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In the first paper® with the same title, it was shown
that the fundamental ideas of the theory of relativity
could be applied directly to the trajectories of particles,
without assuming the existence of a Riemann metric,
The results of that paper are valid also for more than
four dimensions, with the corresponding extended Lorentz
group; in particular, to the Kaluza-Klein theory in five
and the Proca-Goudsmit in six dimensions. From the
analysis of Cartan and von Neumann dealing with the
theory of spinors, it is not to be expected that anything
of importance could be obtained from a manifold of
more than eight dimensions, but the cases n=5-8 will
not be without some value. These path-spaces constitute
the most general such extension of Einstein’s special
theory. .

The results of my first paper cover somewhat more
ground than is apparent therein. Consider that the path-
spaces admitting Lorentz (=L) and similitude (=8§)
groups are derivable from three-dimensional observa-
tions, and have the trajectories of the ¢« fundamental

particles”, &' = cx' as solutions:
L R
x—'pi (€)+2xx7(£)"‘0;z""0) Iy 2,35
27(1)-G(1)+1=0. (1) 4

Here, as throughout the rest of this paper, the nota- =
tion of (1) is used, though later on, it will be found more '

* Kosambi (1).
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convenient to make direct use in formule of the quanti-

ties g=1+G, v=1+7. Thesc paths become singular, or
. indeterminate, for the origin of space-time x°, !, &2, x*=o0,

for which reason I have called them elsewhere (4)

cosmogonic instead of cosmological path-spaces. If

however, the observer is fixed as the space origin and lets
- his time coordinate x°= ¢t vary in accordance with the
- cquations, we find that the equations reduce to

T

&

}&0-;~§~{27(1) - G(1) } zx°(:§: —ﬁo): o. (2)

xO

: This has the solution x° = a¢"", so that the relation
. between the observer's time and the parameter 7 of the
path-equations is precisely that between Milne’s two time-
- scales.  Of course, I do not make the claim that all of
- Milne’s results are covered by the theory of path-
. equations admitting various special groups. For example,
- Milne feels bound to express certain views on creation
- and the deity*, whereas I amunable to venture upon theo-
logical applications of the theory of continuous groups.

The rest of this paper, then, will give rather elemen-
tary results in the theory of such path-spaces, unifying
and illustrating some scattered work published in other
papers. T

1. The following formule are handy in calculations:

“ dx®

o= u=8nTEn=—-18i=0,1z£); P =22 =7

=gb's %= %8 X=pb; Y=x's,; &= p'x,; é=2/XY
K =2);X,=0;¥,=22; Y ,=0; Zi=x;2,,=p
,r‘ o%Z ¥ oZ : .

=g (Y0-2x) 5 6= gog Rx-2p) s 6,8 = ¢ pr =0

' ’ o oF
X¢ x7=Y¢, p'=2Z(1—¢), where F;':@; o+ = 5(1.1)

i

* Milne, (2), 138-40.
t Kosambi, (3) and (4).
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and the tensor summation convention is used.

It is also convenient to know how to calculate the
contravariant tensor corresponding to any given covariant
tensor of rank two. This, of course, can always be done
by taking the normalized cofactors of the elements in the
original tensor matrix, but for our work the tensor will be
found to have the particular form :

T, = Ag;+ Bki’\:"j'l' CP;PJ-F'D’;’;'PJ-}-EP;".‘;" (1.2)
Assuming therefore that the associated contravariant
tensor is of type

i gt et oot g Th)
we solve the equations 77T, = $}, which must be true

identically in the quantities concerned. We obtain
thercfore,

ad =1
aB+b(A+BY+EZ)+d(BZ+EX) =0
aD+b(CZ DY) +d(A+CX+DZ) =o
aC+c(4+CX+4DZ) +¢(CZ-+DY) =0
aE y¢(BZ+EX)+¢(A+BY +EZ) = o. (1.4)
Eliminating ¢ from the first of these, the remaining fall

into two sets, which can be solved if and only if the
determinant

A=(A+BY +EZ)(A+CX+DZ)— (BZ+ EX) (CZ+DY)Fo.
It is clear, of course that A0 is also a necessary restric-
tion ; it need not be added that the equations (1.4) can
be solved for the coefficients of T; when T is given.
The explicit solutions are :
a=1/4;a=A(A+BY +CX . DZ+ EZ)+ (BC-DE)(XY-2%);
Anb=X(DE-BC)—AB; Anrd=Z(BC-DE)—AD
Aac=Y(DE-BC)-AC; Aae =Z(BC-DE)—AE. (1.5)
These formule become particularly important when

we have T;; as the fundamental tensor of a metric path-
space, ie. of the form f ; the condition 445 o0 being
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then the condition for the metric to be non-degenérate,
and the variational problem to be regular. For. the

; ; : 4
special metric f= x ¢(X, £ we have:
A= ¢—tg:; XC= g,426ps;
YB — 2§2¢22; ZD = ZE e —2§2¢32-
The condition a -£0 reduces to
 #H(1—28)¢gr—8(1—8) 95+ 2£(1—)pg22 £ 0. (1.7)
This can be integrated for the cases when the expression

vanishes, and the degenerate values of the metric are
then given by

$2 = 0¢/0¢, etc. (1.6)

Vé=PV({—1)+Q V4, (1.8)
where P, Q are arbitrary functions of X alone. This

includes the case 4=o0 as well. Any other metric is
permissible, if it gives the paths desired as extremals.

2. In the previous paper (1), it was shown that

a path-space admitting L and § in addition to a

Riemann metric was, if isotropic, necessarily flat. This

- result and its possible generalizations really illustrate

a theorem in the projective change of connection for

the classical path-spaces: that such a change of connec-

tion always exists if the space is projectively flat, so

that the equations of the paths become those for an
ordinary flat space.

Discarding the similitude group, the most general
path-spaces with a symmetric affine connection admitt-
ing the Lorentz group can, as is obvious, always be
put in the form:

VR Z? &
¥—pig(Ad—1)+5:B+2x'¢ (C—1) = 0. (2.1)
Here 4, B, C are as yet arbitrary functions of X alone.
The similitude group applies if and only if all the three
functions are constants; the —r1 is inserted here, as in
Vg
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later path-equations, to give the simplest ultimatc
formule. A Riemann metric must have the form:

f=o¥/X 1 pZ?X? = g,x'%/; o, B, functions of X alonc.
&i=x&itxzbid; s |gil = —a’(atp) #0. (2.2)

Also the covariant derivative with respect to (2.1) of
the tensor g; must vanish. Thesc conditions can be
calculated by the usual method, to give:

o =aC; B'=B(2C—B)—aB; (A-C)atAp=0. (2.3)
The dash indicates, as usual, differentiation with respect
to the independent variable taken here as log X. As there
are, for any given system of paths, only two unknown

functions a, g to be determined, and three equations,
we immecdiately obtain a compatibility condition :

A)A-C|C=A4+B—C; ACs0 (unless 4 =C=0). (2.4)

The latter part of the formule is simply the non-degen-
cracy condition in (2.2).

Direct calculation shows that the projective curva-
ture tensor of the path-spacc vanishes if and only if we
have

HrAB 124’ =0, (2.5)

Now, for flatness, we must have in addition to (2.5), the
conditions :

AC—1=0; 20"+ BC-C?41 =0. (2.6)

Of these, the condition AC—-1=o0 1is crucial,
because it makes the other two conditions for flatness
compatible.  Moreover (if AC=1), the condition
for the existence of a non-degenerate metric reduces
precisely to the condition for the space to be projec-
tively flat. The relationship between our theory and
that of a projective change of connection is furnished
by the fact that the function C(X) cannot be deter-
mined by three-dimensional (for the extended Lorentz
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group, (n—1)-dimensional) observations. Hence, if we
utilize the indeterminacy to obtain the existence of a
metric, we can always get projective flatness to coin-
cide with ordinary flatness. This gives us:

THEOREM 1. If A, B are prescribed, with A~ o, and C
may be chosen at will, then the choice C = 1/A in equations
(2.1) gives a space which is both isotropic and flat; for the
given choice of C, no projectively flat space can exist which
is not also flat in the usual sense.

The actual transformation carrying the metric of
(2.2) into a flat space can be found by putting ¥ = x4 (X),

calculating g,«'+/, and setting it equal to the original

metric. The use of (2.3) and the condition AC—1 =0
. C-1

leads to the function ¢ at once, ¢ = exp S( oX )dX.

If 4, B, C arc to be constants and a metric exists,
then there is no other choice possible for isotropy except
the one which also gives flat spaces. For the general case,
it is quite clear that choices of C exist which allow a
metric and isotropy, but do not then imply flatness.
However, such a statement would mean that the function
C has an intrinsic position of its own although it cannot
be specified from (n—1)-dimensional observations.

3. To extend these results to more general types of
spaces, we shall first have to discuss the existence of a
metric under more general conditions. Any space whose
paths are deducible from (n—1)-dimensional observa-
tions, and admit 'the Lorentz group is defined by the
path-equations:

A ey L
x'_-b’J—{{g(X, 8 | }-pzx'x—{ (X, §)—1}=o0. (3.1)
These admit both L and 8 if g and » are functions of &

alone. A metric exists for these spaces if and only if there
exists a function / satisfying :

Si=f =¥ S =0, |f;i;,~| #0, (3.2)
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where o is obtained by regarding the paths as xi+ai=o,
Now the condition of non-degeneracy has been
discussed in the first section, so that it only remains
to reduce the equations (3.2) to an amenable form,

-4
Taking f = X €XP H[X, ¢], and recalling that with f

any function thereof such as log f will also be a solution
of (3.2), we get the equations:

H,= PH;+Q P=¢(1-4)g+&0;

H,=S|R Q= —£L+0+2802;

Hy=0HfologX  R=(1—¢)(g—£8)+&;

“H, = gHJa¢ etc. S =—(g—¢tg,)+v—2£&0,. (3.3)
The notation has again been changed from that of my
previous work to give the simplest final calculations.
Solving the above equations explicitly for H,, H, we have
a simple first order partial differential system which is
immediately integrable ifand only if H,;—H,=(PS/R
tQ),—(S/R);=o. This is a differential equation, from
our present point of view, for the unobservable  in terms
of the observed function g, and inasmuch as a solution
exists in general, the metric exists unless the only possible
solution does not satisfy the condition for non-degeneracy.
If the metric be wanted directly, without troubling our-
selves as to the choice of v, it can be obtained by regard-
ing (3.3) as linear equations which can be solved for the
unknowns v, v,. We have:

o(¢H,—1)+2£0, = (8—£8:){ (6—1)Ho—1 |
v(¢H,+1) 4280, = H\—¢(¢—1) g H,+ £g,. (3-4)
These give at once
20 =H,+g{1—(¢-1)H, }. (35)
Substitution of this value in the solution for v, leads to
2gH,,—2¢(¢—1)gHyo + $H H—¢(¢—1)gH, —H,
+(1—2¢)gH,+g=0. (3.6)
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The integration of this can be performed by the standard
methods of Monge, but it is simplified by the transforma-
tion H=1log ¢+ 2 log . The new equation in ¢ has then
the form

b1zt (1—£)8%22+ (3/26—2)g¢,=o0. (3-7)

This equation has been given* for g, v functions of ¢
alone, but our derivation shows it to be valid whenever
the path-space admits L and possesses a Finsler metric.
The integration is obvious, by the standard' methods
such as that of Charpit, treating (3.7) as a first order
linear differential equation in ¢,. For g(=1+G in
Milne’s notation) not zero, the result is equivalent to
that of Walker (2, 166). For g=o0, we have at once

=a(¢)+B(X), and the second term can be discarded
because it amounts to an additive perfect differential,
such as is admissible in any variational problem. The
metric for g=o0 (Milne’s kinematic case) is then
Y4(£)/X, the function ¢ being arbitrary, subject only
to the condition of non-degeneracy.

When, however, the similitude group applies, the
situation is better treated in another way, though the
above methods are quite valid. Here, the metric, to
admit both L and 8, with relative invariance under the

Y
latter, must have the form EX".p(g), and ¢ is given as

exp f(S/R)dg. The condition for this to be possible,
i.e. the condition of integrability of (3.3) when g, v do not
contain X, is (PS/R+Q), =o0, whichis PS/R+Q =a-1,
the constant @ being the same as that which enters into
the metric. In this case, we can determine the proper
choiceof v, for any given g. and the existence of a metric,
as a solution of the Riccatian equation

* See (1), formula (12).
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,_a(g=¢r) | g+é v
TS 2k (§ >+(£—-I)g’ (38)

The above equation always has thc solutlon v= }a+g/2¢,
but this always leads to a degenerate metric, and can
only be used to deduce the general solution :
v = af2-+g/2+1/u,
wiu{ gg+1/8(6—1)—3/2¢+af2(6—1)g | +1/(¢—1)g = o.
(3-9)
As an application, it will be found that the metric spaces
which have identically the relationship 2v =g (which
need hold only for ¢= 1 to give us the solutions x'= cxi
for the path-equations) have a g given by
ag

£ bVt
a, as in the metric ; b, arbitrary constant.
So, the only sub-case which is also Riemannian is
v = g = o, the “ kinematic” case again, metric ¥/X.

(3.10)

4. Coming now to the question of isotropy, we note
that the theorem of Schur admits of a partial extension
to our general path-spaces, if the concept of isotropy is
redefined (3). This amounts to the restriction that the
first curvature tensor P; of the space should reduce to the
form- asi—x'g;. 'This curvature tensor is, for the spaces
(3.1) admitting the Lorentz group and deducible from
three-dimensional observations, of the form

X2Pi = AX Y5+ XBx'x;— CZx'p;+ Ep'(Zx,— Y p;) ;
A=glot+2e(1-£)v, } +&(20,—0*)—1; B=C¢—4;

C = 1+08,—0 +-20,— 4£0,,+0,{ 2£(1—£)g,—6g+8g—2¢0 |
—4&(1—¢)gv2 5
E=¢(1-£)(2g8"-8")+(1—2¢)gg’+ & —1+2(g1—£812) ;
ov v
5log X» U2 e ©tC (4.1)
For simplicity, I consider the case where both L and 8
groups are admitted, and g, v are functions of ¢ alone,

where 9, =
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The condition of quasi-isotropy is, for these restricted
path-spaces
P=¢(1-¢)(288"-87) + (1-2¢)gg’+&’~1=0. (4.2)
This differential equation has the integrating factor
g'/g’; the first integration gives
£(1—-£)g”/8+g+1/g = const. (4-3)
The complete solution is best presented in the form

E=pVE(e=1)+q(t—-1/2) =3V (F—¢+4).  (4.4)

If we wish to make Pi= o, we get three more equations,

of which only two are independent, and admit the
common solution :

v=blg—1)igitc
— b1 , b, ¢, any constants.
¢ = 2bVEGE—1) - (¢4-1) 4t d

(4-4)
In spite of the apparent difference in form, it will be seen
that the form of the solution for g is precisely that given
in (4.4), with proper adjustment of the two sets of
arbitrary constants. One further adjustment can be
made by substitution of the above values of v, g in (3.8):
the arbitrary constant ¢ in (4.4) must be the same as the
exponent in the metric; ¢=a. It is clear, then, that a
choice always exists for v which gives a metric, and whenever the
g is such that the space is quasi-isotropic (the condition of
quasi-isotropy being independent of v), we automatically have
Pi=0p.

It does not follow, however, that the space is flat
even then. To this end, it would be necessary and
sufficient to have an additional condition « ., =o,
which would bring us back to the symmetric affine
connection discussed before. The facts of the matter
here are as follows. For any system of paths, and for a
sufficiently restricted piece of a given path thereof, it is
possible to choose a coordinate system making ;=0
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along the path. When, as here, we have o'_}ai x"—o,
the path has the equation of a straight line ¥ =o.
If, in addition, P!is zero, the equations of variation
admit along the chosen path as base, solutions for which
the components of the vector variation are linear in the
parameter 7. This means that the whole infinite sheaf
of paths which can be obtained from the given path by
giving it successive ‘‘small variations” all have the form
of straight lines. Beyond this it is not possible to go
unless « . ,., =0, in which case alone is it possible to
assert that all paths become straight lines in the chosen
system of coordinates.

For non-homogeneous ¢, it is not possible to go even
as far as the conclusions of the last paragraph. But the
discussion of that case is beyond our scope here.
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