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1. Introduction. Let X3, . ... ., Xs be a sequence of random
(stochastic) variables with expectations E(X;)=m. Then, LLN *
states that under suitable restrictions upon the X, the difference
(X;+ -+« +Xuw)n - (m+ -+ +mn)/n may be made arbitrarily small
in absolute value with probability arbitrarily close to unity by taking
n sufficiently, large (U, chap. 10). The proof is based upon Tsheby-

sheff's Lemma (U, p. 182): If X is a positive random wvariable, then

Grpms Gy = - » -i_
P iX=PB( X)) > 1als
Thus, if Be=E(-m + ++- + Xu=ma)® exists, the lemma applied

o
to the positive random variable > (X,-mu)* gives at once

I
| Xq+ =0 + X e M ) . B
. = s 1 ik < & 'with £ 21 = — -
n 7t A
So, for convergence in probability, it suffices that Bsjn? = 0. On the
other hand, if for r=1, 2,..., n, max |X-m| < Cs» < ©, and LLN

holds, so that (L= Ps) = 0, “we may use the easily derivable inequa-
lity, Bs < n2Cas? (1= Pu) + n%*Pa to prove that Ba/n* = 0 follows as
a necessary condition from LLN under the restriction Co (1= Pa) = 0;
hence, in particular when the variables X, are uniformly bounded,
Co < C (U, pp. 185-6). This may be and has been extended in vari-
ous directions, beginning with the Bienayme-Tshebysheff inequality
(Cr. pp. 21 38-39). What interests us here is the analysis of the
structure of the proof, using only text book methods as far as possible,

In what follows I consider LLN only in the particularly useful
special case when the variable X; are all independent.

9. The law of large numbers. To cover general types of
distributions, we assume at the outset that each X; has a
distribution funetion Fr (x) which is positive, non:dec:reasing, with
F, —0)=0, Fy (+)=1 for all r and P{X, < 2} =F; (&) for all values

* Abbreviations used are: LLN for.the law of large numbers; cf. for charac-
teristic function: U for ].V. Uspensky, “ Introduction to Mathematical Probability ”
(New York, 1037); Cr. for Harald Cramér, “ Random Variables and Probability Dis-
tributions” (Cambridge Tract no. 36, Cambridge, 1937).
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of the real variable x. "The integral being taken in the sense of
Lebesgue-Stieltjes, we may assume the existence of Z (X;)={2dF) (2)
over the entire real line —oo L2 ., Otherwise LLN has to be
given a special meaning for the occasion. We make the further
assumption that § |w|dF, (2) also exists for each value of the index ;
this is “reasonable " in that when the distribution is given only
discrete values for the observable variable, we have an infinite series
replacing the integral and in view of the fact that a preferential
order is hardly reconcilable with the intuitive idea of randomness, the
series in question would have to converge absolutely, i. e. indepen-
dently of order, to the same value. :

>

Thege fundamental assumptions are then also fulfilled for the
independent stochastic variable Xj -~ Z (X;) with which alone LLN is
concerned, so that there is no further loss of generality in assuming
E(X)=0 for all . We are therefore dealing with a sequence of
random independent variables X, ..., Xs such that {ad# (z)=0 for
all 7, and [|x|dF, (z) exists. LLN holds for these if and only if
(X;+- - -+Xu)/n converges in probability to zero. For each n and N,
we define non-negative functions of the two wvariables n, N (of which
the first is.only a positive intezer, the second a continuous variable)

as follows:

(1) : LL]LM*;; w)=0n(n, N)= 0 as N> @ for each n,
1>

. i
hoy=max L (r, N), r=1, 2,..., n; H=3 i(r, N).
I

l,z,[aflfn (@)=c (n,N); cy=max ¢ (»,N), r=1,2,... 100 '> gile ),

x| =N

Following a standard device (U, p. 192) the variables X are each
split up into two additive stochastic components as follows:
() Xi=uwitw;if | X< N, ui=X;, vi=0; otherwige m=b, vi =X,
We then define bi=Z (u)) = - & (v) and it follows that
0 5% SRS o < [TC TR op + + - + gl
Sl =B F e vy Byl oo 4 b |
sl (7N IR S |

By definition it also follows that
* (3—a) |bu] :f[ E;L'a,’ﬁ;n (el Bln, MY [Byk o mme bal << H (0, N).
x|l =N

b} P{l‘ﬂ?‘*":O}’_=P{§E5]>;vj:ngFﬁ(éU}

| x| =N
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Ne o ¢
= E-SCL’FM (.L) Q ‘NS JJ,! des (I),

(2] >N Tal>N

whence P{m#0} <=%and TP{uA0} < H (n, N) /N,

N
Flfom (2) and the above, we have . v
| Xy et X oy
W P - Sé |
J ]Zt] o bl oo Bk Z(’n"“(r)fsl e H(?l,ﬁ\r) ‘l i .Z:_Z—(’.-‘?.,N_)‘
= & L n e n | N

The argument is that | X, +- - -+ Xal<< 4 may hold in two mutually
exclusive ways: when all the Ur=0, or when at least one v % 0. The
probability for the latter event is allowed for by subtracting tile term
H/N, which it can never exceed.

The ¢ in (4) may be chosen arbitrarily small, so that H/n must
tend to zero with increasing n. For LLN .to hold, H/N must also
tend to zero with increasing N, for some method of having n, N
both = co. A third condition has to be satisfied, however. The
stochastic variables w;—b; are independent with zero expectation each,
and bounded so that their second moment exists ; the second moment
of their sum is the sum of their second moments. It is easily proved
that, for any random variable, % (X% 2 B[ X-EB(X)P s that
2 (wi=0))=Bs < ZF (2?) < NZE (lui|), whence B =l 5

Applying LLN in__its classical form to wi-&;, we obtain

_f’lu«'.—bzﬁ—“-'+zm—bn| ___ér‘ 5 L s
(5) P L . K=y D= s Hnp
That is,
flattecan®] Yo o N0 LB
(6) 'pl n = e : (BE<HF - N

So, for LLN to hold, the third condition is that NCilne-H)P = 0.
In this limit, the quantity e—H n may be ignored, which gives our
main result: LLN holds, (X,++ - -+ Xu)/n converging in probability io
zero, when E (X:)=0 and E (|X3]) exists for all r, of for some manner
of approach of n and N to infinity the conditions

1 f_£1 - . 1 J_I,‘ 2 : :
7 ~ > ! Tl A ; —= > cld Hy L y
@ 52\ ldRE@ -0 5 & 3\ [2ld# (1) = 0
x| =N [t =N
= :
33 Clelam @) -0

are all salisfied,
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In particular, as a corollary, LLN Zolds of ho(a, N) < GHN) =0,
In this case we need not attempt refinement by asking the condition
to hold for all large n in view of the fact that 7 (n, N) = 0 for each
n ag N~ 0 ; so0 that if the condition holds for » = k, the larger of
the functions 7y (k, &) and & (V) will do for all m. The proof of thig
corollary is simple: the condition leads at once to
Hn, N) <nG(N), Hin < G(N)~0; HIN < n /G - V' G/N = 0 also,
if we take n=N/v/G > oo,

One implication of this corollary is that the absolute expectalions
E(] X)) are bounded. For,

. : E?(IX:;U = N+ ;?n < N+ G(Z\/‘) < N+g
for sonle N with ¢ ag small ag desired, and for all n. The corollary
includes as special caseg

1) Markoff's: LLN holds if E(| X |8 exist and are bounded for
all v and some & > 0. In this case, again, no loss of generality is
caused by taking Z(X))=0. Therefore,

V el i de) < A Yeads ko h < A/N3 =@ (N).

2) Khintchine's LLN holds iof all the X5 have the same distribution
and B (| X|) exists. In this case, for all n,
h=1 |z|dF(z)=G(N) = 0,
x| >N

taking £(X)=0 as hbefore. Our result is only a slight and almost
obvious refinement of existing deductions. The basic process (due
apparently to Markoff is the division of the variabies into two portions,
of which one is bounded and the other contains values of negligible
probability. The question stil] remains : what is the function of the
second moment for the bounded part in the deduction ?

3. The law of large numbers and the central limit theorem.
For a simple random variate X, bounded .with | X < & and zero
eXpectation, the probability of X lying outside g given interval
centered at the origin can be increased by increase of the dispersion,
Under the conditions of the problem, there is an optimum * most
Scattered " distribution, independent of the particular and variable
limits outside which X may be asked to lie from stage to stage :
that is, X'=+ with probability 14 each will give the greatést
possible scattering once for all. Then P{X| > 8 =0 if S8 =M
and =1if S< M TIf the value of S be preassigned and not greater
than M, we have some choice in limiting the random variable, but
the distribution given here is the optimum in that it gives the great-

" 8t probability, independently of S,
3
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For two independent variables of the same type, the sum X3+ X,
can be dispersed in a similar manner. Here, P{ X+ X > 81=1,14,

or 0 according as S<< M, M < S <M, or S >2M. The first can
M with

be obtained in particular by taking one of the wvariables = A with

probability 14 each and the other 0 with probability 1. In the last
case no permissible choice of distributions can possibly give any
other probability than zero. In the middle case, however, there does
exist an optimum, ie. Xj, Xo= T M, p=14 each, so that the value of
the sum would be + 2M with p=14 each and 0 with p=14. This,
incidentally, points out the essential reason for the validity of our
LLN, in that the values of the independent stochastic variables with
zero expectations cancel out. But it is of basic importance fot’ the

optimum to exist, in such addition, that the interval 98 be sufficiently

large. For the purpose of the preceding section, it suffices to note
that S must lie between (n—-1) M and nl to enforce the optimum
scattering for the sum of n variates. In the wvariables wi=0i, S cor-
résponds to ne—-H, and M to N, or rather to N+h, So, N must be
of the same order as & — H/n, which will not do in view of the fact
that & is arbitrarily small while N has to be taken arbitrarily large.

~ If we take the distribution with optimum scattering, Xi=X==x M,
with p=14 each, then each X has the c.f. ' :
14 (et 4 g*t) = cos Mi=1-2 sin® b4 Mi.

The c.f. of the sum of n is therefore (1-2 sin® 14 Mt)", which, for the
average of n tends to (L~ M2E[In*)* — exﬁ (= M**/2n). So the general
distribution, bounded by the most scattered case, is thus bounded by a
normal distribution with zero mean and variance M ?*/n, in substance.
If M and N are of the same order, we must have (N+hoP*n =0
simultaneously with ne—-JH n(N+hy); but in LLN it-is essential
to have N — o unless we restrict ourselves to almost trivial cases.
These conditions obviously contradict each other.

The function of the second moment, or any moment higher than
the first, is to bridge this gap between the requirements of LLN and
the approach of this section, by consideration of the most scattered
variables.

Suppose that to our preceding assumptions B =0, | %] <« ¥,
we add the condition E (X?) < kM. In the former case, E(Xh=M
for the most scattered distribution, so that for & << M (which we assume
hereafter), we have less concentrated scattering. The extreme limits

" & Jf can no longer be attained as before with p=14. The greatest

concentrated scattering is, in fact, now given by = A/FM s p=14 each.
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Nevertheless, P{|X| = S} need not vanish if we push § beyond Vi
so that the actual optimum in this case is much less clear-cut. For
M > § > \/kM, the best choice is* clearly to take X' = + S with pro-
bability AM/28* for each value, and X =0 with probability 1-/%M/S%
If the probability is reduced at either of the two extremes, it would
be necessary to add an extra valus on the same side of zero, or to.cut
down the probability for the other extreme, in order to preserve the
mean value & (X)=0. The optimum for this three-valued distribution
is more clearly dependent upon the choice of interval, and the pro-
babilities for the greatest scattering also depend upon S. The c. f.
for a single such scattered variable is 1-(24tM/S §?) sin®18 St. For the
sum of n, we raise this to the nth power, for the average of n, we
have omy to replace ¢ by ¢/n in raising to nth power. Similarly, for
the sum of 7, the second moment is B, < nkM; for the average, we
replace each X by X/n and B by Bs/n® < kM/n. So, in getting the
distribution of the average of n values we should not only raise the
c. f. to the nth power but also replace ¢ by ¢/z and S by S/a/a.
Making these substitutions, we get the most scattered distribution of
the average as having tie c. f.

9}7.{]/ S ; \,:7]/ 2 w T ﬂ_fr",
(8) ( 1-= BNM sin? 2?1_\5/?_1)% _),( 1_];?55 )73 g k Mi*/2n.

In spite of its fundamental role, S has cancelled out in the pro-
cess of deduction, to give a normal distribution for the bounding
scattered variate. The mean is zero as before, the variance reduced
to £M[n. This must tend to zero if LLN is to hold. For the attack of
section 2 we should have to take M=N+hy, k=c, Scor/coaii=n (¢ = hy).
The condition would then take on the form hy = 0, ¢y (N+ho)/n = 0,
which it is possible to fulfil, as for example under the assumptions
of the preceding section.

That is, the second moment or any moment higher than the first
helps only by restricting the admissible variation, the maaimum
possible scattering. The analysis of this section shows in addition -
to this a gerieral connection between LLN and the central limit
theorem. In fact, we have the limiting values of the bounding dis-
tributions as normal distributions.
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