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Given any n—dimensional Euclidean space in general co-ordi-
nates, with a metric ds®=g;dx'ds’, Laplace’s equation for the
given system of co-ordinates becomes

div. grad. u=g"u ; j=g" w;i—9'u it =0, (D)

For a general Riemannian space with a non-vanishing curva-
ture tensor, (1) may still be taken as the generalized Laplace
equation. I propose to deal with the simple inverse problem :

Given a linear partial differential equation of the second order

a'u; i+ b'u;=0; 2)

under what conditions may it be regarded as the Laplace equation
associated with some Riemann space?

In this connection, the term Laplace equation includes such
o%u

types as the classical wave equation——; e —Asu=0. The space

c

here will obviously be that of special relativity:
ds®=c?di®—3 (dx')%. (3)
It is clear that the equation (2) must be tensor invariant, and
if associated with a Riemann space can differ at most from (1) by
a factor A. The spaceis, therefore, conformal to that with a
fundamental tensor a;; obtained from the equations a"a,,-=8;:, or,
what is the same thing, the tensor obtained by dividing the
cofactor of a” in |a”| by the determinant itself. To this end,

a first condition is that |a”|£0. That a” must he a contravariant
tensor is seen from the law of transformation of u;;,
~ 02" 0x° 02"
L e T — oy g, e (4)
ox' o’ 0x' 0’
and from the tensor invariance postulated for (2). In fact, we
must have
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i _ 0% 0%’
dx" o’

()

The weighting factor W/ may be assimilated to the trans.
formed A, or, assumed to be unity.

Let I‘}:k be the usual Christoffel symbols calculated for a tensor
(¢ " g :
gij and 1};;} the corresponding expressions for the tensor ;. If

we put aa” for g7 in (1), the equation (1) now has the form

- .. .k . a"‘
rau;;—Ma ( {}k } — ﬁ[a,,/\,k+ak,.h,j—ajkh,,] )u,,:O, (6)
: e
since g,-,-—xa;,-.

As we require this to be of type (2) but for the factor A we
have the condition:
i, gk 4 =2 -
b +-ad { ik } +'_2-—)\' a")c},.:O, (7)
Putting p=log A, and B;=ai, (b’+ajk{ fk } )this is equivalent
n—2 -
to ~2——p.,,~+ﬁ',-=0. (8)
: Though indeterminate for #=2, this system of partial
differential equations for the unknown p has a solution provided
the conditions B;;—jB;i=0 are satisfied ; the metric of the space
is then of the form
dszze'”a;jdxidxj.
All these results may be summed up in the form of
TaeoreM [. The equation au ;;+b'u;=0 may be regarded

as the Laplace equation for a Riemann space if and only ff:
(a) o is a symmetric contravariant tensor with non-vanishing
determinant, [a7|#0, (b) n=2 and Bi=0, or (¥) n>2,
Bii—B;i=0. Under these conditions, the space for n=2 is any
conformal to that of the fundamental tensor aij; for n>2, the
metric of the space is given by
ds?=e ta;dx'ds’
and determined to a constant factor by the partial differentid
. n—2
equation —2—~p,,-+,3,-=0.

It is clear that for n=1, the problem is trivial. The theory of
funitions of a complex variable and the fact that any surface with




B T R R R R R I R R R R R R R R TR,

Differential geometry of the Laplace equation 143

a regular positive-definite groundform may be represented con-
formally on the Euclidean plane lead us to expect the result given
for n_—:.z i

Equations of a more general type than (2) cannot be treated
without recourse to some kind of a transformation. For instance,
the type e ;

a"u;;+b"u;+cu=R (9)

must be reduced to the homogeneous form (R=0) by the usual
methods, and the substitution #=fv must be employed to get rid
of the last term. For this, f must be a known solution of (9) with
R=0, and we have a reduced form:

a"v,;;+ (20" ]%+ b') v, =0, (10)

This is much the same equation as (2), but with aij¢,i added to
b, or, a term ¢; added to B;, where $=2 log f and f is any parti-
cular non-trivial solution of (9) with R=0. This allows us to
generalize the theorem stated, as (2) is a special case of (9); we
obtain a relaxation of condition (&) for #=2, and also a new
space for every solution of the given equation, though a space
conformal to that of the tensor a;;. We sum these up in
TueoreM II. The conditions and conclusions of Theorem I
are applicable to the equation
ai"u,;,j+ If'u,;—i- cu—=>0
when the transformation v=fu is allowed; but condition (b)
becomes: :
n=2, Bi;j—B;i=0; a"(B:Bj—2B:;) —2bB;+4c=0.
And for n>2, the metric is given by
dszz—.;/(n—z)e_"a,-,-dx’.dx’.,
where f is a solution of the given equation, u being, as before, a
solution if any, of
g

2
~—— ki+Bi=0.

This says nothing about equations of a more general type, and
transformations which are less simple. It would seem, however,
that the entire problem is better approached from a different point
of view. One should discuss necessary and sufficient conditions
for the given equations to be deducible from a variational principle
(self-adjoincy) and then see whether some sort of geometry may
be associated with the integrand of the variational principle so
obtained,



