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Introduction 

THE idea of ‘quantum tracking’ for a single observable 
first occurred in the measurement theory of von Neu-
mann1, and generalized to two canonically conjugate ob-
servables by Arthurs and Kelly Jr (refs 2 and 3). The 
nomenclature was probably used first by Arthurs and 
Goodman4, who discovered the joint measurement uncer-
tainty relation which implies that the minimum uncer-
tainty product is twice that in Heisenberg’s preparation 
uncertainty relation. Recently, several other applications 
of the Arthurs–Kelly interaction Hamiltonian have been 
discovered. They include an experimental bound on von 
Neumann entropy, noiseless quantum tracking of conju-
gate variables, remote tomography and exact measure-
ments of correlations between conjugate observables such 
as position and momentum. I shall review these applica-
tions, many of which require initial states of the appara-
tus or tracker particles which are more general than those 
used by Arthurs and Kelly. 

von Neumann and Arthurs–Kelly measurement 
theories 

The initial values of a system observable are to be in-
ferred from the final values of pointer observables of the 
apparatus after a measurement interaction with the sys-
tem. To measure an observable of the system described 
by a Hilbert space H1, it is allowed to interact with an  
apparatus in a Hilbert space H2 for a time interval T. The 

system–apparatus states are in H1  H2 and have a uni-
tary time evolution, 
 
 | ( ) ( ) | (0) , i.e. | ( ) | 0 ,T U T T U T         (1) 
 
if we denote for brevity, |(T) = |T. The system–
apparatus initial state is assumed to be factorizable 
 
 | 0 | (0) | (0) ,       (2) 
 
where ,  denote the system and apparatus states respec-
tively. More generally, in case of impure states, the  
density operator  (T) for the system–apparatus combine 
obeys 
 
 †

1 2( ) ( ) (0) ( ) , (0) .T U T U T        (3) 
 
In the Heisenberg representation, observables have the 
time evolution 
 
 †( ) ( ) ( ), Tr (0) ( ) Tr ( ) .X T U T XU T X T T X     (4) 
 
Tracking (Arthurs and Goodman4). The apparatus ob-
servable X at t = T ‘tracks’ the system observable A at 
t = 0, if 
 
 Tr ( ) Tr (0) Tr (0)( ( ) ) 0,T X A X T A        (5) 
 
for all initial states 1 of the system. Denoting averages 
of any operator in the initial state by an overline 
 
 ( ) Tr (0) ( ),X T X T   
 
we write, 
 
 ( ) 0,X T A   for every 1.  (6) 
 
Noiseless tracking. If, in addition, X2 at T tracks A2 at 
t = 0, i.e. 
 
 2 2( ( ) ) 0,X T A    
 
then the r.m.s. deviations of the observables also agree 
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 X(T) = A, (7) 
 
and we say that the tracking is ‘noiseless’. Let me intro-
duce another definition. 
 
Faithful tracking. The apparatus observable X at T 
tracks the system observable at t = 0 faithfully, if X and A 
have the same spectrum 
 
 1 2( ) | 0, ( ) | 0,A x x X x x        
 
and if for all functions f (A), f (X) defined by 
 
 1 1 2 2( ) ( ) | | , ( ) ( ) | | ,x xf A f x x x f X f x x x         
  (8) 
 
 1Tr ( ) ( ) Tr (0) ( ) 0, for all .T f X f A      
 
Equivalently, the tracking is faithful if all projectors are 
tracked 
 

 2 2 1 1 1(| | ( ) | | ) 0, for all .x x T x x         

 
It is clear that if the tracking is faithful, it is also noise-
less. 

von Neumann measurement 

von Neumann found an interaction, an initial apparatus 
state, and an apparatus observable X which at t = T tracks 
any chosen system observable A at t = 0 faithfully. For 
A = Q, the system position operator, the von Neumann  
interaction Hamiltonian is, 
 
 H = KQP1, (9) 
 
where P1 is the pointer momentum operator and K is a 
constant so large that the free Hamiltonians can be ne-
glected during the time T of interaction. The Schrödinger 
equation yields 
 
 1 1( , , ) ( ) ( ),q x T q x KqT      (10) 

 
where x1 is the pointer coordinate. If we choose 
 

 1/ 4 1/ 2 2 2
1 1( ) exp[ /(2 )],x b x b       (11) 

 
and KT = 1, we see that in the limit b  0, the centre of a 
narrow pointer wave packet shifts after the measurement 
by an amount which yields the system position q in the 
individual measurement. 

 The apparatus density operator is obtained by taking a 
trace of the system–apparatus density operator over the 
system coordinates. The diagonal elements are 
 
 

1 1

1/ 2 1 2
APP ,[ ( )] d | ( ) |x xT b q q       

       2 2
1exp( ( ) / )x q b     

       2
1| ( ) | , for 0,q x b    (12) 

 
Thus, if X1(T), ( f (X1))(T) denote Heisenberg operators, 
von Neumann obtains 
 
 1( ( ))( ) ( ) 0, for 0,f X T f Q b       (13) 
 
i.e. faithful tracking of position in the limit of narrow ini-
tial pointer states. However, the initial system density  
operator cannot be deduced from the final apparatus den-
sity operator, e.g. probability density of the initial system 
momentum cannot be deduced. 

Arthurs–Kelly joint measurements of conjugate  
variables 

The uncertainty principle does not allow joint measure-
ments of conjugate variables to arbitrary accuracy.  
Arthurs and Kelly, and later Arthurs and Goodman ex-
tended von Neumann’s idea to the best permissible joint 
measurements of conjugate observables and discovered a 
generalized Heisenberg uncertainty relation. Their idea is 
that the system interacts with an apparatus which has two 
commuting observables X1, X2 and approximate values of 
system position and momentum are extracted from accu-
rate observation of X1, X2. The von Neumann–Arthurs–
Kelly interaction during the time interval (0, T) is 
 
 H = K(QP1 + PP2),  (14) 
 
where K is a constant, with KT = 1 and the other symbols 
denote the respective operators. During interaction time, 
H is so strong that the free Hamiltonians of the system 
and apparatus are neglected. Arthurs and Kelly start with 
the system–apparatus initial state, 
 

 1 2 1 1 2 2( , , , 0) ( ) ( ) ( ),q x x t q x x       (15) 
 

where 
 

 1/ 4 1/ 2 2 2
1 1 1( ) exp( /(2 )),x b x b       (16) 

 

 1/ 4 1/ 2 2 2
2 2 2( ) (2 ) exp(( 2 ),x b b x      (17) 

 

and / 2b  is the uncertainty of x1 in the initial apparatus 
state. The uncertainty of x2 is chosen as above for opti-
mum results. The commutator of the two terms in H in 
fact commutes with each of the terms. Hence 
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 1 2exp( i ) exp( i )exp( i )Ht Ktqp Ktpp     

      2 2
1 2exp( i / 2).K t p p   (18) 

 
If we work in the q, x1, p2 representation, the three expo-
nentials on the right-hand side successively translate x1, 
q, x1 acting on the initial wavefunction. Hence the exact 
solution of the Schrödinger equation is 
 
 2 2

1 2 1 1 2, , | ( (1/ 2) )q x p t x qKt p K t      
      2 2 2( ) ( ),p q p Kt    (19) 
 
where 2  denotes a Fourier transform of 2. 
 The coordinate space wave function is given by a Fou-
rier transform. The final joint probability density of the 
apparatus variables given by the diagonal elements in the 
x1, x2 representation of the final reduced density matrix 

final
A  of the apparatus turns out to be just the Husimi 

function2 of the initial system density operator S = || 
 
 final

1 2 1 2 1 2( , ) | | ,AP x x x x x x    

      1 2 1 2 1 2

2
, , , , S , ,| | | | |

,
(2 ) (2 )

b x x b x x b x x    

 

   
   

 
where 
 
 

1 2 1 2

1/ 4
, , , ,| ( ) (2 )b x x b x xq q        

      1/ 2 2 2
2 1exp(i ( ) /(4 ))b qx x q b    (20) 

 
is a minimum uncertainty system state centred at q = x1, 
p = x2. These are normalized non-orthogonal states. Their 
completeness relation 
 
 

1 2 1 21 2 , , , ,d d | | /(2 ) ,b x x b x xx x     1  (21) 

 
implies that, 
 
 

1 2 1 21 2 , , , ,Tr d d | | /(2 ).b x x b x xA x x A      (22) 

 
We then obtain X1 = Q, and X2 = P, but the disper-
sions in X1, X2 are larger than for the system 
 
 2 2 2

1( ) ( ) ,X Q b     

 2 2
2 2

1( ) ( ) .
4

X P
b

     (23) 

 
By varying b, we obtain the ‘measurement or noise’  
uncertainty relation (in units  = 1), 
 
 1 2 1,X X    (24) 

where the minimum uncertainty is twice the ‘preparation 
uncertainty’. This was later proved by Arthurs and Good-
man, as well as Gudder, Hagler and Stulpe to be inde-
pendent of any particular measurement Hamiltonian, and 
a special case of the following theorem4. 
 
Theorem. If Heisenberg operators R(T), S(T) correspond-
ing to commuting apparatus observables R, S track the 
non-commuting system observables A, B after interaction 
for time T, then 
 
 2 2 2| [ , ] | ,R S A B    (25) 
 
where all expectation values are taken in the initial fac-
torized state of the system–apparatus combine. 
 This fundamental uncertainty relation for simultaneous 
measurement of non-commuting observables is distinct 
from the more well-known preparation uncertainty rela-
tion and the minimum value on its right-hand side is four 
times the usual value. The extra uncertainty has been  
ascribed to inherent and unavoidable extra noise in joint 
quantum measurements. 
 We now discuss some other applications. 

Bound on von Neumann entropy 

I have noticed recently that an upper bound on the von 
Neumann entropy S() of a system with density operator 
 can be obtained from Arthurs–Kelly joint measure-
ments using the Wehrl entropy bound5 in terms of coher-
ent states and its generalizations using generalized 
coherent states6. Using the Arthurs–Kelly results for a 
pure initial state and the linearity of the Schrödinger 
equation, it follows that the relation 
 

 
1 2 1 2

final
1 2 1 2 , , , ,, | | , | | /(2 )A b x x S b x xx x x x          

 
also holds for impure initial states S. 
 Recall first that the von Neumann density operator for 
any state  is, 
 

 ( ) Tr ln Tr ( ), ( ) ln ,S f f x x x         (26) 
 
and that for c-numbers x  0, f (x) is a concave function 
(i.e. f (x) < 0). In the basis |k of eigen functions of , if 
 = iii, where 0  i  1, ii = 1, then 
 
 ( ) ( | | ) ( | | )k k i i iS f k k f k k             

 ( | ( ) | ) ( ),i i k i i i ik f k S           (27) 
 
i.e. S() is a concave function5. The concavity of f (x)  
directly gives the first inequality above, and the second 
inequality follows from the lemma 
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 ( | | ) | ( ) |f A f A         
 
valid for any concave function f (A) of a self-adjoint  
operator A. 
 In the continuum case, the lemma also yields 
 
 

1 2 1 21 2 , , , ,( ) d d | ( ) | /(2 )b x x b x xS x x f         

 
 cl

1 2 1 2d d ( ( , )) /(2 ),x x f x x     

 
where 
 
 

1 2 1 2

cl
1 2 , , , ,( , ) | | ,b x x b x xx x       (28) 

 
which is the Wehrl bound on von-Neumann entropy.  
Notice now that 

1 2 1 2, , , ,| |b x x b x x     is just what is deter-
mined by the Arthurs–Kelly experiment if  = S.  
Hence the Arthurs–Kelly experiment yields an upper 
bound on the von Neumann entropy. I find that a Wehrl-
type bound can also be derived in terms of generalized 
coherent states, and exploited in conjunction with  
Arthurs–Kelly experiments with such states as initial 
tracker states. 

Bound on von Neumann entropy in terms of  
generalized coherent states 

The generalized coherent states (see Roy and Singh6) are 
 
 †| , ( ) | , ( ) exp( * ),n U n U a a          (29) 
 
where a is the annihilation operator for the oscillator and 
 is a complex number, which is a linear combination of 
qcl and pcl as for the usual coherent states (n = 0) 
 
 cl cl/(2 ) i / 2 ,q M p M      (30) 
 
(M = mass,  = angular frequency of oscillator). The 
generalized coherent states are normalized over complete 
states, and obey the completeness relation 
 

 2(d / ) | , , | .n n     1  (31) 

 
Using the concavity of the function (–xln x) and the 
above completeness relation, it follows as in the paper by 
Wehrl that the von Neumann entropy S obeys 
 

 2(d / ) , | | , ln( , | | , ).S n n n n               

 (32) 

Note that 
 
 2

cl cld d(Re )d(Im ) d d /(2 ),q p      
 
and that the ground state |0 as well as the coherent states 
depend on the parameter M. We may thus optimize the 
entropy bound for a given density operator  by varying 
the parameter M and the integer n. Different density  
operators may be tested and may need different values of 
n for an optimum result. Experimental evaluation of this 
bound requires Arthurs–Kelly experiments with general-
ized coherent states as initial tracker states. 

Noiseless tracking, remote tomography and  
entanglement swapping via von  
Neumann–Arthurs–Kelly interaction 

Before discussing these new results7, it is useful to recall 
the usual teleportation protocol. 
 Teleportation (Figure 1) for discrete8 and continuous 
variables9, already realized experimentally10,11, usually 
involves four steps. (i) An EPR-pair E1, E2 is shared by 
observers Alice (A) and Bob (B) at distant locations. (ii) 
The system particle P is received by A, who makes a 
Bell-state measurement on the joint state of that particle 
and E1, and (iii) communicates the result via a classical 
channel to B, (iv) B then makes a unitary transformation 
depending on the classical information on E2 to replicate 
the unknown system state. 
 We report here a method for remote tomography based 
on noiseless tracking which replaces the four technologies 
in usual teleportation by two steps (Figure 2): an interac-
tion between the system particle and two apparatus parti-
cles, and quantum transmission of the apparatus particles 
to a remote location. At Alice’s location A, a system par-
ticle P with unknown state interacts via an Arthurs–Kelly 
interaction with two apparatus particles A1, A2 in a known 
state. When the particles are photons, the interaction can 
easily be generated (see ref. 3). The particles A1, A2 are  
 

 
 

Figure 1. Usual protocol of the Bennett et al.8 for teleportation. 
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then sent to a distant observer Bob (B). B makes quantum 
tomographic measurements on them (quadrature meas-
urements in the case of photons) and reconstructs the  
exact initial density matrix of the system particle without 
ever having received that particle. Further, if another par-
ticle P in Alice’s hands is EPR-entangled with P, it will 
be EPR-entangled with the distant pair A1, A2. Practical 
implementation will require a quantum channel to send 
the two apparatus particles from location A to the distant 
location of B followed by tomographic measurements by 
B: for photons, a generalization of single photon optical 
homodyne tomography (see refs 12–14) to two photons, 
which seems feasible and worthwhile. 
 From the ‘application point of view’, why is it practi-
cally useful to transport the apparatus particles with the 
system state imprinted on them? Why can’t Alice directly 
send the system particle to Bob? There can be several 
reasons. For example, the system particle might be unsta-
ble; or in the case of a photon, it might have a frequency 
unsuitable for optical fibre transmission. The apparatus 
photons can be chosen to have frequency in the telecom 
windows around 1300 or 1550 nm, where optical fibres 
have very low absorption facilitating long-distance 
transmission. The scheme we propose exploits the entan-
glement between the system photon and the apparatus 
photons generated by the three-particle Arthurs–Kelly  
interaction. Multiparticle interactions to generate entan-
glement have been previously exploited for quantum en-
hanced metrology15. 

A symmetry property 

The Arthurs–Kelly system–apparatus interaction Hamil-
tonian is invariant under a class of simultaneous trans-
formations on the system and apparatus specified below 
 
 1 2 1, 2,ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ),H K qp pp K q p p p        (33) 
 
 

 
 
Figure 2. Remote tomography and entanglement swapping via von Neu-
mann–Arthurs–Kelly interaction between system photon P and tracker 
photons. If the photon P is EPR-entangled with P, the tracker photons  
become entangled with P. 

where the rotated quadrature operators with subscript  are 
defined using the rotation matrix R 
 

 1, 1

2, 2

ˆˆ ˆˆ
, ,

ˆˆ ˆˆ
pq pq

R R
pp pp





     
      

      
 

 
cos sin

,
sin cos

R
 
 

 
   

 (34) 

 
The operators ,ˆ jp   are seen to be just the commuting  
momentum operators of the apparatus particles correspond-
ing to rotated coordinates xj,, for j = 1, 2 
 
 1, 2, 1 2 , ,ˆi exp( i )( i ), i / .j jx x x x p x            (35) 

 
We also define 
 
 1, 2, 1 2ˆ ˆ ˆ ˆi exp( i )( i ).x x x x       (36) 
 
Then, in the case of the apparatus being two photons with 
annihilation operators ai, i = 1, 2 
 

 , , , / 2ˆ ˆ ˆexp( i ) / 2 h.c., .i i i ix a p x         (37) 

 
The Arthurs–Goodman theorem on joint measurement men-
tions that noiseless tracking of non-commuting system ob-
servables is impossible using only commuting apparatus 
observables (such as the apparatus variables x1, x2) as track-
ers. We ask whether noiseless tracking is possible if we  
allow that the apparatus observables tracking the conjugate 
system observables may not commute. Let us generalize the 
initial apparatus states of Arthurs and Kelly and choose 
 
 1/ 4 1/ 2 2 2

1 1 1 1 1( ) exp[ /(2 )]x b x b      (38) 
 
and 
 
 1/ 4 1/ 2 2 2

2 2 2 2 2( ) (2 ) exp[ 2 )].x b b x     (39) 
 
The apparatus state contains two independent parameters 
b1, b2 whereas Arthurs and Kelly chose b2 = b1 = b. They 
obtained approximate q, p measurements by postulating 
their correspondence with the joint probability distribu-
tion of the commuting variables x1, x2 given by the dia-
gonal elements of the reduced density matrix of the 
apparatus. This led to (i) arbitrarily accurate position 
probability density for b  0, (ii) arbitrarily accurate 
momentum probability density for b   and for other 
values of b to approximate measurements of both subject 
to the joint measurement uncertainty relation. 
 In fact, we find non-commuting apparatus observables 
to do ‘noiseless tracking’ of all quadrature operators ˆ ,q   
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provided that (i) we also exploit the off-diagonal ele-
ments of the apparatus density matrix, and (ii) move 
away drastically from the Arthurs–Kelly choice of para-
meters b2 = b1 = b for the initial state of the apparatus and 
instead choose 
 
 2 1 1 21/ 2, 0, ,b b b b    (40) 
 
which makes the initial state invariant under rotations in 
the x1, x2 plane. 
 Exact solution of the Schrödinger equation with the 
new initial conditions gives 
 
 1 2 1 2( , , ) ( , , , ) d ,q x x q x x      (41) 

 
where 
 

 2
1 2

1 2

( ) exp(i( ) )
( , , , )

2
q x

q x x
b b

  
 




  

       
2 2

1
2 2
1 2

(2 ) ( )exp .
8 8

x q q
b b

    
    

 
 (42) 

 
Tracing the system–apparatus density matrix over the 
system coordinate, we obtain the apparatus density matrix 
at time T 
 
 1 2 APP 1 2, | |x x x x     

 1 2 1 2( , , , ) *( , , , )d d d .q x x q x x q           (43) 
 
Integration over x2, 2x  gives 
 
 1 2 APP 1 2 2 2, | | d dx x x x x x      

 
2 2

2 1 1
2

1 2 1

( ) ( )1 | ( ) | exp d .
2

x q x qq q
b b b


   

   
 

  (44) 

 

This yields one of our key results. We can extract the ex-
act initial system position probability density from the  
final apparatus density matrix as an expectation value of 
an apparatus observable. 
 

 
1

2 2
1 2 2 1 2 APP 1 20

| ( ) | lim d d , | |
b

bq x x x x x x x 


      

      

1
APP 10

lim Tr ( ),
b

Y x


  (45) 

 
where Y(x1) is the apparatus observable 
 

 2
1 1 1 2 2 2 2( ) | | | | d dbY x x x x x x x


       

    
2 1 1 2 22 | || 0 0 | .b x x p p      (46) 

We have faithful tracking since Y(x1) exactly tracks the 
system position projector with q = x1. Interestingly, Y(x1) 
equals the Arthurs–Kelly projector |x1x1| (involving only 
the first pointer), times an operator involving only the 
second pointer. Similarly, the exact initial system mo-
mentum probability density is an expectation value of an 
apparatus observable in the final apparatus density matrix 
 

 
2

2
2 1 1 1 2 APP 1 2

1

1| ( ) | lim d d , | |
2b

p x x x x x x x
b

 


      

       

2
APP 2lim Tr ( ),

b
Z x


  (47) 

 
where Z(x2) is the apparatus observable 
 

  
2 2 2 1 1

1
( ) | | 0 0 | .Z x x x p p

b


      (48) 

 
Again, we have faithful tracking since Z(x2) exactly 
tracks the system momentum projector with p = x2. Z(x2) 
equals the Arthurs–Kelly projector |x2x2| (involving only 
the second pointer) times an operator involving only the 
first pointer. 
 The Wigner function of the initial system state can also 
be reconstructed exactly from off-diagonal elements of 
the final apparatus density matrix 
 

 
1 2

2
2 0, 1

( , ) lim
2b b

b
W x x

b 
  

     
1 2 1 2 APP 1 2d d , | ( ) | .x x x x T x x       (49) 

 
Further, because of the noted symmetry property of the 
Hamiltonian and the invariance of the initial conditions 
under rotations in the x1, x2 plane, we can recover exactly 
not only the above q and p probability densities, but also 
the probaility densities of arbitrary Hermitian linear com-
binations q̂  as expectation values of Hermitian opera-
tors in the final state of the apparatus after the interaction. 
 Thus, we obtain for arbitrary  
 
 

1

2
APP0

ˆ| | | lim Tr ( ) ( ),
b

q u T Y u  


     (50) 

 

 1, 1,
1

ˆ ˆ( ) | |Y u x u x u
b  


     

    2, 2,ˆ ˆ| 0 0 | .p p      (51) 
 
Since / 2ˆ ˆ ,p q    the initial system probability densi-
ties for it are obtained from above just by replacing 
   + /2. Since we recover exactly the initial system 
probability densities of arbitrary Hermitian linear combi-
nations q̂  



SPECIAL SECTION: QUANTUM MEASUREMENTS 
 

CURRENT SCIENCE, VOL. 109, NO. 11, 10 DECEMBER 2015 2035 

 2ˆ ˆ ˆ| | | | | ,Sq u q u q u            (52) 
 
we can also obtain the initial Wigner function in terms of 
these observables measured in the same final state of the 
apparatus. 

Reconstruction of initial density matrix of the  
system from the final apparatus density matrix 

Quantum tomography is completed by calculating the 
Wigner function W(q, p) as an inverse Radon transform 
 

 
2

2

0 0

( , ) (2 ) d d dW q p u


   
 





     

ˆ ˆexp(i ( ( cos sin ))) | | ,Su q p q u q u            (53) 
 
and from that the density operator 
 

 1 2

0

| | (2 ) | | d (sin )Sq q q q


          

  2 2exp(( i( )cot ) / 2) dq q u




     

  ˆ ˆexp(i ( ) / sin ) | | .Su q q q u q u         (54) 

Accounting for time evolution of the apparatus  
photons during transit time  to distant location B 

Note that 
 
 APP APPTr ( ) ( ) Tr ( )T Y u T     
 
 0 0exp( i ) ( ) exp(i ),H Y u H    
 
where the Hamiltonian 
 
 † †

0 1 1 2 2( 1),H a a a a    
 
if the photons have the same frequency . Hence the 

ˆ ˆ| |Sq u q u      are equivalently given by replacing 
 
 1, 2,ˆ ˆ( ), ,APP T x p   
 

by 
 

 APP 1, 1,ˆ ˆ( ),cos( ) sin( ) ,T x p       
      2, 2,ˆ ˆcos( ) sin( )p x    
 

respectively. We just have to measure different quadra-
tures for the apparatus photons depending on the transit 
time . 

 Our exact theorems are for the limit b1  0. The pur-
pose here is to estimate how small this parameter has to 
be for reasonably accurate reconstruction of the initial 
state which, in this example, is chosen to be the highly 
non-classical third excited state (Figure 3) of the oscilla-
tor. The wave function in the position basis is 
 

 
2

3 1/ 4( ) (2 3 )exp ( 3 ).
2

qq q q 
 

    
 

 (55) 

 
The Wigner function is a function of q2 + p2  d 
 
 3 2( ) exp( )[4 18 18 3]/(3 ).W d d d d d       (56) 
 
In Figure 4 we make quantitative comparisons between 
the Wigner function, our reconstructed Wigner function 
with 2b1b2 = 1 (for b1 = {0.1, 0.3}) and the Arthurs–Kelly 
probability distribution. It is worth noting that for 

1
1 2

,b   the reconstructed Wigner function is equal to 
 
 

 
 

Figure 3. The Wigner function for the third excited state of the harmonic 
oscillator. 
 
 

 
 
Figure 4. Joint distributions in (q, p) for the third excited state of the  
oscillator as a function of 2 2 :q p  (a) Wigner function, (b) recon-
structed Wigner function with b1 = 0.1, (c) difference between curves (a) 
and (b), (d) reconstructed Wigner function with b1 = 0.3, (e) Arthurs–Kelly 
probability distribution. 
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the Arthurs–Kelly distribution, which differs greatly from 
the true Wigner function. Towards practical utility, note 
that for b1 = .1 the reconstructed Wigner function and the 
position probability derived from it are already very close 
to the actual. 
 A well-known measure of the distance between two 
probability distributions is given by the Kolmogorov–
Smirnov distance, D(K − S) = maxx|F1(x) – F2(x)|, where 
Fi(x) is the cumulative probability for the variable X  x 
for the ith probability distribution. This distance between 
the pseudo-probabilities given by the Wigner function 
and the reconstructed Wigner function, as well as for the 
corresponding position probabilities derived from them 
are plotted in Figures 5 and 6. The distance (especially 
for the position probability) is very small even up to 
b1 = 0.2, though the theorem of exact equality is only in 
the limit b1  0. 

Teleportation of entanglement 

If the photon P with coordinate q is EPR-entangled with 
another photon P with coordinate q with initial wave 
function (q, q), the density matrix for particles 1, 2, P 
after interaction can be shown to obey analogues of eqs 
(14) and (15) with q = x1| replaced by q = x1, q|, 
and Y(x1) replaced by Y(x1)|qq| 
 
 

1

2
1 APP 10

| , | | lim Tr ( ) ( ) | | .
b

q x q T Y x q q 


        

 
Thus the apparatus photons after interaction with P  
become entangled with P achieving interaction-based 
teleportation of EPR-entanglement. The exact initial 
probability densities for q, q (and similarly for p, p), i.e. 
the exact EPR-correlations can be retrieved from this  
final entangled state. 
 
Remark. The theorem on impossibility of simultaneous 
noiseless tracking of position and momentum by commut-
ing apparatus observables is not violated, but circumvented.  
 
 

 
 
Figure 5. Position probability densities for the third excited state: (a) 
Quantum probability density of the state, (b) obtained from reconstructed 
Wigner function with b1 = 0.1, (c) difference between curves (a) and (b), 
(d) obtained from reconstructed Wigner function with b1 = 0.3 and (e)  
obtained from Arthurs–Kelly probability distribution. 

The secret of success is that, although we have the same 
final state, the tracking observables do not commute 
 

 2
1 2 1 2 2 1

1
| ( ), ( )] (| || 0 0 |

b
Y x Z x x x p p

b
      

    2 1 1 2| || 0 0 |) 0.x x p p       (57) 

Exact quantum correlations of conjugate  
observables from Arthurs–Kelly measurements 

Correlations between conjugate observables, being rather 
different from Bell-type correlations among commuting  
observables, are a largely unexplored area with possible 
fundamental importance. I present a method for the exact 
measurement of local and global correlations between 
conjugate observables in quantum mechanics16. 
 We noted that the exact position and momentum pro-
bability densities of the system are recovered by the usual 
Arthurs–Kelly measurement (b1 = b2 = b) in the limits 
b  0 and b   respectively, i.e. in two experiments 
with very different initial apparatus states. It is a pleasant 
surprise that the joint measurement can nevertheless give 
local and global correlations between q̂  and p̂  exactly. 
We define the conditional expectation values of momen-
tum at a given position and of position at a given momen-
tum as expectation values of self-adjoint operators 
 

 
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )ˆ ˆ( ) ; ( ) ,

2 ( ) 2 ( )
q p p q p q q pp q q p

q p
       

     
   

 

 (58) 
 
 

 
 
Figure 6. Plots for the Kolmogorov–Smirnov (K–S) distance between (a) 
the Wigner function and the reconstructed Wigner function and (b) the po-
sition probability density and the reconstructed density versus b1. Even 
when b1 is as large as 0.2, the K–S distance in case (a) reaches a value of 
only 0.072. The agreement is even better in case (b) (the small discontinu-
ity in the K–S distance at b1 = 0.16 is due to the shifting of the position 
where the maximum K–S distance is reached). 
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where A denotes the quantum expectation value of  
a self-adjoint operator A, and the projection operators 
(q), (p) are defined by, 
 
 ( ) | |, ( ) | | .q q q p p p       (59) 
 
For a pure state |, we have the explicit expressions 
 

 2
Re( * ( )( ) ( ) / )ˆ ( ) ,

| ( ) |
q i q qp q

q
 


  

    (60) 

 

 2
Re( *( )( ) ( ) / )ˆ ( ) .

| ( ) |
p i p pq p

p
 


 

  
 

  (61) 

 
We shall see that the local correlations ˆ ˆ( )p q p      and 

ˆ ˆ( )q p q      can be measured exactly for arbitrary q and 
p respectively, for appropriate values of b. The global 
correlation ˆˆ ˆ ˆ ˆ ˆ2qp pq q p        is in fact exactly measur-
able for any value of b. 
 For the Arthurs–Kelly measurement we define as for a 
classical distribution 
 
 2 1 2 1 2 2 1 1( ) ( , )d / ( ),A Kx x x P x x x P x     (62) 

 

 1 2 1 1 2 1 2 2( ) ( , )d / ( ),A Kx x x P x x x P x     (63) 

 
 1 2 1 2 1 2 1 2( , )d d .A Kx x x x P x x x x     (64) 

 
Substituting the value of P(x1, x2), and doing the integral 
over x2 we obtain 
 
 1

2 1 2 2( , )d ( 2 ) d d ( ) *( )x P x x x b q q q q       
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1
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2 2

x qq qq i
b qb




  
      

  (65) 

 
where (q – q) is the Dirac delta function. Similarly, we 
obtain 
 
 1 1 2 1( , )dx P x x x  

2 2
2

( )2 Re d exp( 2 ( ) ) *( ) .pb p b x p p i
p


 


  


  (66) 

 
Taking the limits of b going to 0 and ∞ yield respectively 

 2 1 0 1ˆ( ) ( ),A K bx x p q x        (67) 
 
 1 2 2ˆ( ) ( ).A K bx x q p x        (68) 
 
Thus we have proved that the quantum position probabi-
lity density and the local correlation ˆ ˆ( )p q p      can be 
measured exactly with the initial condition b  0; the 
quantum momentum probability density and the local 
correlation ˆ ˆ( )q p q      can be measured exactly with the 
very different initial condition b  . A similar calcula-
tion shows that for any value of b 
 
 1 2 ˆ ˆ ˆ ˆ2 ,A Kx x qp pq       (69) 
 
the global correlation is exactly measured in the Arthurs–
Kelly measurement. Thus, the Arthurs–Kelly measure-
ments with b  0 and b   equip us with exact pro-
bability densities of position and momentum as well as 
their exact local and global correlations. 
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