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The main purpose of this note is to develop statistical
methods for discrimination between samples consisting of
whole curves.

We take the observables as simple curves of type
y =f(x), the functions fl(x) being all single-valued, of
bounded variation, continuous (though step-wise conti-
nuity—as for a sample of histograms—would cause no
difficulties), defined on a finite closed interval which
may be taken without loss of generality as o <x< 1 by
suitable choice of origin and scale. The methods deve-
loped for such curves apply directly to diagrams in polar
co-ordinates 7 = f(6), 0 < 6 < 2x; by an obvious extension,
to suitably restricted surfaces, (say crania) or multidimen-
sional varieties. Peano’s space-filling curves, Jordan
curves of positive area, are naturally excluded.

The problem clearly resolves itself into four compo-
nents: (1) to define a normal distribution in function-
space, (2) to deduce useful consequences of such normality,
assumed to hold for the population of curves, (3) to
devise new methods of calculation where necessary, and
(4) to examine the generality of the approach.

1. The probability P associated with a multivariate
normal distribution is the definite integral, over the pro-
per region, of

(2r) 42697 dV, i)
where & is the number of variates in which ¢.is a positive
definite quadratic form, and dV is the associated volume



STATISTICS IN FUNCTION SPACE i

element. That is, the same transformation that reduces
¢ to a sum of squares makes dV = dx,dx,...dx,, the whole
space being recognizable as an ordinary k-dimensional
Euclidean manifold with ¢ = 72 as the square of the dis-
tance. A continuous function is determined completely
by its values on a set of points everywhere dense on (o, 1),
say all rational points; a function in general, therefore,
has an infinity of co-ordinates. As approximation is pos-
sible by increasing £ indefinitely, the first step would be
to generalize distance and the quadratic form ¢.

To this end, we assume the existence of a continuous
symmetric kernel K(s, ¢), positive definite or semi-definite.
Then the distance between any two of our functions f(x),
g(x) is given by

r(fi8)=o(f-)= [[K(s, 0 { S15)~g(6) H A0 —e(0) [ s dr
(1.2)

The range for all otherwise undefined integrals in s
and tis (o, 1) for each variable; here, the unit square.
Restricting the population of functions to be such that
K (s, t) gives a definite ¢ therein according to the defini-
tion of (1.2), we shall have 7(f, g) =o if and only if
f=g with respect to the mechanism of observation; it
follows, therefore, that r obeys all the basic postulates for
distance including the triangular inequality. The normal
distrtbution in function-space could be taken as defined
by ¢ exp(—g¢/2) dV.

Unfortunately, not all the terms of this probability-
dunsity can be given a meaning that is useful in practice.
As (2x)~*?-5 0 when £ — «, ¢ can only be specified by the
restriction that the total probability equals unity; also, the
“‘yolume element” dV may be given a direct mathemati-
cal meaning (1), but not one of much real use. To sur-
mount this obstacle, we resort to a choice of independent
variates that reduces ¢ to a diagonal form. This amounts
to taking K(s, £) in its canonical form (2, 117, 114),
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K(s, t) == o?¢;(s)b:(2). (1.3)

The ¢, are the orthonormal characteristic (eigen-)

functions of the kernel, o2 the corresponding characteris-

tic values (= 1/3; in the notation of 2), all positive with

So/ convergent (2, 111). The orthogonal or independent

co-ordinates for any function f(f) are obviously the
“Fourier” co-efficients x;, %z,. . ., X,,...with

v={f0) s.0d, =200, (4)

As K{(s, t) is definite for the population, every function
observed can be so represented. The series will converge
uniformly and absolutely (2, 114) for every function that
is the K-transform of any piecewise continuous function,
a restriction which we place upon the population.

We now define normality in the function-space to
mean normal distribution in each of the ;. Without
loss of generality, the population mean for the function-
space and hence for each x; may be taken as zero. The
variances will be ¢2. That is, our ¢ has to be taken as
generalizing not the k-dimensional population quadratic
form but the one that enters into the characteristic func-
tion of the distribution, the Fourier transform. In Eucli-
dean space, both become equal to 7* when ¢ is expressed
as a sum of squares. Our choice for function-space is
dictated by the implication of (1.4) that sx? converges
whence x;—y0 as i % e, which can be made to hold iz pro-
bability for random x; if and only if ¢?—o0. If ¢ were to
be taken as the population (probability density) quadra-
tic form, or variances would become 1/?; the two kernels
must be reciprocals, as is seen by application of the
Fourier transform to the k-variate distribution. Since we
deal here with kernels of the first kind, only one can be
properly defined, in general, the other “existing” only in
symbolic form as is seen by the fact that except in the
degenerate case, the series of squares of characteristic
values and the series of squares of their reciprocals cannot
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both converge simultaneously. To sum up, we may for-
mulate a

DeFiNiTION:  Normal distri ution in Junction-space will
be taken to mean normal distribution for each variate %; of an
(independent) infinite sequence x,, %,,... with all population means
zero and variances o3, of,... These x; are the “Fourier” coeffi-
cients of a random function of the space with respect to the ortho-
normal characteristic functions $,(t), ¢,(¢),...with characteristic
values of, o3,...belonging to a continuous, symmetric, positive,
definite (in the manifold of admissible functions) kernel K (s, t)
defined over the unit square o <s<1,0<t< 1. The kernel
K (s, t) thus completely determines the distribution.

2. This definition has the initial advantage of cover-
ing all finite-dimensional cases, represented by degenerate
kernels where all but a finite number of the variances ¢/
vanish. Conversely, it allows approximation by de-
generate kernels and application of methods developed
for k-variate distributions. These can be used together to
prove, for example, that

The sum of two normally distributed function variates is
also normally distributed with mean the sum of the population
means and kernel the sum of the two given kernels.

This follows directly from the definition since
exp(—¢/2) is not the probability density but the charac-
teristic function of the distribution. The characteristic
function of the sum of two variates is the product of the
two characteristic functions. In particular, the mean of
a sample of n functions chosen at random from the same
normal population will have the population mean and
kernel K/n; one degree of freedom will be lost in measur-

“ing from the sample mean, and so on. If the same set of

orthonormal functions covers both kernels, then we may
add corresponding variances as usual; if not, we can at
least state that the sum-variances do not decrease (2, 113

with an obvious correction).
VII—11
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What seems to me to be the most important conse-
quence of our definition rests upon a basic theorem of
Kolmogoroff (3). Using the letter P to indicate the pro-
bability and £ the expectation of the events bracketed,
this may be 'stated as follows.

Given a random sequence uy, Usyaee, U,,..., the probability of
the convergence of the series Su, is unity if there exists some ran-
dom sequence vy, Vyy.. ., Uy,...Such that thethree series P(u,=£v,),
3E(v,), SE[(v,—E(v,))?] all converge. If no such sequence ex-
ists, the probability for the convergence of su, is zero.

” In our case we take u, =0, = x,¢,(¢), so that the first
two series converge by hypothesis. The third is

SE(x292) = 3¢2(1) E(x2) = 30292(1) = K (1, 1) (by 2, 110).
The structure of Kolmogoroff’s proof shows that in

our case convergence and uniform convergence go to-
gether. We conclude, therefore, that

A random sequence of the variates x,, x,,...,x,,...of our defi-
nition represents with umt probability a function of the normally
distributed function-population.

This replaces the Riesz-Fischer theorem, proving a
1-1 correspondence between random functions and
random sequences of coefficients, in the sense of unit
probability. The Riesz-Fischer theorem would require,
for unit probability, the convergence of =¢? and give
only convergence in the mean for sx,¢,(¢).

Let y,=f(t;) =3x,$,(¢) be the ordinate at a fixed
point #; as abscissa. From E(xx;) =o, E(x?) =02 we
obtain

E(y7) = 2o}¢3(t) = K(t, t,)
E( ;) =3202$,(t)¢,(8;) = K(t;, t,). (2.1)

The matrix || E(»;9;) | =|K(%, ¢)| of covariances
may be regarded as the symbolic product of | o,¢,(t) ||
with the transposed matrix. In case the kernel is dege-
nerate and there are more ordinates y,, y,,..., 9, than
characteristic functions ¢, ¢,,..., ¢, it is obvious that the
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determinant | E(; »;)| will vanish. Conversely, if
| K(#,t)] vanishes identically, the kernel is necessarily
degenerate as its Fredholm expansion [2,122] breaks down
into the ratio of two polynomials. As the y; are convergent
(in the sense of unit probability) linear combinations of
normally distributed variates, we have proved that

For any fixed abscissa t, in a normally distributed popula-
tion of functions, the ordinate is normally distributed with vari-
ance K (t, t). The covariance between values of the functions at
two pownts s and t is K (s, t). The distribution of ordinates at k
Jixed points is multivariate normal, and is a proper distribution
except when the kernel K (s, t) is itself degenerate with less than
k characteristic values.

In this, of course, the nodal points of the entire set
of functions, points where K'(¢,¢) = o in particular, must
be avoided when selecting the £ points for measuring
abscissae. An example would be ¢, = y/2 sin #7¢ and the
end points of the interval, ¢, = o, ¢, =1.

3. The usefulness of the preceding section is mani-
fest, as the population kernel X(s, #) would remain
unknown in practice even when the hypothesis of normal-
ity is granted. Our theorems enable us to proceed by
the methods of the ordinary multivariate normal distri-
bution, measuring ordinates at suitably chosen abscissae.
The meteorologist would be justified in working with
temperatures taken at noon and midnight, but not neces-
sarily with his maximum and minimum temperatures,
which are measured at varying times of the day. The
anthropologist’s characters and indices would be less
justified, than, say, measurements from the ear orifice to
the profile at fixed angles from the line joining the orifice
to the base of the nose. Coefficients on the harmonic
analyzer, regression coefficients in properly chosen ortho-
gonal functions (whethey they belong to the kernel or not)
are also to be regarded as co-ordinates in multivariate
normal distribution, provided the fitting when done by
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values at fixed points is done with the same fixed abscis-
sae for each curve.

Given a sample of n curves, y= fi(x), /2(%);..., fu(%),
the best estimate of the population mean #(x) and the
population kernel K(s,?) are given respectively by

== fll); k(s2) === [ fi(t)—m(D)] [/i(s)—m(s)]

(3-1)
as follows obviously from the foregoing. Large sample
theory means calculation of these sample-functions and
therewith the characteristic-functions and values [which
will approximate those of the population]. Hotelling’s
T?, Fisher’s discriminating-function and such methods for
discrimination would also apply without restriction pro-
vided the number of points for taking ordinates did not
exceed the number of functigns in the samples.

But in many cases the complete curves are recorded
automatically with less trouble and more accuracy than
for a finite number of observations on the same material.
In that case, we could, if the proper machines were avail-
able, calculate the sample-functions in (g.1) and there-
after the “Student” ratio #(x) or Fisher’s z(x) from two
given samples for every point of the abscissa o < x < 1.
Corresponding to these or to any other statistics we shall
get a local probability p(x) as a function over the unit
interval. In methods of discrimination, one may choose
a single point, say the point where p(x) takes on its
maximum value in the closed unit interval; the corres-
ponding value of x gives the abscissa where the maximum
discrim nation has been achieved. This, in a way, is the
determination of the best [in the obviously restricted
sense] linear combination of the unknown co-ordinates
%,, the “Fourier” coefficients with respect to the unknown
population orthogonal functions. But, again, one is
tempted to ask whether something more could not bedone,
whether one could not calculate or measure a single pro-
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bability for the whole interval or for any given sub-inter-
val, instead of a point probability. What is required is
not p(x) but a P(e, g) for any given o <« <81, on the
basis of the two samples and any given statistic. The
most that can be done here is to show that such questions
need not be meaningless.

Suppose the kernel to have a singie non-negative
characteristic function ¢(¢) > o and characteristic value o°.
We ask for the probability that a sample-function f(#) =
x¢(£) lies between the two limits a(¢) and b(¢) throughout
an interval («,8) in (0,1). Then this probability is

G B i

AR (3-2)
if x, is the greatest value of x satisfying x¢(¢) < b(¢) and
x, the least for x¢(?) >a(t) in (o, 8), With x,>x,; the pro-
bability is zero otherwise. A similar approach is possible
for ¢(¢) with changes of sign or more than one character-
istic function. The general question, for examples of the
type chosen for illustration, depends upon the correspon-
dence that can be set up between two different types of
function-lattices, not merely function-spaces, with measure
and maps upon the unit hypercube in infinitely many
dimensions (torus space).

The calculating machines, under the circumstances
that now limit my activity, cannot go beyond the stage of
design. The fundamental ideas will be made clearly by
the two schematic figures appended here in the hope of
doing service to some more fortunately situated experi-
menter. Figure 1 shows how 3 f;(x) may be drawn by
means of templates and a wire passing over a system of
alternately fixed and moving pulleys, suggested by Kelvin’s
tidal machine. The formulae of (8.1), in particular the
most important ones for m(¢) and k(t, ¢), depend upon the
operations of addition, summation of the square, subtrac-
tion, and division by a chosen factor. For the pulley
machine, subtraction is possible by reversing the direction
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of the wire or rather substituting a moving for a fixed
pulley; or by using as template the conjugate curve to the
one to be subtracted. Reduction of scale, i.e. division by
a given number, will have to be done by a pantagraph,
or some such device. Both of these introduce errors, and
there is the additional difficulty of getting material for
templates that will be stiff enough to stand up under the
weights, and smooth enough to allow all the templates to
be pulled through on their rack without sticking. For
sum-squates, and sums of products, the arrangement has
to be extended to the measurement of torque and
moments, the simple pulley-machine being inadequate.

The second instrument is suggested by the high fide-
lity with which sound is recorded on and reproduced by
cinematography. Here, the area under the curve is cut
out of a standard sheet of paper, and scanned by means
of movement past a narrow fixed slit. The light that falls
on the slit is of uniform intensity throughout, in the first
instance, The film is coupled with the template, and
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both are drawn through with uniform speed. The lens
reduces the curve in height, but not in length, and by
means of a vertically movable rack, many such curves, say
at least a dozen, may easily be recorded on a single film.
At the end of each curve-template, a standard height is
cut out of the template material.

The film is developed and printed as usual, and
focussed back in all its width through another slit on to a
photo-electric cell. The current recorded will be propor-
tional to 3 fi(x) at each point, standardization being
achieved by means of the fixed heights cut out of each
template at the end of the curve. The factor 1/nor
1/(n—1) can also be set thereby, adjusting the primary
current, or putting the proper shunt across the current-
recording device.

Sums of squares are easily obtained by varying the
intensity as well. This is best done by means of a photo-
electric cell coupled with the moving template rack. This
cell would regulate the current supplied to the light, so
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that we should have the product of the height of the
curve by the intensity as f?(x). The difficulty here, of
course, is in the law of darkening, and very much more
careful adjustments will have to be made. The same
method allows function-covariances to be calculated,
coupling one set of templates to the photo-electtic cell and
the other to the slit-rack.

The law of resistance in electric circuits in parallel

shows obvious means of calculating harmonic means. For
the two-dimensional kernels K(s, #), the best methods
-would seern to be those derived from television. Such
instruments are now being devised by others for work in
a single dimension. If successful, the need for cutting
templates would be obviated, with a gain in accuracy.

4. From the purely theoretical point of view, we
have ignored many other possibilities. Some of these
were mentioned in a former exploratory approach [1]. I
give an example to show that theoretical generality is
certainly possible, in defining the normal distribution, but
that the usual facilities such as the central limit theorem,
the chi-square and other tests used in practice, in short
the whole mechanism of everyday statistics isinvalidated.

The population is defined by functions
é,(2) = V2 sin 7,

f() =39""a,$,(t), where a, =oor 2. (4 1)
The kernel K'(s.¢) is given by
K(s,t) = [237":(5)] [2377;(8)], (4-2)

being thus degenerate of the first order. It follows that
r( f, g) for two functions defined by sequences a,, b, is
given by r=|x(b,—a,)/3"|. If thesequence a,is regarded
as defining a point of Cantor’s ternary set [Disconti-
nuum], expressed by the same sequence of zeros and twos
in a ternary expansion, it isseen that there is a 1-1 corres-
pondence between points of the set and our population of
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admissible functions; moreover, the distance between two
functions is now the distance between the two correspond-
ing points of the line segment. Now Hausdorff (4) has
shown that a measure can be defined over the Cantor set
or over any similar set obtained by deletion of a central
interval. Ifeach of the surviving pieces is, at each stage,
a fraction p of the original, the dimension 7 of the set is
given by 2 p’=1, whence the Cantor set is of dimension
log 2/log 3; a trifling extension of Hausdorff’s argument
will show that when the deletion is not symmetric, the
surviving pieces being of fractions p and ¢ ateach deletion,
the dimension r is given by " +¢"=1. What concerns us
here is the existence of the outer measure, by means of
which we may define our integral of ¢ exp(—¢/2)dV, where
¢ is the quadratic form defined by means of the kernel
K (s, t) of (4.2), and dV is the Hausdorff measure on the
Cantor set, extended from the line segment (o, 1) to the
entire line — «, + 0 by simple translation, along with the
coefficients and the functions of the space. This shows
the possibility of generalizing the normal distribution
beyond the needs of the statistician. Let it be noted
that in choosing samples of functions from such a space,
the gaps might pass unnoticed, because the set of points
is perfect though nowhere dense, so that arbitrarily close
to every function there could be other functions of the
population. In this connection, we might also note the
fundamental role of measure and distance, as contrasted
to mere one-to-one correspondence. Every point on the
line segment (o, 1) may be expressed by means of the two
digits o, 1 in the binary decimal scale; replacing the 1 of
the binary by the 2 of the ternary set, we get a one-to-one
correspondence, excepting for the points which, in the
Cantor discontinuum, have an infinite sequence of 2’s.
As these doubly represented points are all rational in the
binary scale, their totality forms a set of measure zero.
But on the continuous line segment (0, 1), extended by

translation, our normal statistics can be defined as usual.
VII—12
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This is of particular interest in considering such cases as
the Kollektiv concept of von Mises, where we usually
start by setting up a 1-1 correspondence between the
throws of a cein and the binary expansion on (o, 1),
which determines the measure a priori without further
justification,

It gives me great pleasure to thank Mr. S. K. Sane
for his careful execution of the two figures.
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