ii) move
away drastically from the Arthurs—Kelly choice of para-
meters b, = b; = b for the initial state of the apparatus and
instead choose

b,b =1/2, by >0, b, > o, (40)
which makes the initial state invariant under rotations in
the xi, x, plane.

Exact solution of the Schrddinger equation with the
new initial conditions gives

(g, x,%y) =Iw(q,xl,x2,§) de, @D
where
w(q, %%y, &) = $(&)exp(i(q—&)x,)

272\/@

N €2 et S -l P
eXp( 8h? 8b3 J @

Tracing the system—apparatus density matrix over the
system coordinate, we obtain the apparatus density matrix
at time T’

(X15%) | Papp | X(33)

= IW(qa x]axZaé)l// *(qsx],sx535,)dqd§d§,' (43)
Integration over x,, x} gives
I(xl 2 Xy | Papp | X1X5)dx,dx)
1 ) (x—q)’ +(x —q)°
= — X - d . 44
™ [19@] p[ 2 g (44)

This yields one of our key results. We can extract the ex-
act initial system position probability density from the
final apparatus density matrix as an expectation value of
an apparatus observable.

. b , ,
[¢(q =x) |2= bhin Tijdxzdxz@ﬁ,xz | Papp | X1%3)

0
= lim TrpppY (X)), (45)
b —0
where Y(x) is the apparatus observable
V) =22 L) | 133308 e
V=g 278X [ dX X
= 2b, 7 | X% || py = 0)(p, = 0. (40)
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We have faithful tracking since Y(x;) exactly tracks the
system position projector with ¢ = x;. Interestingly, Y(x;)
equals the Arthurs—Kelly projector |x;){x| (involving only
the first pointer), times an operator involving only the
second pointer. Similarly, the exact initial system mo-
mentum probability density is an expectation value of an
apparatus observable in the final apparatus density matrix

7 2 : 1 j ' '
=x,)|"= lim dx;dx; {x;, x XX

(P =x,)| by 2T 1dx; (x5 %5 | Papp | X1%2)

= lim Trp,ppZ(x,), (47)

b, >
where Z(x,) is the apparatus observable
Jr

Z(x2)=7|x2><x2 | py=0Xp =0]. (48)

Again, we have faithful tracking since Z(x;) exactly
tracks the system momentum projector with p =x,. Z(x,)
equals the Arthurs—Kelly projector |x;){x,| (involving only
the second pointer) times an operator involving only the
first pointer.

The Wigner function of the initial system state can also
be reconstructed exactly from off-diagonal elements of
the final apparatus density matrix

. b
W(x,x,)= lim 2
b—0,b, >0 27 hy

[ axidy (a3, | pape (T) | 11 (49)

Further, because of the noted symmetry property of the
Hamiltonian and the invariance of the initial conditions
under rotations in the x;, x, plane, we can recover exactly
not only the above ¢ and p probability densities, but also
the probaility densities of arbitrary Hermitian linear com-
binations g, as expectation values of Hermitian opera-
tors in the final state of the apparatus after the interaction.
Thus, we obtain for arbitrary 6

(G =] 9} ['= lim Trp,pp (7)Y, (u), (50)
Yo(u)= £| )21,9 = u><£],9 =u
by
x| 132,9 = 0)(152,9 =0]. (5D

Since Py =gy, ,,», the initial system probability densi-
ties for it are obtained from above just by replacing
0 — 0+ m/2. Since we recover exactly the initial system
probability densities of arbitrary Hermitian linear combi-
nations g,

CURRENT SCIENCE, VOL. 109, NO. 11, 10 DECEMBER 2015
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@9=M|Ps|ég=“>=|<ég=“|¢>|2s (52)
we can also obtain the initial Wigner function in terms of
these observables measured in the same final state of the
apparatus.

Reconstruction of initial density matrix of the
system from the final apparatus density matrix

Quantum tomography is completed by calculating the
Wigner function W(q, p) as an inverse Radon transform

w 27 ®
Wig.p)=Cn)* [ndn [ a0 [ du
0 0 -
x exp(in(u —(qeos0+ psin0)Xdy =u| ps |Go =), (53)
and from that the density operator
(q1pslqy=r)" ]EI q—4'|d0(sin6)~
0
x exp((—i(g* —¢'*)cot0)/2) T du
expliutq —q')/sinOXdp =u | ps | dp =w.  (54)

Accounting for time evolution of the apparatus
photons during transit time 7 to distant location B

Note that
Trpapp (T)Yy(u) = Trpppp (T +7)
xexp(—iH 7)Y, (u) exp(iH,7),
where the Hamiltonian
Hy= a)(a]Ta] + azTaz +1),

if the photons have the same frequency ®. Hence the
(Gg =u| pg | gy =u) are equivalently given by replacing

Papp (D), 321,(9 > 152,9
by

Papp (T +7),c08(07)%; » —sin(@7) Py g,

cos(@T) P, g +SIN(@T)X, 4

respectively. We just have to measure different quadra-
tures for the apparatus photons depending on the transit
time 7.
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Our exact theorems are for the limit b, — 0. The pur-
pose here is to estimate how small this parameter has to
be for reasonably accurate reconstruction of the initial
state which, in this example, is chosen to be the highly
non-classical third excited state (Figure 3) of the oscilla-
tor. The wave function in the position basis is

2
$(9)=(24° -3q) exp[—qu /(ﬁn“). (55)
The Wigner function is a function of ¢* + p* = d
W (d) = exp(~d)[4d”> —18d* +18d —3]/(3x). (56)

In Figure 4 we make quantitative comparisons between
the Wigner function, our reconstructed Wigner function
with 2b,b, = 1 (for b; = {0.1, 0.3}) and the Arthurs—Kelly
probability distribution. It is worth noting that for

b, :%, the reconstructed Wigner function is equal to

Figure 3. The Wigner function for the third excited state of the harmonic
oscillator.

Joint (q, p)
Distribution
(a)
01} /\ =
N "k\(e) \

N

Figure 4. Joint distributions_in ) for the third excited state of the
oscillator as a function of q2+p : (a) Wigner function, (b) recon-
structed Wigner function with b, = 0.1, (c) difference between curves (a)
and (b), (d) reconstructed Wigner function with b, = 0.3, (e) Arthurs—Kelly
probability distribution.
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the Arthurs—Kelly distribution, which differs greatly from
the true Wigner function. Towards practical utility, note
that for b; = .1 the reconstructed Wigner function and the
position probability derived from it are already very close
to the actual.

A well-known measure of the distance between two
probability distributions is given by the Kolmogorov—
Smirnov distance, D(K — S) = max,|F(x) — Fa(x)|, where
Fi(x) is the cumulative probability for the variable X < x
for the ith probability distribution. This distance between
the pseudo-probabilities given by the Wigner function
and the reconstructed Wigner function, as well as for the
corresponding position probabilities derived from them
are plotted in Figures 5 and 6. The distance (especially
for the position probability) is very small even up to
by =0.2, though the theorem of exact equality is only in
the limit 5; — 0.

Teleportation of entanglement

If the photon P with coordinate ¢ is EPR-entangled with
another photon P’ with coordinate ¢’ with initial wave
function ¢(q, q'), the density matrix for particles 1, 2, P’
after interaction can be shown to obey analogues of eqs
(14) and (15) with (g =x|¢) replaced by (g =x1, ¢'|9),
and Y(x,) replaced by Y(x)|g")Xq'|

[€q=%,9'|#) = lim Trppp ()Y () | 4'Xq' |
b—0

Thus the apparatus photons after interaction with P
become entangled with P’ achieving interaction-based
teleportation of EPR-entanglement. The exact initial
probability densities for ¢, ¢’ (and similarly for p, p'), i.e.
the exact EPR-correlations can be retrieved from this
final entangled state.

Remark. The theorem on impossibility of simultaneous
noiseless tracking of position and momentum by commut-
ing apparatus observables is not violated, but circumvented.

Position probability density
04

2

03F

-4 -2

Figure 5. Position probability densities for the third excited state: (a)
Quantum probability density of the state, (b) obtained from reconstructed
Wigner function with b, = 0.1, (c) difference between curves (a) and (b),
(d) obtained from reconstructed Wigner function with b, =0.3 and (e)
obtained from Arthurs—Kelly probability distribution.
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The secret of success is that, although we have the same
final state, the tracking observables do not commute

b
|Y(x]),Z(x2)]=b—2(| X)Xy || P, =0)(p, =0
|

=[x X% || oy =0){p, =0]) % 0. (57)

Exact quantum correlations of conjugate
observables from Arthurs—Kelly measurements

Correlations between conjugate observables, being rather
different from Bell-type correlations among commuting
observables, are a largely unexplored area with possible
fundamental importance. I present a method for the exact
measurement of local and global correlations between
conjugate observables in quantum mechanics'®.

We noted that the exact position and momentum pro-
bability densities of the system are recovered by the usual
Arthurs—Kelly measurement (b, =b,=>) in the limits
b — 0 and b — o respectively, i.e. in two experiments
with very different initial apparatus states. It is a pleasant
surprise that the joint measurement can nevertheless give
local and global correlations between ¢ and p exactly.
We define the conditional expectation values of momen-
tum at a given position and of position at a given momen-
tum as expectation values of self-adjoint operators

(A@p+ P9 .

iy(p) = AP+ AP
gy DW=

2(A(p)
(58)

(P)(q)=

Kolmogorov — Smirnov
distance

0.07 -

0.06

0,05 0.10 0.15 0.20

by

Figure 6. Plots for the Kolmogorov—Smirnov (K-S) distance between (a)
the Wigner function and the reconstructed Wigner function and (b) the po-
sition probability density and the reconstructed density versus b;. Even
when b, is as large as 0.2, the K-S distance in case (a) reaches a value of
only 0.072. The agreement is even better in case (b) (the small discontinu-
ity in the K-S distance at b, =0.16 is due to the shifting of the position
where the maximum K-S distance is reached).
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where (4) denotes the quantum expectation value of
a self-adjoint operator A, and the projection operators
A(q), A(p) are defined by,

A@) =lgXq |, A(p)=|pXpl|. (59)
For a pure state |¢), we have the explicit expressions
() = R @) 29) (©0)
|9(q) |
G)(p) = Re(¢* (p)()3d(p)/ P) 61)

|4(p)

We shall see that the local correlations (p)(¢)—(p) and
(@)(p)—{g) can be measured exactly for arbitrary ¢ and
p respectively, for appropriate values of b. The global
correlation (gp+ pg)—2(g){p) is in fact exactly measur-
able for any value of b.

For the Arthurs—Kelly measurement we define as for a
classical distribution

() 4k () = [ 3P )y /R (), (62)
() k() = [ 5 PG 2y ) / Py (), (63)
NXy) 4k = J.x]xzp(xl’xz)dxldxr (64)

Substituting the value of P(x;, x,), and doing the integral
over x, we obtain

[P x)dx, = (0v27)! [ dadg'd(@)p* (@)

coxp| 1m0 (0 =q)" |, 05(a=4')
4b* oq
_ q (-9 a¢(q)
=Re[exp| ~L |9 @-D T (69)

where o(g — ¢q") is the Dirac delta function. Similarly, we
obtain

le P(x;,x,)dx;

¢(p)

= b2 Re [ dpexp(-26(x, = p) )G * (i 2L (66)

Taking the limits of b going to 0 and o yield respectively
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) 4k () =450 {P)(q = X)), (67)

) 4k () =0 AD(P =X). (63)
Thus we have proved that the quantum position probabi-
lity density and the local correlation (p)(g)—(p) can be
measured exactly with the initial condition b — 0; the
quantum momentum probability density and the local
correlation (¢@)(p)—(g) can be measured exactly with the
very different initial condition b — . A similar calcula-
tion shows that for any value of b

(2x,22) 4k =(qP+ PP, (69)
the global correlation is exactly measured in the Arthurs—
Kelly measurement. Thus, the Arthurs—Kelly measure-
ments with b — 0 and b —» « equip us with exact pro-
bability densities of position and momentum as well as
their exact local and global correlations.
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