COLLINEATIONS IN PATH-SPACE
By D. D. Kosamsr (Poona, India).

A geometry attached to systems of second order differential

equations of the generic type

(1) #itai(x, 7 1)=0 ﬁ:‘%ctc. (Gt Ly

has been discussed elsewherel. Curves representing solutions of
(1) can be regarded as the generalized autoparallel lines o
paths of a space, and the intrinsic differential geometry thereof is
developed from two main assumptions: (a) the tensor invariance
of all fundamental equations, including (1), and (b) the existencé
of a yectarial aperator, the yanishing of which defincs a parallelism
making solutions of (1) autoparallel lines,

I here attempt to investigate a special type of path-space
which allows continuous groups of deformations carrying paths
into paths, -

Let ui(x) be a vector field representing an infinitesimal
transformation of such a group by means of the *small
displacement”

¥i=2x + ui 8
Then the functions i must satisfy the equations of variation
of (1):
(2) witai,u+ai, ur=0
As usual, a repeated index denotes summation; moreover,

d : df
f3k=,ji,:_k and j,p= ‘—i;f-k- Inasrauch as the operator for total

differentiation with respect to ¢ is
d d =iogeied
ar= " aa " dr
we find that (2) reduce to
(Z) “i,m,r xmyr—ar “i,r+ai;j' “/;r x-’—{-ai’]. ujzo,
Let it be further assumed that at has the form of a polynomial
in x:
(3) a'—_—Ai-}-Alhxh-{—F‘hrxhx"-{— a Srea +A‘hl 3 hmxh. - ..Qr:hm-{- R

(1) -D. D. Kosambi Rendiconti della Reale Accademia dei Linceit
.bp.
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The coefficients 4, T' are functions of x alone, symmnietric
in all subscripts; the letter I' has been used for the quadratic
terms only, for reasons that will be apparent later.

In the previous papers referred to, as well asin a remarkable

exposition by M. Cartan?, it was shown that

ai—3x7ai, as also ai,.,.,
and their further partial derivatives with respect to # are tensors
of the rank expressed by the indices. It follows, since (1) are
tensor invariant, that:

In a polynomial ai of the form (3), the terms of any degree
¢xcept two have tensor co-efficients (Ai....). The coefficients of
the second degree terms (1'ijp) have the same laws of transforma-
tion as those of a symmetric affine connection.

We can, therefore, obtain a covariant differentiation with
respect to the T’s alone, by the usual rules:

(4) M =MV Dige

and so on for tensors of any rank.
The equations (2’) also represent polynomials in #, which
must vanish identically, as our infinitesimal transformations form
vector fields independent of the particular paths chosen, We thus

obtain, from terms not of the second degree in z,
(5) wm | r[Aimhz. hj 8’151+Aih1m..hj 8rhg‘*‘ ; +Aihlhz..m thf
: —8im Arh1hz..hj]
+-um A'hlhz. Jjym = 0.
where the vertical bar before a subscript denotes covariant

differentiation with respect to I‘ijk as defined in (4); Si]- are the
usual Kronecker symbols, zero or unity in value as the two indices
are different or coincident. The second degree terms, however,
give:

(6/) wi | 71 wt i | & | j:“l[Rij kiR 1]

Rij} ; being the curvature tensor for the I'"s. But with the
following identities :—
Rij i+ Rij =0
(7) Rijg 1+ Rigp j+Ripj =0
: “‘ljlk—u”k]]':_R'h ]-kuh

we can reduce this to the normal form

(6) “i|jlk=Rijkl“I :

(2) E.Cartan Math. Zeitschrift, Ibid., pp. 619,622,




We have thus broken up the equations of variation into one
system of partial differential equations of the second order,
and several of the first order, all being tensorial in form.

The problem of determining whether any solutions of (5) and
(6) exist is reducible to one of algebra3, though not explicitly
soluble as a rule. The general solution, if any exist, can be
expressed in terms of p independent fundamental solutions
(p=n2+mn) as a lincar combination of these with constant
coefficients. But (6) has a further very important property, easily
proved by means of its compatibility conditions and the identities
(7). That is, if ui, vi be any two distinct solutions, the alternant
or Poisson bracket

(u, v)=urvi, — or ui , = ur i [r— VT Ui,
is also a solution of (6). Thus our independent infinitesimal
transformations generate a group. It does not by any means
follow that the common solutions of [5] and [6] generate
a Lie group. This is the case, however, when none or
only one such common solution exists, apart from this
trivial case, the most general conditions can again be reduced
to a problem of algebra, and in fact to the discussion of the
independence of a series of linear or bilinear forms. One
might consider the possibility of [5] being a consequence of the

- compatibility conditions of [6], or, of the equations [5] themselves
possessing the group property. In general, it would not seem
that such multiparameter groups exist when the af contain terms
of degree higher than two in #. The main point is that there
exists a covariant derivation as for the affine onnections, and that
the general operation of the derivate or biderivate which I have
elsewhere defined, can be replaced by a known and familiar type.
The analytic connections are not more general than those of the

form ai=Tiy 2 :i’k-{-Eij 7 Lol which, by the way, are the only
ones that are analytic in the space of #4-1 dimensions wherein # is
taken as one of the #’s.

The same discussion for the most general form of ai has no
meaning, but is easily extensible to af that are analytic in #*and
sufficiently differentiable in x to allow a discussion of compatibility
conditions, Even more, convergence of the infinite series can be
ignored if merely an expansion of the prescribed form exists.

Formally, each power of x in the expansion yields just one
equation, independent of all other terms except those of the second
degree. Apart from the question of solving an infinite set of
differential equations (present also in the analytic case) the only
difficulty possible would be that of the absence of uniqueness of

(3) L.P. Eisenhart Non-Riemannian Geometry (1927), pp. 126, 132,

\
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expansion, But in this last case, if it can occur at all, we may
regard the various forms as given by the use of different ways of
describing the same space; or as different spaces that are feasible
for the same paths. Similarly, asymmetric components, corres-
ponding to the torsion tensor and the like can be introduced in the
various coefficients, though they will not appear in the actual
equations (1) or (3).

The question of collineations (path-preserving continuous
groups of transformations) in path-spaces for which the ai
possess a formal expansion by polynomials homogeneous in x,
can be dealt with by methods similar to those used for manifolds
with asymmetric affine connection. The particular connection,
moreover, is represented by the coefficients of the quadratic terms
wn the expansion.
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