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For a random variable that can only assume discrete values, the
method of generating functions is in common use as an aid to
formulating moments.! The probability of the value zj being pj, the
probability generating function is defined by 2pj z¥, and moments,
factorial moments, and semi-invariants are obtained as coefficients
in the various power-series expansions if they exist, of the function
after substitution of ¢*, 1+a, for the parameter z, the third being
obtained by expanding the logarithm of the function after the first

change of variable. But here, the parameter is introduced * for the
sole purpose of preventing the terms from being merged together”,?
and is, so to speak; without any value of its own. -

I suggest, in what follows, a similar method of generating the
probabilities and the moments, but making use of the - variable z as
an essential part of the distribution. The difference is ‘that one
obtains formulae involving the differential calculus in place  of
algebra, and a connection is  to be seen at once with the formal
apparatus of the theory of functions of a complex variable, summa-
bility, and Tauberian theorems. :

1. Let f(z) be an analytic function in the neighbourhood of the
origin, with real non-negative derivatives at the origin. That is,
f2)=ay+ayzta2®+az 28+ + -+ - + g, 2"+ - » -, ai real, > 0 for all i,
and let the series converge to f for some region beyond jdst the
origin itself, say |z|<». Then, we shall say that f gives a
distribution, the probability of the value n being given by ax2"/f.
For the present the variate x is assumed to take on only the values

e, 2, 3,
; ; o,
f ’

; l : 1 ‘
Q is the operator 2z and the exponent % indicates a A-fold

The Ath moment the expectation of 2, is given by where -

application. The corresponding - factorial moment is given by
2" dF : : J 2 ;
f“dz[' The operator 6 and the occurrence of the factor 1/f suggest

2
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immediately, the transformation ¢=1log f, s=log z. Then the succes-
sive derivatives of & (s) are the semi-invariants \i; &' =m, ¢"=0? etc.

By merely speéifying the function, various distributions can be
characterized. The Bernoulli distribution is given by f=[1+z]* In
the usual terminology, p=2z/(1+2), ¢=1/(1+2) gives the probabilities
for . success and failure in a single trial. The mean value is
m=zf" [ f=nz/(1+2z) 1=np, the variance being o0®=nz/(1+2)*=mnpq.
Here, as in general, we shall take only real non-negative values of
2 for statistical purposes.

_ For the Poisson distribution, f=¢7, 7)l=02=))i=2. Distributions
having .various properties can be built up by solving the corres-
ponding differential equations. But the use of ¢(s) shows that a
non-vanishing multiplicative arbitrary constant in f as well as in z '
can be absorbed, or 1gnored without any essential change. Thus,
o*=km leads to f=¢*. For o’=m—-k we have f=z*’. The first
would correspond toia Poisson distribution of twins, triplets, etc.
for k=2, 3,...; the second is essentially the generalised Poisson
distribution for a variate that cannot take any value less than A
But a variate occurring in even or odd values only where m tends
to . equality .with 0? as both increase would be distributed, say,
according .to cosh 2, or sinh z :

_> 2. The direct determination of f would be useful for some
properties. The distribution of a sum of two variates - distributed
accordmg to A(z2)= a(,+alz+ - - and B (f)=0by+bit+ -+« would be
given by the probablllty for the value n of the sum equal to

R ,.*'b # / AB. For two Bernoulh dxstnbutlons with the same 7
itj=n '

the function is ~(1+z+t+zt), correspondmg to a new parameter
z+t+2zt, or to the formula for compound probability p=p + ps—p1p2
=192+ pag1 + 1 po. - The  Poisson distribution is essentially the only
one where - the sum is .distributed according to the same law
with. the new parameter a sum of the two original parameters:

;f(a)f(l) —f(2+l)

In sorne observatlons even for contmuous dlstnbutlons, the
quantmes cb and s are observed directly, not f and z. Fechner's law
naturally comes to mind here. One example that suggesﬁs itself is
that of photo-sensitometry®, where the logarithm of the darkening is’
plotted against the logarithm of the exposure for a given: emulsion
‘and ‘time of development. The ' gamma” value usually published is
merely .the slope of the curve, i.e. ¢'(s) for the central pottion,
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where the curve has a point of inflection, %" =0, and approximates
very closely to its tangent. According to our theory, this is a mean
value, and in fact, if the darkening depends in a certain way upon .
the number of elementary particles affected (the grains of the .
emulsion), this interpretation would be entirely accurate. The curve -
of sensitivity usually published looks uncommonly like half a
Gaussian curve of normal frequency, but this cannot be verified
unless very accurate measurements are made in the range of solari-
zation; these last have been neglected, because they appear to have
no practical use in photography, the useful portion of -the curve
being only in the neighbourhood of the point of inflection.

The transformation to s, @, sugzests that for a denumerable ' set
of discrete values of the variable, the  proper generalisation of our
distribution is not in the form of power series with fractional ‘8Xpo-
nents, but Dirichlet series for f or ¢: In the usual notation, these

“would be given, substituting‘ - sfor shy 2 a, e~ ™. The ~connection
with the theory of numbers is obvious, and need not be consxdered
111 detail here

3. Another obvious connection with analysis is the mnotion of
summability given by each of our distributions. The Poisson’ distri-
bution, for instance, leads to Borel summability. Let us int’erpre‘t n
as the number of observations, or the number attached to. an obser-
vation or measurement; of some quantity s; let L S, 83 - - - be the
successive values obtained in thls way. The probability of n obser-
vations (or the nth observation) having taken place being distributed
in a Poisson series, the expectation of s is Ee Zanz"n | The question :
when are we justified in taking the limit of this as z—> as the limit
of s,, amounts to the Tauberian problem: when does a sequence sum-
mable-B converge? A better question would be: when can we take the
limiting expectation-as limit of the arithmetic means, that is.when is
B-summability equivalent to (C, 1) ‘summability? Inasmuch :as, in
practice, the limit can never be attained, the important question is not
only the approach to a limit, but actually the behaviour and distribution 37
in the vicinity of the limit. That is, the Tauberian idea must be
generalized. In view of the fact that a connection is known between
Tauberian theorems and probability ® through the Fourier-'Stieltje's
integra.l I shall merely pomt out the phenomenon here i

el Of the mﬁmte series given, ' there. naturally exist two
classes. those with a finite and those with an infinite radius -of
convergence, - For the first, we can take the radius as unity; - since
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~a factor in the parameter z makes no real difference. The second

class contains polynomials and integral functions, and is more
interesting in a way because the distributions can be made to téend
to the normal, under certain restrictions. For a polynomial, this is
a matter of adjusting =, the degree (=lim. zf’/f) and the parameter.
z carefully, letting n tend to infinity. For integral functions of
infinite order, there seems to be no way of getting the normal
distribution as a limit, because m and o are not of comparable
magnitudes a3 z—>00. When the limit o*/m exists, it is the order of
the integral function and the distribution for positive finite order
approaches the normal wunder fairly general restrictions on ax
for the types of functions we use. The reason is that f(2) does not
then = differ by much, relatively, from the greatest term in its
expansion, * and the values of an z"/f taper off rapidly to zero on
either side. Transferring the origin to the greatest term (relatively
near the mean value, which would otherwise recede infinitely far
- from the origin) and changing the scale, it is easy to show, (at least
when there are limited gaps in the coefficients and the coefficients
themselves decrease monotonically,) that the distribution approaches
a continuous one obeying the differential equation dF/Fdx= -cx, .
which characterizes our normal distributions. = -

~ Series w1th a umt radms of convergence might also be useful
as the Lambert series distributions again permit Tesults of the
theory of numbers to be translated bodily into statistics. But in
general, it would seem impossible to get the normal distribution as
a limiting case, as is shown - for example by the behaviour of the
Abel-summability function f(2)=1/(L-2), p»=2" (1-2), as 231

5. As an illustration of all the foregoing, we take a problem
usually solved by other methods, and show that its fundamentals -
are made simpler to the understanding by use of probability. Arrange
a large number of urns in serial order, labelled 1, 2, 3...n..., and let .
each urn contain as many balls as there are prime factors in its
label-intezer. Each factor is to be counted according to its multipli-
city and unity may bs taken as a prime only for the first urn. Now
the exact probability of there being % balls in an™ urn qhosen at -
random is not known, but an approximation is obtained from an
asymptotic value for the number 7x(z) of integers <z contammv
x  (log log x)f !

log z (E-1)! :
Take the value of the probability (the ratio m/z) obtamed from this
. as exact. This can be transformed by taking z=log log x, log x=¢"
The distribution function is seen to be ze*; every number has at least

exactly k& prime factors, 7z —
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one prime factor, and we have a modified Poisson distribution as
explained in section 1. The expectation of the number of balls in.an

urn is sziz='2+1. Thus we should have the total number of prime
€ I N - E s

factors of all integers <z as z(log log 2+1). Now the known & fors. -
mula for -this is z(log log 2+ B)+O(zx). The O(x) term is naturally. -
due to the- neglected remainder, as we have taken an approximation
as the exact value, and summed to infinity instead of stopping at x
terms of the series. The value of the constant B is a little less than
unity, due not only to the two causes given -ahove, but also to the
fact that there is a linkage between the total number of urns, and
the probability; the parameter z is not-independent of 2. As the
value of B is known, we do not investigate this further. ]
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