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Optical mode-coupling in a ring due to a back-scatterer
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Abstract. The coupling of light waves travelling clockwise and counterclockwise along an
optical ring due to a back-scattering element is studied. An asymmetric mode splitting occurs
as a consequence of the discontinuity suffered by the waves at the scattering point. The mode
splitting shows up in an interference pattern and lends itself to an experimental verification.
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1. Introduction

The analogy between quantum waves and classical waves has recently received a
great deal of attention in connection with two-level systems in optics, both theoretically
[1-4], and experimentally [5, 6]. In these studies optical ring cavities were used to
implement two-level systems. The two levels were the two normal modes of the cavity
created experimentally by lifting either the propagation or the polarization degeneracy
of a single longitudinal mode of the ring. The two coupled modes constitute the
model for phenomena such as photon-band structure in ring resonators [5, 6],
frequency locking in laser gyros [7, 8] and statistical properties of bidirectional ring
lasers [9-11]. In these studies the coupling of two modes of the electromagnetic field
has been phenomenologically treated by regarding them as a pair of harmonic
oscillators. While this model indeed contains the essential physics of two-level systems,
it cannot be trusted to predict the variation of mode frequencies with the physical
parameters which couple the initially degenerate modes. Further, in the case of
perturbation by a back-scatterer the phenomenological model does not provide
connection between the parameters of the model with the parameters of the back-
scatterer. In this study we consider the effect of introducing a thin dielectric plate in
a ring cavity and calculate explicitly the breaking of degeneracy between clockwise
(CW) and counterclockwise (CCW) modes. It is shown here that this situation can
again be reduced to a two-level system, but the parameters of the Hamiltonian depend,
in a complicated way, on the parameters of the perturbation. The detailed variation
of the frequency splitting is found to be different from what one obtains from the
coupled oscillator model. We believe that the asymmetric mode-splitting predicted
by this theory is fairly realistic, and can be subjected to experimental tests, particularly
since all the parameters involved in the theory can be measured independently.
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2. Theory of mode-coupling in a ring cavity

Consider the propagatioﬁ of only one transverse mode in a one-dimensional optical
ring cavity of length L. The dynamics can be described by a one-dimensional wave
equation for ¢(x,t) travelling along x-direction:

2 2
[i- cz—?;:lci)(x,t):O, o)

where ¢ is the velocity of light. Since ¢(x, t) has a two-fold propagation degeneracy,
CW and CCW, it can be written as a two-component spinor, and the wave equation
naturally decomposes to:

—+c— 0 ¢y (x,1)
=0, | (2)
=7 || d2(61)

where ¢,(x,t) and ¢,(x,7) are the CW (~exp(ikx)) and CCW (~ exp(— ikx))
propagating waves. The eigen-frequencies of the uncoupled CW and CCW waves are
degenerate. In the ring, these lead to a standing wave pattern with k= 2zmn/L
(n=0,1,2,...). This degeneracy can be lifted by introducing a coupling between the
CW and CCW waves. If a back-scattering element is introduced in the cavity at point
x=0 (or x= L), the system can be described by the equation [12]:

5 + c—a— 0 A B B (x,1)
+id(x)c =0, 3
——Cc— B* A d,(x,1)

where A is real. The potential chosen here is hermitian and (3) satisfies the continuity
equation with c(¢¥ ¢, — ¢*¢,) as the current density. The coefficients 4 and B (if
real) can be related to the parameters of the back-scatterer by comparing the
transmission (reflection) properties of this potential with those of a dielectric slab of
thickness d and refractive index n, in the limits of plate thickness d—0 and the
refractive index of the dielectric n, — oo such that the product n2d remains finite. The
transmission and reflection coefficients of the potential are:

(L BR—ar —|BP
T-(l—_i—-——-——~4 1A)/(1+——-4——-), | @
‘R=~iB/(1+L_4l—m—2). | O

The transmission and reflection coefficients of the siab are:

T = (cos(ko n,d) + 1( +13) sin(kqn, )) exp(‘— in, kyd, (6)
| 2nyn, ,
o =)

in(kyn,d
2n.n, s onz ) Y
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Optical mode-coupling
The comparison in the limits mentioned above yields:

A=B= —(kon;'d)/nu ‘ ®)
where k, is the wave vector in vacuum and n, is the refractive index of the medium
in which the dielectric is embedded. In the absence of the dielectric, i.e., when ny=n,
and there is no perturbation at x =0, we have 4 = 0 = B. The scattering element and

the cavity are assumed lossless [13]. The steady-state equations for the two counter-
propagating waves with frequency W are:

d 4 w :
id~¢1 —0(x)(A¢, + Bo,) =—¢,, ©)
X c
. d 4 w
—l;i—¢z—5(X)(A¢z+B ¢1)=—9,. (10)
x ¢
Integrating (9) and (10) across the potenﬁal, we get

(61 (L)) — ¢, (0)) = §(¢1(0) n ¢1(L)) +’§(¢2<0) n ¢2(L>), 1)

—i(p2(L) — ¢,(0) = i;‘(¢2(0) ¥ ¢2(L)> + %t(fﬁl(o) + ¢1(L))- (12)

The values of ¢,;(x) and ¢,(x) at x =0 (or x = L) have been taken as the averages
(01(0) + ¢;(L))/2 and (¢,(0) + ¢, (L))/2. The scattering potential causes discontinuities

in the wave functions [14] which means that ¢ 1,2(L) # ¢, ,(0). Using

$1(L) = ¢, (0)exp(ikL) for the CW wave, | (13)
¢,(L) = ¢,(0)exp(—ikL) for the CCW wave, (14

the eigenvalue equation for k assumes the form:
. : A . B .
i(1—exp(ikL)) + 5(1 + exp(ikL)) 5(1 + exp(—ikL)) ?4.(0)

- —Bg—‘(l + exp(ikL)) " i(l —exp(—ikL))— i;L(l + exp(—ikL)) ¢2(0)'

(15)

The condition for nontrivial solutions of ¢, (0) and ¢,(0) yields two modes k., and
k_ given by:

tan(k, L/2)=(— A+ B|)/2, (16)

‘tan(k_ L/2)= — (4 + |B|)/2. ' (17)

Figure 1 shows the plot of the fundamental modes k. as the coupling |B| is varied

for a dielectric scatterer when (8) is obeyed. Note that for 4 = |B|, (16) gives the free

cavity modes. For arbitrary A and B, the two solutions correspond to the two shifted

modes of the cavity. The situation is analogous to a quantum two-level system, with
the two modes k. representing a quantum two-level system with frequencies
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Figure 1. Plots of the fundamental modes k. versus the coupling parameter |B|
for a dielectric scatterer satisfying condition (8).

w, = ck . The frequency difference between the two modes can be written as

_ (B
Aw = (2¢/L)tan ( T AZ)). (18)

Note that this is different from the coupled harmonic oscillator model, where 2(A2 +
W?)!12 is the difference in eigen-frequencies of the effective two-level Hamiltonian,

H=[A ”} | (19)
W —A ‘ ‘

in which A? is assumed to be proportional to the reflectivity, and the coupling rate
W is taken to be constant. The difference in the qualitative predictions of (18) and
(19) can, of course, be subjected to experimental test. It may be mentioned that by
assigning complicated variations to both A and W, (18) can be recovered.

The amplitude ratios of the CW and CCW waves for each of our modes are

1 4;A—IB) 2
$;/(0)__B (7+), for mode k (20)
T = — — =exXpiy+ ), or mode K.,
O xm@+m—ww>

' 4

(A+1B))\?
¢;(O)= B(1+l 2 ) =exp(iy_), for mode k (21)
¢ﬂmlmo+u:w@ -
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Figure 2. Plots of intensity I,, (in arbitrary units) versus relative position x/L

at t=0 for a dielectric scatterer satisfying condition (8) with |Bj=0 ( ),

1Bl =1 (————), |B| =2 (----) |
Note further that y, =n—k, L, which implies'

d* (x) oc exp(— ik, x) — exp(ik (x — L)). 22)

The general solution for the eigenmodes would contain components of both clockwise
and counterclockwise waves in different proportions:

" (x,2) = o] (0)exp(ik ., (x — ct)) + ¢ (0) exp(— ik, (x + ct)), (23)
¢~ (x,£)= ¢] (0)exp(ik_ (x — ct)) + ¢; (0) exp(— ik _(x + ct)). (24)

Due to relation (22) this implies

¢* (x,1) = ¢ (0)[exp(— ik4 x) —exp(ik, (x — L))]exp(— iki ct). (25)

The intensity of the superposed CW and CCW waves is given as

I,=l¢" (5, 0)+ ¢~ (x, 0 (26)

Figure 2 shows the variation of I, (in arbitrary units) along the ring at time t=0
for a dielectric scatterer satisfying (8), for two values of the coupling |B|. The
modulation of the intensity pattern depends on the value of the coupling parameter
B, which in turn determines k. and k_.

3. Summary

In summary, we have used a simple model of scattering of two optical modes by a
partial reflector in a passive ring cavity to study the effect of conservative mode
coupling. A modulated intensity pattern of the superposed CW and CCW waves
indicates the mode structure, which can be tuned by the coupling parameter, B. This
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simple calculation gives explicit forms for the frequencies of the split modes in terms
of the parameters of the back-scatterer. It can be seen that this frequency splitting
cannot be easily reproduced in terms of the coupled oscillator model.
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