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Abstract. The problem of measurement in Quantum Mechanics will be briefly reviewed. Since the
measurement process invoives a macroscople apparatus, the attention is focussed on the dynamics of
a pointer-like variable of the apparatus when it interacts with a quantumn system, tis argued thal since
the measurement process requires an apparent collapse of the wave function in a certain basis, and
collapse is an irreversible process, understanding of jrreversibility in a quanfum macroscopic system
is crucial. The chief characteristics of an apparatus that are important in understanding measursment
process are {a) its closely spaced energy levels and (b) its interaction with environment. The coupling
with the environment drives the density matrix of the apparatus to diagonal form, but to have persis-
tent correlations between system and apparatus states, it seems necessary to have a pointer variable
that has a classical limit.
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1. Quantum state and observables

In Quantum Mechanics (QM), the dynamical state of the system is described by a vector
|4} in an appropriate linear vector space. But unlike classical description, the vector |2f)
does not contain an objective description of the dynamical variables of the system t.e. the
quantum state does not, in general, attribute precise values to dynamical variables like po-
sition, velocity, angular momentum efc. Tinstein, Podolsky and Rosenberg (EPR) {i2]
defined the so-calied ‘elements of reality’ as those dynamical variables that can be mea-
sured precisely without disturbing the system, and required that an objective and complete
theory should be able to specify all elements of reality at a given time. The quantiem-
mechanical description fails to do this (EPR). For example, position and momentum or
three components of angular momentum cannot be specified simuitanecusly in a quantuin
staie,

" Furthermaore, the measurable properties are not, in general, predicted deterministically
by QM. Every dynamical variable, B, of the system i3 assigned an Hermitean operator &
acting in the vector space of the state vector |40y, B has a complete set of eigenfunclions

567




Deepak Kumnar

with real eigenvalues, ie,
BI(/)H) - b'i'qubTi.) (])

A measurernent of B yields only one of the eigenvalues b,,. The result of a single measure-
ment is not predictable. QM predicts only the probabilities of all the possible outcomes
by, of the measurement. These probabilities are obtained from the state vector 1) using
the foliowing prescription. Since the set of eigenvectors i¢,,) form a complete set, one can
write |9} as

) = Z Cldhn) _ (2)

Now the probability of obtaining the outcome &, is given by fC'nEg. Note that this
uncertainty in knowing the value of the observable B is quite different from the way uncer-
tainty occurs in classical terms. Classically, if we cannot predict the value of B precisely,
it is because of (a) our ignorance of all the factors that reay influence the dynarnics of the
system (b) finite resolution of the measurement procedure (c) imprecise knowledge of ini-
tial conditions ctc. These uncertainties can in principle be reduced. The nature of quantum
uncertainty is deeper, as it is there even when the wave function is completely known, and
no values to the dynamical variables are assignable before the measurement is made, For
a given eigenstate |@,), the value of the variable B is known, but all other variables are
uncertain. Thus the complete description in the sense of EPR is denied in QM.

Since the description of the quaatum state and its time evolution are set in a linear
vector space, it allows for situations that are completely paradoxical in the classical realm.
The most discussed example is that of a wave-vector of a single particle that contains su-
perpositions of states which correspond to well-separated positions in space. This is clearly
incompatible with the classical notion of a particle, which is an entity having a unique po-
sition at a given time. Since the understanding and predictions that QM has provided have
been enormously successful in all spheres it has been applied, such paradoxes only reflect
the inadequacy of the classical concepts which have been derived from our experience at
the macroscopic level. We have not satisfactorily understood the emergence of classical
concepts from the underlying quantum dynamics.

2. Quantum measurement problem

For getting information on a system, we have to perform measurements, but in QM the
measurement itself plays a role in giving attribules to the system that we understand cias-
sically. The measurement requires interaction of the system with an apparatus purporting
to measure a variable B, The traditional way of describing the measurement is as foliows.
The measurement process disturbs the system and makes |1} collapse to one of the eigen-
functions |¢y, ), and the apparatus attributes the value by, to B.

For the fater sections of this articie it is appropriate to describe this process in the
language of densily matrices. For an arbitrary state the density matrix p is:

po= (] = ZC;,G?71|(/)771>((,/J77,§

LI
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- z Icnlzl(i)vz)((f)n; + Z C,-:;,Onliﬁbzm)((/s:r:,% €3]

n ntm

The diagonal part of p corresponds to the system being in eigenstates ¢y ), corresponding
to values by, for the variable B with corresponding probabilities |C,}*. The off-diagonal
part has no classical interpretation. The collapse of the wave funclion can now be thought
of as occurring in two steps. In the first stage

P+ |Cal ) (6l “)

i.e. the off-diagonal elements of p vanish. At this stage p has the form of a classical
probability distribution. Note that such a redoction cannot result from unitary evolution,
as under unitary evolation the property p° = p is preserved, which is not the case for (4).
The second step of the measurement process is the selection of one outcome from all the
possible outcomes, which is much like the realisation of one event out of the totai space of
possible events in a classical probabilistic process. But whereas in the classical situation,
the factors neglected in dynamics and precise knowledge of initial conditions {which the
observer is ignorant of) determine the outcome, no such factor that determines the outcome
of measurement is known tc us.

The problem of measurement lies essentially in understanding these two steps. If one
describes the dynamics of system and apparatus coupled to each other quantum mechani-
cally, one just has the unitary evolution governed by the total hamiltonian in the following
way.

54 (t)) = exp[~it(Hs + Ha + Hsa}/h|thsa(0)) (5)

The combined state vector [10g.4 (0}) can be written in terms of separate basis vectors of the
systemn and the apparatus, If the initial state has the form,

iTl‘)SA(O)) == Z ar1|¢ns> Z b-nﬂ(b‘rn}l) (®)

imn

One requires that due to interaction, a correfation develops between the system states and
the apparatus states to lead in time to a state vector in which each state of the system is
coupled to one particular partner of the apparatus state, as in the following equation.

[954(0)) = Fld")dr ™)) + Fal" N + - (7

Barring exceptional conditions, the wave function would evolve into a superposed state 1.e.
a finite number of fls would be non-zere. But such a state would defy classical interpreta-
tion.

The founding fathers of QM recognised this difficulty. In fact, Von Neumann {3] in-
voked two dynamical processes for quantum evolution: U-process and R-process. /-
process corresponds to standard unitary evolution and f-process describes the reduction of
the wave vector to an eigenstate of an observable when an apparatus interacts with the sys-
tem. Clearly, the R-process lies outside the realm of standard QM. Niels Bolir [4] further
specified the conditions under which R-process occurs. He speculated that the B-Process
oceurs when the system interacts with a classical apparatus. While this proposal is in accord
with our experience, it has serious conceptual difficulties. (a) -process requires classical
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apparatus which cannot be described quanturn mechanically. {b) This implies a Quantum-—
Classical dichotomy. Are there two kinds of dynamics? And it so, what s the dividing line
between the two. (¢) There doesn’t seem to be a way to tackle the coupled quantum and
classical dynamics. Till date, we do not have a universally acceptable understanding of the
B-process.

3. Interaction with environment : Dephasing and classical behaviour

Though several kinds of solutions have been suggested, we adopt here a point of view that
involves interaction of the apparatus with environment in an essential way. Such a point of
view has been advocaled by a number of authors and a considerable body of work in this
direction exists [5-8]. The basic premise is that, the R-process as is apparent in our present
understanding, involves a macroscopic apparatus and has an irreversibility associated with
it. Now the dynarnics of a macroscopic system occurs in a very high-dimensional and
large phase space. The classical irreversibility is an apparent phenomenon at our time
scales, which are too smail compared to time scales of the true reversible motion of such
large system. Furthermore, of all the degrees of freedom of the apparatus only one or few
degrees of freedom are monitored. The key question is how to incorporate these ideas in
the framework of QM.

Zeh {5] has particularly emphasized two particular characteristics of a macroscopic
apparatus that are of great relevance in understanding their role in measurement. Energy
levels of such a system are closely spaced. Due to small energy spacings the system is
susceptible to very small disturbances. Thus such an cbject is not isolated and invariably
interacts with its environment. Let us first qualitatively see how the environmentinfluences
the behaviour of a quantum system.

The time-dependent density matrix of a system can be written as

ps(t) = Z Cr G, expl~it(wn — win)]idn) {(Pm| = Z EGﬂEZE(ﬁ’vJ {dnl
L, T
-+ Z CnC;;, BXP[_'?:{J(WT': - wm)”’pn)(d)ml (8}
ke
where |y, ) and w,, are respectively the energy eigenstates and the energy eigenvalues. Now
lel the system interact with an environment with a large number of degrees of freedom.

We can write the total density matrix pgg(f) of the system plus environment in a similar
fashion.

: ‘ Un.E) (QIJHE ‘ +

pse(t) = 3 |Cur

nls
Z CnEl OmEJ‘; |§6'11E1 ) (Q’ﬁmEz | @XP[—“(WME; - w?rLEQ)] (9
nfyEmFa

The information about any attributes of the system only is contained in the density matrix
25", from which environmental degrees of freedom have been traced over. Denoting by
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|4}, the energy elgenstates of the environment, ps™®" can be writlen as

o5l = S (Canl*Hbm |l 6nm)

nf, K
ro. .
+ z Z Cnﬁ'l Cme‘z" eXDi*”(WnEI - mez)]

nhyEmE, E

(s |§¢71E1><¢-,71E2 |1'¢’E’) (103

It is plausible that this expression can be wrilten as

ps = Y Dl xn) (n]
+Zan><Xmi Z f‘m(ElaEﬁzE’)
1,1 By, Eq,E'

exp[w?ﬁtwﬂm (E} ; EQ y E")} (1 [)

where |x,) are related to products (15 {|¢hn 2} in which environment coordinates have been
integrated out, and may be quile different from the encrgy eigenfunctions j¢n). Wam(En,
Es, E') would clearly involve differences of frequencies w., g which are very large in num-
ber and closely spaced. The time-dependent sum in the second term of (11) has a typical
wave-packet (in time) like behaviour. Such a sum decays rapidiy from its large value at
+ — 0 and remains nearly zero for time ¢ << 7', where T" is a recurrence time which is a
multiple of all the time-periods occuring in the sum. 7' can be astronomically large even
for say 1000 terms with arbitrary frequencies. This implies that for time scales of interest,
pste? is diagonal in some system basis, as the non-diagonal term drops out. We thus argue
that the reduced density matrix of a system coupled to an environment exhibits the features
of a classical stochastic distribution. Tn the next section, we exploit this behaviour in the
cotitext of the measurement situation for two cases, which throw some light on the circum-
stances under which measurement is accomplished. The general scheme of measurement
is as follows. We couple a quantum system to an apparatus which in turn is coupled to a
system of large degrees of freedom, termed environment, One calculates the total density
matrix and traces over the environmental degrees of freedom to obtain a reduced density
matrix which contains only the system and the apparatus degrees of freedom. Alternatively
one can think of it as the system being coupled to a macroscopic apparatus with many de-
grees of freedom. Of these only a few degrees of freedom are being monitored to measure
the attributes of the system. The total Hamiltonian is :

H = Hg+ Ha+ Hsa+ Heg+ Hag (12)

where H,, H and Hg are respective Hamiltonians for the system, the apparatus and the
environment, Hs 4 is the interaction between the system and the apparatus and H 45 the
interaction between the apparatus and the envirorment.

4. Models of measurements
A, Zurek’s model
In this model [8] the sysiem is & spin% particle represented by spin operator 7. The ap-
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paratus is also a spin~;§- particle represented by operator L. The environment is a large

collection of spin-2 partic]es represented by operators Ji. The Hamiltonian of the system
P a y i ¥
is taken to be:

H o= goly+ % gilaJyy (13)
k

The initial state of the system and the apparatus can be gencrally written as,

[(0)) = (alt) + blL)){el+) + d|-)) (14)

where [ 1), ]} are eigenstates of o, and |+), |-} are eigenstates of I,. Zurck considered
the following special situation. Att = 0, the apparatus is pointing in positive z-direction
{c=d= —;}5-) and Hg 4 is switched on. The interaction with the system causes this spin to
rotate about the y-axis and at time, ¢, = h/4g the wave function becomes

[(0)) = alt)+) + BlH-) (15)

At this point a perfect correlation exists between the system states and the apparatus states.
Now Hg 4 is switched off and H 45 is switched on. The reduced density matrix of the
system and apparatus can be easity calculated to be of the form:

() = lalP (D)D) + BRI =)~
+ab" Z(@ (NN (-] +ec (16)

Z(t) is a product of harmonically varying terms with frequencies given by g /R, and be-
comes characteristically small with time, and though reversible, stays small for rather lon g
times, Thus the model can serve as an example of the scheme of measurement outlined
above. However, the scheme relies on two factors which are impractical, namely, very
precise initial state and a rather precise duration of the systerm-apparatus interaction. Both
these are required to achieve the perfect correlation between the system and apparatus states
asin (15).

To examine the role of these precise requirements, we studied [9] the evolution of an
arbitrary state as in (14) with the full Hamiltonian of (13). At long times, one finds that the
reduced density matrix assumes the form:

) = [lalP VD) + P UM+ + =) (-] (17)

Though, p"%(¢) does become diagonal, one notes that there is no correlation between 5ys-
tem states and apparatus states. This is clearly due to the fact that in a low dimensional
vector space, the quantum correlations are transitory, being superpositions of oscillations
with a smail number of frequencies.

B. Stern—Gerlach measurement of spin

This suggests that one should examine correlations of the system with apparatus which are
associated with continuous or larger vector spaces, Accordingly, we next consider a model
[10} for Stern—Gerlach measurement of spin. Here the spin of a particle is measured by
monitoring the momentum of the particle which is a contiruous degree of freedom. The
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Hamiltonian of the system is taken to be:

2
H - Ha + Hya = Aoy + 2=+ cao, (18)
Hap+Hg =z guge+ »_[p” + (mawiar)’] (19)
k *

where the notation is as follows. o, p and x, denote respectively the z-components of spin,
momentum and position of the particle. The first term in (18) gives the coupling of spin to
uniform field, the second gives the kinetic energy of the particle, and the third gives the cou-
pling of the particle to an inhomogenous magnetic field. The last term gives rise to a force
on the particle which is along positive or negative direction depending on whether o, is 1
or -+1. The two terms in (19) give the coupling of the particle position to environmental
oscillators and the Hamiltonian of these oscillators. The idea is to calculate the full density
matrix p(s, T, g, 5,2, gh; t) of the system and then trace over the environmental degrees
of freedom g,. While carrying out the trace, we assume that the environment oscillators
are in thermal equilibrium, so the occupation of various energy states obeys the canonical
distribution. The task of tracing has been exactly done using path-integral method by Feya-
man and Vernon [11]. It can be shown that in the weak coupling or high-temperature limit,
the reduced density matrix p, o (z, ') obeys the following equation [12],

Bps,st(z,5') /0t = Lo + Lilps,s (z,2') (20)

where Lgay is the Liouvillian operator for quantum evolution, and is given by [p, H]/i%.
L is present due to'the evolution caused by interaction with the environment, and it leads
to a non-unitary evolution. It should be noted that under non-unitary evolution, the density
matrix Joses the property: p> = p, which is the hallmark of unitary evolution. The explicit
form of {20) is:

8ps,st(z,3") { 7 (82 5? ) iA(sws’)}p

ot 2im\d2? Gz’ R
ie{sx — s'z') A d
= e (Em )
D 2
EF(-T —z') ]P (21

where v and D are analogs of frictional and diffusion coefficients and are related for a
thermal environment. We now study the evolution for a particle in the initial state,

2
[B(0)) = (at) + biLy) explife — 5= (22)

The general form of the density matrix is given by,
P, 6) = 1l 1) (o (m, ', 2) -+ B (Hp—r, -1 (27, )
+ab* 1) (U1, -1z, 2", ) + @bl Hp-r1(z, 2’ ) (23)

with p; o being given as solutions of (21). Bquation 21 can be solved exactly. The spin-off
diagonal parts decay in time irrespective of the spatial arguments like,

Py~ pi,_1 ~ exp(—At®) (24)
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This makes the density matrix spin-diagonal at farge times. But to achieve measurement
one has to examine the spatial nonlacality of the spin-diagonal components. It turns cut
that these objects become diagonal with time in momentum space. To see this, we define

s (@s g, 1) :f/dmd:r:’exp{i@(m—i—:z:’)/Q—ﬁ—iq(:r:—:c’)}p,g,sf{ﬂ:,w',t)(25)

Now it is seen, that p, o+ (@, q,t) —+ O with £, when () 5 o, and for large £,

ps,s(0, 4,1} ~ 2 f—\—r% exp [ - ‘N}(‘fj(fl — pexp(—~vyt) -

(1 - exp(—7t)}"] (26

(]

By

with

+ 2
gl g

(27)

e—u?’ﬂ 8—2’;-1)

N(t) :D(Em

The momentum-diagonal solution is similar to Ornstein—Zernike solution i.e. momentum
distribution is gaussian with peaks centered around es/fiy. This means that the density
matrix is completely diagonal with perfect correlation between spin component value and
the average momentum of the particle,

5. Summary of results

We have exarnined here the conditions under which quantum measurement occurs. Fol-
lowing Bohr and others, we argue that a measurement occurs when a quantum system
interacts with a macroscopic apparatus. It is associated with an itreversible collapse of the
wave function. Regarding irreversibility as an apparent phenomenon occuring in systems
with large number of degrees of freedom on a certain time scale, we consider a scheme
of measurement in which the quantum system interacts with an apparatus, which in turn
interacts with an environment having a large number of degress of freedom. By cousider-
ing two specific examples, we find that the interaction with environment always drives the
density matrix of the apparatus to the diagonal form, which allows a classical stochastic
interpretation, but the correlation between system and apparatus states persists only when
the relevant apparatus degree of freedom has a ‘classical limit’. In this sense, we have been
able to provide a scheme for incorporating a concept like “classical apparatus™ in a purely
quanturn formalism, ’
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