THE SEQUENCE OF PRIMES

By S. DUCRAY
Received March 31, 1965
(Communicated by Sir C. V. Raman)
THis note derives by analytic methods certain results in number theory
developed elsewhere! from probability conS1derat10ns The presentation

is not merely a translation into measure-theoretic terms. The approach is
fundamentally different and does not rest upon sampling.

1., LemMAs IN NUMBER THEORY

The following definitions and notation are used. The semi-infinite real
line x > x, > 2 is transformed into y >0 by

y = Li(x) — Li(x,) = la‘g—;. (D

2

The positive integers are marked off on the x-line at unit intervals. Any

- set of the y-line is said to contain (or cover) a certain number of primes

p if its x-image does so. The y-line is itself covered by the infinite sequence
of intervals In: (n— NDu<y <nu; n=1,2,3, -+ with u> 0 arbitrary
but fixed for any given covering. The number of primes contained in Ii
is denoted by X and is obviously a function of x,, u, k, taking on the values
0,1,2, ---. However, no finite number of such values determines the initial
point x,, so that the complete sequence for any given u cannot be determined
by specifying some of its members. By S, is meant the sum of the first »
members of the sequence {Xp,}.

LeMMA 1. S, ~nu and Sp/n—u for all x,

This is simply the prime-number theorem in our notation.

LEMMA 2.—For any two initial points Xo, Xo's S — Sn” =0 (log n/log log n).

This follows from the known nuniber—theoretic result that a length A
of the x-line cannot contain more than ch/log 4 primes; here the terminal &
is of order log n by hypothesis and the transformatjon (1)
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Lemma 3.—The totality of distinct sequences X, obtained by displacement
of the initial point X, through a single u-interval contains a subset which maps
in a 1 — 1 manner onto the points of the interval 0 < t < 1.

This is theorem 1 of the paper cited!; it follows very simply from gap
theorems due to P. Erd6s and G. Ricci. Hereafter, we deal only with the
subset of sequences that can be so mapped, without loss of generality, as
will be seen. , :

2. LeMMAS ON MEASURE

The third lemma above gives a simple measure for the subset
of sequences {Xy,}, namely Lebesgue measure on 0, I). As the parameter
t of the mapping shifts from 0 to J, Xy, will assume various values.
These will be finite in number; zero or a positive integer. Moreover,
each such value will have a measure attached to it because of the nature of
the mapping employed. This last follows quite simply from the proof origi-
nally given for lemma 3, which shows that each value of X7, is assumed over
a finite number of #-intervals, whence the measure would be the sum of the
interval lengths. The existence of the measure and measurability are there-

fore not in doubt; the total measure for any Xp over all its possible values
is obviously unity.

The expectation of any function f(Xy) is defined as the Lebesgue integral
of £, if it exists. It will be denoted by E(f).

LEMMA 4.—With the mapping and measure of lemma 3, we have,
ZEXy) ~nu; TE(X ) =0(m) | (2)
Jor all k 5 summation over 1 <r<n.

Of these, the first is derived from lemma J by interchanging the order
of summation and integration. The second follows from certain estimates
made by P. Erdés which extend Viggo Brun’s work on prime pairs and were
applied to find upper limits for the frequency with which X, = k could occur
in any Sy, in a paper of Kosambi.?

The step-functions Xi, X; are called independent (in measure) if for
every pair of values r, & assumed, the measure of the z-set over which X; = r
and X; =k simultaneously is the product of the two individual measures
concerned. Similarly for independence of three or more of the X ’s. If
the X’s are independent no matter what finite number of them (howeverylarge)
b;; taken, we shal] say that they are completely independent, or just independent
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without further qualification. There arise two cases, according to the complete
independence or the X’s, or otherwise.

Complete independence implies a canonical mapping, wherein each
possible value of Xy, is associated with the same proportional measure with
each possible value of X,,. Without changing the values that occur or chang-
ing the measure with which each occurs in X, such a mapping would map
all possible sequences {X'n} with the given values and measures onto 0 < r<< I.
Our original sets are not by any means those of ‘ all possible sequences with
the given values’, as is again obvious. If, however, the set of sequences
of primes {X,} happens to be of positive canonical measure the following
would be true:

If the set of prime-sequences {Xp} be of positive measure in the canonical
measure, then there exist two constants C> ¢> 0 such that '
— C+/nloglogn <sp —nu < C+/nloglogn; 3).
but each inequality would be false infinitely often as n — oo if C were replaced
by c.
The main idea is that the Khinchin law of the iterated logarithm applies

in the case of independence, to almost all sequences, in the canonical measure.
But inasmuch as our sets of sequences of primes in covering intervals is of

positive measure here by hypothesis, it applies to almost all of the sequences
actually obtained. There can be no exceptional sequences of primes in
covering intervals, because of lemma 2, which restricts the difference of sums
to a lower order than required by (3), no matter how far apart the initial
points may be. The mean values required by the law of large numbers are
guaranteed by lemmas 7 and 4, while lemma 4 also ensures that the dispersion
(variance) is properly restricted, when we take k = 2 in the second of (2).

However, independence is difficult to prove even in this restricted sense,
and not necessary for equation (3), though the other law with ¢ in place of C
does require it. We proceed to supply the equivalent needed for the validity
of (3) as it stands.

3., MAJorR CONCLUSIONS

Hereafter, we take some fixed u > 0, and an unspecificd x, dicplaced

~ through the x-image of a w-interval, with the set of sequcnices of primes

(in covering intervals) {X,}. Therewith, take the subset, mapping ard
measure of lemma J. The main question before us is the effect of ary
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possible lack of independence. The sequences are generated by the sieve
of Eratosthenes, but x, runs through an unspecified set of values, hence
the sole information available would be, at most, that such and suc.h
terms have occurred in a given sequence. What interests us, therefore, is
the effect of S, assuming a certain range of values, upon the sum of further
terms. This, so far as relevant to the problem, may be stated as:

LEMMA 5.—Given 1 and m, each of order. v/n, and the fact that
Spir — Sp > 0. Then, in general, this may decrease the measure Jor
Snirem— Sper > mu, when compared to the case of ‘complete independence,
but cannot increase it. Similarly when both inequalities are reversed.

That is, an excess above or deficiency below expectation in sums of this
order of terms cannot be cumulative when deviations from expectation are
considered; they could conceivably be compensatory in that sense. The
proof needs only qualitative use of the sieve. For k consecutive covering
intervals, the x-image contains roughly ~ kulogn integers. The composite
numbers from among these in the range taken would have a prime
P <+/'mulognu as deleting factor, and eéach such prime will have increas-
ingly many multiples in the two ranges selected above. That there are
unusually many prime numbers left in » consecutive covering intervals after
the first # merely says.that the deleting primes p < v/nulog nu have multi-
plied each other oftener than would be expected on the average. If this
implies anything about deletion in the next m covering intervals, can
only be either: (a) there is no effect at all, or (b) the deleting primes, at
the very worst, cannot multiply each other as often as on the average. An
+€XCess Over expectation mu is then less likely than with independence in

these m intervals. The same arguments may be repeated when inequalities
are reversed.

This absence of cumulative effect
next and main result.

THEOREM.
measure, or Ig
taking = (x)

, in itself quite obvious, leads to our

—Regardless of the coniplete independence of the {Xn} in
ck of such independence, there exists g constant C > 0 such that
as the number of primes P <X, we have

— C+/xloglog xJlog x < (x) —

Li(x) <C+/% lIoglog x/log x (4)
Proof —In the case of independence
measure (3) and its complement for ¢ in

place of Chold. Putting in the proper
values of x and y from (J), the prop

formula (4) emerges, and much more besides,

» Or when the set is of positive canonical v
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In the opposite case, we have to note that (3) by itself forms only the upper
law of the iterated logarithm. This rests upon the first Borel-Cantelli lemma,
which is a proper measure-theoretic result though stated as for probability.
It does not require complete independence in measure, nor does it rest upon
the use of a canonical measure. Any totally finite outer measure would do,
and lemma 3 furnishes one such. The proof of the upper law of the iterated
logarithm turns upon two points: That the measure for deviations from the
mean of sums (in either direction) should not exceed that with independence.
Secondly, the measure for an extreme deviation from the expectation ku
for the sum exceeding C 4/nloglogn for some intermediate sum of k terms
should not itself exceed a fixed constant times the measure for n terms. Both
of these follow in an obvious manner from lemma 5, which says that the
deviations cannot be cumulative. For k consecutive terms of order not
exceeding 4/n, the reasoning adopted in proof of lemma 2 actually make
the measure for large deviations zero, where it would be small but positive
for total independence. Finally, lemma 2 prevents exceptional values of
xo from arising. '
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