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THIS note sets up a sample-space connected with the infinite succession of
prime integers. The properties of this sample-space cast fresh light upon
some fundamental problems of analytic number theory.

 Definitions.—Let an arbitrary denumerable set of positive real numbers
(not necessarily integers) be given: 0 < a; < ay* -+ with ap—> oo as n—-co.
For a fixed length u > 0, a covering of the real half-line y > 0 is given by
the sequence of intervals I, I,, --- where In: (n— 1) u <y < nu By
sn = s (4, n) is meant the number of points with co-ordinates y = a; contained
in I,. Thus {s,} provides a sample-sequence for the particular covering which
begins from y = 0. Other sequences similarly obtained by beginning the
covering from some other point of y > 0 or (what is the same thing) by
subtracting the corresponding value from each a;. Displacement of the
initial point through an integral multiple %ku of u gives the same sequence
begun from the (k + I)st term. We shall say that two sequences- are
essentially different if they do not coincide after a finite number of terms-of

one are omitted.

LemMA 1.—If the sequence {a;} has the properties: (a) that there are
infinitely many gaps ar., — ar > 2u and (b) the a; are Gleichverteilt modulo
u, then the number of different sample-sequences obtained by displacement of
the initial point through distances not exceeding u can be mapped in a 1 — 1
manner upon the right-open unit interval 0 <y < 1. :

Proof—Suppose that, throughout some displacement w < u, the same
 sequence {sp} is obtained. Then the number of points y = a; lost to the
left by a displaced interval must be precisely equal to that gained from the
right, hence the same for all intervals. But the gaps ensure that no matter
where the initial point be taken, there are always intervals with zero gain
and loss. Hence the number gained or lost must always be zero throughout
the displacementw > 0. This means a regular gap of length w in the numbers.
a; as reduced modulo u, which contradicts hypothesis 5. Therefore, w = 0
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and there is a different sample-sequence for every point of (0, u], which inter-
val may then be projected upon (0, 7].

LeEMMA 2.—1f, in lemma 1, condition b be replaced by requiring only that
the set of cluster-points of {a;} modulo u be of positive measure, it still follows
that a sub-set of the distinct sample-sequences {si} obtained by displacement
of the initial point through not more than one u-interval may be mapped in a
1. — 1 manner upon (0, 1].

Proof—Now, it may be possible to obtain the same sequence for some
positive displacement w, as gaps among the cluster points are permitted.
Let w, be the limit superior of such displacements, beginning from y = O.
If, thereafter, the cluster-points modulo u are dense throughout some sub-
“interval (w, wy, + h), there will be a different sample-sequence for every point
of this sub-interval, and the theorem is proved. If not, the cluster—points
near w can be covered by an interval of arbitrary small length ¢ > 0, and
we proceed to the next cluster-point outside this small sub-interval, say w,.
Again, cover this with an interval ¢/2, then ¢/4 and so on, if at no stage is
a finite interval of density attained for the cluster points. But then the set
of cluster-points modulo u must be of measure zero, as their total measure
cannot exceed 2¢, arbitrarily small. This proves the lemma by ¢ontradicting
the hypothesis. ‘

Definition.—In what follows, we take 1, 2,...n,... as the positive integers
marked off at unit intervals on the half-line x > 0. Let Li (x) be the integral
J dtflog t to the upper limit x.. Take y = Li (x) — Li (x,) for any x, = 2.
Our set {a;} is the image-set on this y-line of the prime numbers x = 2, 3, 5,. .
p.. Every covering is always to begin with y = 0, but the initial point may
be varied by displacement of xo. 'Thus, sy, = 5 (Xo, #; n) is the number of
pnmes included in the x-image of In:(n — I) u <y < nu.

THEOREM 1.—There exists at least one u > 0 such that a subset of the
different sample-sequences (of prime images) {sn} obtained by displacement
of the initial point continuously through the image of a single covering interval
may be mapped in a 1 — 1 manner upon (0, 1].

Proof—Condition a of Lemma 1 is satisfied by the Erdés* gap-theorem.
On the y-line, there are infinitely many gaps greater than f (y) between the
images of consecutive primes, where f tends rather slowly to infinity with,
y; hence the gaps are greater than any 4w, for arbitrary constants 4 and u.
Condition b of lemma I is apparently satisfied by a whole range of u-values,
according to a result of G. Ricci.2 However, P. Erdds® has pointed out that
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the result actually proven shows only the existence of a positive measure for
the set of cluster-points on the y-line (modulo any u > 0) for the images of

the primes. This in any case satisfies the requirements of Lemma 2, which
suffices. |

Hercafter, take u to be one of the particular values under Theorem 1.
'Then make a canonical mapping onto (0, 1] of (almost all) covering sequences
with initial points in some one fixed u-interval. Every sequence obtained
by displacement of the initial point through any integral number of coverting
intervals in either direction is to be mapped on the same point of (0, 1]. Every
sequence thus mapped upon a given point of (0, 1] has then the same limiting
frequency properties. That is, if the number of intervals of the sequence
covering 0, I, 2,..k.. images of primes reaches some limiting proportion
Jx for one sequence associated with a point, it does so for every sequence
mapped upon that point. Random choice of a sequence is defined as follows:
First, all points of (0,1] have an equal chance of being chosen (uniform distribu-
tion on the map). Then, for a given point of the map, the actual sequence
may be begun from any term whatever, counting that term as sy, the next
as s,, and so on. This eliminates x, altogether from consideration, and we
may speak only of properties of the sequences associated with points of the
canonical map, using Labesgue measure on the map for probability.

In this situation, probability concepts apply to the {s,}.

THEOREM 2.—For all sequences {sp} defined as above the mean value
(expectation) is given by E (sp) = u for all n.

Proof—This is an immediate and obvious consequence of the prime
number theorem, and of the method of choice of the sequences, seeing that
sp can be the number of primes covered by any interval of length » anywhere
on the half-line y > 0. Here, the prime-number theorem is taken for granted,
in the form = (x) ~ Li (x), where = (x) is the number of primes p < x.

There arise two cases, according to whether the random variables s;
are independent in the sense of probability theory or not.

-

THEOREM 3.—Should the consecutive s, of the same sequence (chosen at
random, as above) be independent in probability, then the following results are
true with unit probability (i.e., for almost all points of the canonical map).

3.1. The probability for any s; assuming the value K is_given by
PGi=k = e-¥uk/k for k=0,1,2,.. ‘
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3.2. If Sp =S5, + So - ** 8y, then” for any arbitrary € >0,
— (1 + €) /2Nu log log Nu < Sy — Nu < (I -+ ) v/2Nu log log Nu
for all except a finite number of values of N.

3.3. If, in 3.2, € be replaced by — «, then each of the two inequalities
is false infinitely often as N —» oo.

Proof.—The first of these, namely 3.1, is equivalent to a result published
by Kosambi* showing the primes on the y-line to be in a Poisson distribution
with parameter u. The result is almost obvious under the given conditions.

With the Poisson distribution and complete independence in probability,
textbook? methods lead immediately to the other iwo results. Of these,
3.2 is the upper law of the iterated logarithm, and 3.3 the lower law of the
iterated logarithm.

However, independence in probability is not easy to prove for consc-
cutive terms of our sample-sequences. Nevertheless, the sicve of Eratosthenes
in its most elementary form enables the most important and useful part of
the theorem, namely 3.2, to be carried over. This is best done in two stages:

LeMMA 3.—For large N and each k, 1 <k <N, the probability of k being
the first index for which |Sg — ku| = 1/2Nu log log Nu cannot exceed the

same probability as calculated under the assumption of independence of the s
as in Theorem 3.

Proof—The main idea is that the sieve of Eratosthenes prevents very
large deviations from expectation from accumulating, if it has any eflect
at all upon independence of (s, — u) in the sense of probability theory.

If the position on the x-line were known, the primes in the image of
k consecutive u-intervals would be completely determined. As it is, all that
can be said is that there exists an unknown background parameter x such
that Nu ~ x/log x for large N. The primes about x on the x-line are the
numbers not deleted by the sieve, i.e., the numbers not multiples of any primes
p < +/x. Itis known that a connected stretch of length £ on the x-linc can
contain at most ch/log h primes, where ¢ is an absolute constant. A length
ku on the y-line has an image ~ ku log x. Theréfore ‘the probability in
Lemma 3 is zero for k < C +/x (log log x/log x)¥2, using the asymptotic values
for Nand x. ‘ . '

The question of independence now appears in the following manner.
Given that r primes have in fact occurred in a specific number of consecutive
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intervals; are the chances of some number m of primes occurring in a pre-
assigned number of following intervals increased or decreased thereby, or
remain unaffected—with no other information available. The answer is
worked out as follows:

For every composite number that occurs, each prime factor <4/x cannot
act as deleting prime for the corresponding distance on either side. The
prime-number theorem and the existence of an expectation say that the prob-
ability for an integer in the x-image of a single interval being a prime is
1/log x, in order. If an unusually large number of primes turn up in a given
stretch, this means unusually few composite numbers, unusually few p < /X
inactivated as deleting primes, and so, if the probability for primality is
affected at all, a slight decrease therein. In the opposite direction, unusually
few primes may mean more than a fair share of deleting primes dropping
out of action, hence possible enhancement of the probability for primality
in adjacent stretches. Nothing more can be said, provided of course, that
the stretch where the known number of primes have turned up is of x-length
less than 4/x in order. For greater: x-lengths, all deleting primes will
delete in the stretch. The most that can then be said is that unusually many
of these multiply each other when the number of primes left in the stretch
is well above expectation; and the opposite when the number of primes
covered by the stretch is far below expectation. In neither case can the
same phenomenon be expected to continue over the next stretch. So, the
effect of dependence, if any, upon Sp — nu may be compensatory, but never
cumulative. This proves the lemma.

TueoreM 4.—If 7 (X) be defined as the number of primes p <X, then

 (x) — Li (x) = O (v/x log log x/log x).

Proof —With independence in probability, the result 3.2 and the
asymptotic values for N and x prove the result immediately. With depend-
ence, the estimates of lemma 3 still remain valid. This is the key condition
for the validity of the upper law of the iterated logarithm, which is based
upon the first Borel-Cantelli® lemma and hence does not require independence
(which is only a sufficient condition). Thus, regardless of the validity of
3.1 and 3.3, the result 3.2 still remains true, and the inequalities may at
most be strengthened, never weakened.”

Theorem 3, however, may admit an exceptional set of measure zero,
like any such unit-probability result. It remains to show that this must be
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empty for the particular sample-sequences of primes in covering intervals.
Consider two I, whose coverings do not differ by more than x on the y-scale.
The number of integers covered by any such I, is not greater than C log n for
large n2. Therefore, the difference in the number of primes Sy for two different
sample-sequences cannot be of greater order than log &N. This does not
affect the order of magnitude as given in 3.2 which is therefore true for all

covering sequences without exception. The result as translated here is thus
proved.

The consequences of Theorem 4 are sufficiently well known to number-
theorists and need not be detailed here.
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