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1. This note attempts a generalization of the concept of
isotropy for spaces defined by “paths”, i.e. the solution curves of

P rd(n, 4 t)=0; i=1,..,n & =da'/dt etc. (I)
Besides the tensor summation convention for repeated indices, we
shall use the notations
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The fundamental tensorial operations for the path-space are now:
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-where y}'~ =1a}; ; V=1 5 Yim = i

The fundamental differential invariants, besides # and yf_;,, are

: = AR ey

TEE oo et A LR SE
e =—Dux L A

i i @ i, iy i ; ;
P;':—“,i—f_dtyf—{—ﬁ‘y? 5 Rk :F('P};k_P;e;f)’ (1.2)

where R, corresponds to the usual mixed Riemann-Christoffel
tensor provided the suffixes are taken in the proper order.

By a metric for the space defined by (I), we shall mean the
integrand f of any regular problem of the calculus of variations
whose extremals are defined by (I). For the existence of such a
metric, a set of necessary and sufficient conditions arel:

Df;i;;=0; f;i;rP;:—f;r;jP: =0; {f;il #0. (1.3)
If, however, the space admits a metric such that any non-trivial
function thereof ¢ (f) is also a metric, the conditions above reduce
to

Df =0; f/;=0; along with |f;;;| 70, (1.4)
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In particular, the Finsler metric and all homogeneous metrics come
under this special case. If the o' are homogeneous of degree two,
ie. ¢ vanishes, we have Df=~#"f/,+0f/0t. Hence, in view of
(1.4), the metric cannot contain the parameter explicitly, and
therefore, the & also cannot contain t explicitly, if e =0.

The equations of variation of (I) are most important and can
be written in the invariant form:

D’w = P, (11)

It is to be noted that the covariant form of these equations can be
writtenl as

D’u; = Plu,, (1.5)
without any device for raising or lowering the indices, merely
by seeking the integrating fac101 for (II). Asu'is a contravariant

vector u; will be covariant; but there is no other connection
between the two forms unless a metric exists.

2. The equations (II) and (1.5) are the sole means of
exploring our path-space, the paths themselves being regarded,
im Kleinen as the fundamental entities of the space. The usual
mechanism for Riemannian spaces which leads to the theorem of
Schur is missing. But the equations (I) always admit a dynamical
interpretation, and for isotropy it would be necessary that every
direction transverse to any path (trajectory) should be a principal
direction. One should expect the equations (1.5) to reduce to a
canonical form D%w; = ¢u; provided #"u, = 0. This, however, is a
restriction on P’ which must, according to well-known results in

tensor algebra® have the structure 4)8}—-x g;. All this motivates
our first

DeriNiTION 1. A4 path-space will be called quasi-isotropic if
= 33y,
The implications of this definition for Riemann spaces and
for those with a symmetric affine connection can be summed up in

TreoreM L. For n>2, a Riemann space is quasi-isotropic
if and only if it is isotropic in the ordmary sense. A space with a

symmetric affine connection is quasi-isotropic if and only if its
Weyl tensor vanishes.

For n =2, nothing particular can be said. For the rest,
I shall prove only the second part of the theorem, as it includes

* cf. Schouten, Ricci-Kalkiil p. 59, ex. 5.
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the first. We have o' = Tj,47#*, and P = B ‘uata! (using the na
tation of Eisenhart’s Non- Rzemanman Geometrv) For quasi
isotropy, we must have
Biux*r '= 8! —x'qj, 1. e. p=a;x'¥l, q; = q;x", (2.1)

where a;;=a;; and ¢;; are functions of » alone. As Bjya/x*s'=:
identically, we have a;;=%(gi;+¢;;), and the result follows by
differentiation with respect to z, 4
Bl = 8iapj—84ajy+% (8imuj+ 8imjy+28/my) i

where ;= $(qij—q;). (2.2)
But the projective curvature tensor for a space with symmes

tric affine connection is given by :

Win = Bjy+— + ,.Bk1+ { BjI_S;Bjk}
+»92 { 818, — 5.8, ! (2.3)
7o t Pk k jl)' .
where By = ,k. » Bjr = 5(Bjn—By).
By direct substitution from (2. 2) it follows here that

W,k, '
For the converse, we see that for Wiy =20, the tensor

is given by
koI 1 e

2t — L sip ity A
"” n— 183”' (n+1

2 g 4 1 2 cicaho, } iy
kit nz__lﬂkj » 4
which is precisely of the form required by our definition. The
proposed definition, therefore, covers the classical Riemanniaf
isotropy, and its generalization, the projectively flat space of
symmetric affine connection for n > 2. '

3. To deal with the general o', we shall require a certaif
number of identities, in particular,

2= —e; ; D& =—Pis"+od/0tL. (3.1)
Then, the analogue of the Bianchi identities
Rij/, +Rhyyi+Rijze = 0. (3.2)

To clarify the relation of this with the usual form of the 1dent1ty
we can restate it in the 4-index tensor:

ik;m/l+ Rkl;m/i+ Rli;m/k = Ri¥imi+ RixYimi+ Ri¥ims. (3.

(5]
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These identities hold for all sufficiently differentiable o/, and
.~ each of (3.2) and (3.3) can be derived from the other,

For quasi-isotropy, with P} = ¢8§—.5:‘q,-, we have, as a conse-
- quence of (3.2),

8} { /1= /et 90/i—q1/k }_;_8;;{ buili— /14— i/ }
+8‘£{ Piilk— b/ 9/ e— Qu/ }

: S 2{ (-éi”jk)/l'*' (x"i""kz)/j-{'-k.‘iﬂ'z,‘)/k } = ); (.3.4)
- where 271’1‘,:‘1:‘;/“1;‘;:‘-

As expected, this vanishes identically for u =2. Forn = 3,
it'reduces to

"¢;k/l'¢;l/k+q12/1_91/k: 2{ ("v:j”jk)/l"f‘ (Jt;i""kz)/j-l- (x'i""lj)/k } (3.5)

The odd appearance of this expression is accounted for by the
fact that for n = 3, and for no other case, it is possible to display
an anti-symmnetric two index covariant tensor as a contravariant
vector. In (3.5), it is immaterial whether the repeated index 7 is
Summed or not, as (3.4) is identically satisfied if any two subs-
cripts are the same, and the superscript i must therefore be one of
s B, 1, which can be taken as distinct among themselves. From this
point of view, (3.5) says that the curl-vector on the left is twice
;t'.l?e divergence of the contravariant tensor formed by the product of
# with the bi-vector 7. We shall not follow this any further.

B For n34, (3.3) can be broken up by first taking igj==k==/
Which implies the vanishing of the last bracket by itself for those
ndices, Then take, say, i=j==k==l, and finally, sum by contract-
ngiand j, A comparison of the various results shows that we
must have

(@) $un/i—bututqu/i— qu/s =0;

(b) (xli”jk)/l‘f' (¢ ™) /i+ (% Ti) /e = 0. (3.6)
_ Of these, the second has further consequences obtained by
fiting it in the form—by making use of (3.1)

;
iﬁ (b) J—;'(W,-k/1+7fk1/j-i~"1,'/k) =€fl7’jk+5§j’"k1+£fk"lj- (3.61)

tice, either, each side of this vanishes separately, or #'is a
4¢tor of each side. This would mean eli= .i'icri. Differentiating,
"Cgetel, = 840+ 'a) .. By alternating these and subtracting,
Eie have éi(ok;,'- oj4) = 840;—8jo,. For i==j==k, we have
#j~-0;., = 0, hence 820,-—-8}0,, =0 for all 4, /, k and by contracting

i
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i, j in the last step, we see that ¢; = 0. This means el = v'(x,1),
a'=a* o', where o is homogencous of degree two in . More-
over, in any case, each side of (2.6) vanishes separately.

If the right side of (3.61) vanishes, and m; is not
identically zero, and for even values of #, the determinant m;; does
not vanish, and we can solve v;jvr”‘ = 8F.  Contracting the right
side of (3.61), with =™ weget (n—2) s}, =0, which is
again the conclusion of the last paragraph. For odd n, the
determinant of =;; will vanish identically.

TueoreM II. For quasi-isotropy, n =3, the equations (3.5)
must be satisfied. For n>4, we must have
bir/1— b1k qrsi— e =0
and Tikpi+Thifit iy = 8i;j""kl+ Gt;.k”lj'{" elm = 0.
1 shall make one more general remark in this section about quasi-

isotropic spaces. If we perform the analogue of a projective '
change of connection by replacing & with o 44, we get

Pi=Pi 8 { Dy+307 " | —3e el

AR N

—{ —ADY U W =R | (B7)

As in the case of projectively flat spaces with a symmetric affine
connection, it is possible to make Pj vanish if the space is
quasi-isotropic, and ¢ = 9a'/0t =0, but not in general.

i

4. We now consider quasi-isotropic spaces for which
¢ =0a'/0t =0, and a metric exists. In view of (3.1), we must
have ¢ = q,x;'. The metric can, without loss of generality, be
taken as homogeneous?2 in #, and there are two. cases to be distine
guished : homogeneity of degree zero, and homogeneity of any}
other degree. For the non-zero case, the metric can always be.
replaced? by one of degree two ; we could demand a metric of degreey‘
one, but then the determinant |f,;,;| will vanish; we have merely
followed the device used in Finsler spaces of replacing the metric f
by 2. In either case, we apply the second part of (1.3), or the
integrability conditions of (1.4), which are P{f, = Rjf,= 0.
We shall have to use the condition of homogeneity *f, =0, ot
= 2f, respectively. The results are: ”
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case 1: P;: o P«x"if;i ; P‘;r":r = 2p,

case 2: P = Mf8i—4s'f.y , a4 =0. (4.1)

The homogeneity restrictions on u, A follow from the fact that in

any case, the curvature tensor P,': must be homogeneous of degree

two with o', To apply (3.6), we keep in mind the fact that
f/i="F;isi =0 are consequences of (1.4). We then obtain:

casel, p/if;j—p/ifi =0,

case 2. Z(A;;/j—/\;j/,')f—l—.?)(/\/jf;,'—/\/,ff;,')= 0. (4.2)
In each case, (3.61) is identically fulfilled, as can be verified
by differentiation of (4.2) with respect to #¥, and addition
after cyclic rotation of the subscripts, In case 1, we can contract
(42) with #°, to arrive at the conclusion that Dp=0. The
cquations of varialion have the form D%; =0, a case of neutral

equilibrium. To get any further, we shall have to formulate
another

DEFINITION 2. A quasi-isotropic space will be called isotropic
if the function ¢ can, by suitable choice of the parameter t, be
made to have the same value for the entire sheaf of paths through
each point.

With Definition 1, this amounts to saying that the “curvature
is locally constant”. For case 2 of this section, we see that the
function A will, for full isotropy, have to be a function of position
alone, not of direction, inasmuch as it is of degree zero in x, and
hence, a change of parameter will not affect it at all. Here, ¢ =1,
and, from (1.4), Df=0, which means that the integral
f = const. along the path exists, and choice of parameter will fix
this constant in value. We have then, A,;=0, and (4.2) (2)
reduces to

Mifii—=Mif i =0 5 A=A (4.3)

This can be possible only if A/; =0, or f;,-:’a);/,'.' .’I‘he latter

would lead to f;;;; = Ajoy;, and to |f,;;;| =0, a contradiction of our

hypothesis. Hence, A;;=X/; =0, or A is a constant, exactly as
for the Riemannian case.

TueoreMm III.  Isotropy for a space admitting a meiric f
homogeneous of degree two in x is possible if and only if

P;: = c(f8§~ —%x:;f;i)where ¢ is an absolute constant. Unless P; =10,
the isotropic space cannot admit two essentially distinct metrics.
IV—12
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The latter part of the theorem follows from (4.1). For, if
there were two distinct metrics, one not being a function of the
other, there would be two distinct metrics of degree two, and their
ratio, satisfying (1.4), would also be a metric as the discriminant
will not vanish in general. Then, P}admits a metric of degree
zero, and so has both the forms in (4.1), and hence vanishes:

5. For the general non-homogeneous metric and general
o', we shall have P; = qSSf- ——A;E"f;j;,.x’ Rather than deal with this,
1 consider an allied question: When can a given space be “immer-
sed” into a quasi-isotropic space by taking the parameter f as an
additional cordinate 2° with a new parameter s, so as to make the
the new ¢ = 3a'/ds =07 The new path cquations become3

,17""—4-},"02{ o 4B }_ f =1,..,n,
o 0 g o R 4,6'(r %, 1) albltraly,
2" +4" B=0 '.ﬂ,’l o dx/ds, 7 -zdd‘/dt“‘x’/x (IIJ.)

The new curvature tensor is given by

,IOZP—P’ +18}{ DB—18% | -5 B/;—1DB,; ~188,; }

§ B 50
x,oz —B/;+1DB,;i+31BB,; ; Po=—Pix";

P} = 4+"P} (5.1)

where the summations for repeated indices are from 1 to n. For the
new space to be quasi-isotropic, P’ =-4'"g; which means, from

(5.1), that g; =0, in addition, of course, to quasi-isotropy for the
original space.

TueoreMm [V. A path-space may be immersed in a quagi-
isotropic space with ¢ = 2a'/0s =0 only if its original curvature
tensor has the form P; = ¢3}.

If the original space had a metric, the new metric (of degree 2)
will be fzx’od, and the function of immersion3 is given by B=Df/f.
The condition for quasi-isotropy of the n-+-1 space can now be
expressed according to (4.1) and (5.1) as

{spp—182+¢ )7~ 7| B/—1DB,— 188} =0; 6=2L (52)

For full isotropy according to Theorem ITI, these can be further
reduced in an obvious manner to give
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{1DB—48"+¢ ;=2 {B;;—1DB,;—1B8B,; | ; of = 1DB—1p*+¢,
B=Df/f. (5.3)
The interest of these results lies in their applicability to the
relationship between a space and a space-time, as required by
modern physical theories. For example, an M3 occurs in Milne’s
cosmology, defined after taking the velocity of light as unity by4:
Pi=x£: gi=1, giizo:i#]‘» Y:l—-g,-,-x"x",
X=0—g;t'0, Z=t—gyp's, E=2%/XY,
i TR
o =(tx'—p ))—(G(E). (5.4)

X°P} = 8} { 1XY G~ 3PV’ G* +YZ[— GA-G*+(1—8) (1+G)G*] }
~T(p'—t5") (Yp;~Z4;)

I=—G(2+G)+(26--1) (1+G)G"+£(5—1) { 2014+ G)6"—G" |
(5.5)

As the “fundamental quantities” X, V, £, are not to be restricted,
the condition for immersibility into a quasi-isotropic space is the
same as that for quasi-isotropy of the M itself, i. e. T =0.

The space into which this can be immersed ist the K
defined by

Joo =—g11 —=—922 =—Y33 =1,9ii=0,i/, p; = girf’r etc., I’i = 7'
X=pp Y=2a'%, Z=2"p  E=2°/XY

y 24'Z ,
d=—L2G(O)+ V(XK 9. (5.6)

X2Pi = AXYSi+#' | (Ct—A)Xaj—CZp; } —p'T{ Z2;—¥p; }
A =G{ 1+v+2r£(1-8) FHy+28(Xn—v) +2r8(1-)é— &7

C= G'{ 14-v+2y26(1—=£) }+2(X71—‘/) —y? =6y, (1—£4+G)
—2yy26- Av12XKEF8Gv2E—4yaé (1—-5) (1+G)
T'asin (5.5); vy =0y/0X, vy, =0y/0f etc. (5.7)

The condition for quasi-isotropy of K, is again I'=0. The
differential equation I' = 0 has only two constant soutions for G,

ie. G =0, G=—2. For both of these, a metric exists in terms of
the fundamental quantities: y=G=0, f=Y, y=G=-2,
f=Y/X?% Both of these are actually flat spaces, which is obvious

for the first from the definition of K4 and is seen for the second
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by choosing the new coordinate system: 7 = +'/X, which gives a
Galilean metric again for the space, though the transformation is
singular for the origin and for all light-tracks from it.

The condition for the existence of a metric homogeneous of
degree zero for the K, has been given elsewhere# as

1+ (1-£) (G—£G’) +éry =0. (5.8)
In this case, the findings of (4.1) are confirmed by the fact that

the coefficient of the 8} term in P} above becomes XY (¢—1)T,
which vanishes for isotropy.

6. Our definition of isotropy allows one further analogue of
the Riemannian case. For n =2, with homogeneous non-para-
metric a'., and a metric homogeneous of degree zero or two
we find the following results identically true:

Pif.,,=0, Pjf.,,=0; P& =0, P2%" = 0,3f.,x =kf (k=0,0r1).
(6.1)

But these can be solved by elementary algebra, and lead at
once to the result:

Pi = A(kfs’ —14'f,;) identically, for n =2, and a homogeneous
metric. (6.2)
Hence

If n=2and a homogeneous metric exists, the “surface” is
always identically quasi-isotropic.

In conclusion, I gratefully acknowledge the valuable aid given
by Mr. V. Seetharaman in checking this note, particularly by his
independent and direct verification of (3.2), (3.3), (5.5) and
{57).
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