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The purpose of the present work is the discussion of the possible
types of homogeneous linear differential equations of which the solutions
generate continuous groups oi transformations in a space of n dimen-
sions. The geometrical interpretations of the results form perhaps the -
sole interesting element in a tedious formal presentation. A more
elegant form of reasoning is greatly to be wished for, but seems to be
impossible at present. The entire paper considers problems inverse
to the usual discussions of continuous groups of deformation of a space
into itself,

1. A given set of » vectors of » components each is said to gener-
ate a continuous group if the alternant of any two A, u,

(AT o, o= N = [ ) A X}

‘is also a vector of the set, or more generally, a vector of the r dimen-
sional manifold defined by the vector fields in a space of » dimensions,
The repeated index denotes summation over all » values and the sub-
script with a comma is used for ordinary partial differentiation. The
actual transformations are derived from the infinitesimal generators
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and it is seen that our definition of the group condition is essentlally

the same as that usually given.

Consider first the case where the set satisfies a system of the first
order of partial differential equations :
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there being r and only r solutions 4 = A, L&, ... se, €tC.
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The group condition can be worked out at once from
, [N, wlii= @) (@, [N, u]) v (19)
which reduces to R L e AT,
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With these, however, there must be taken the compatibility condl-
tions of (A), of the form .
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These must hold identically, or in virtue of (A), or must themselves
he taken as‘the eqﬁ_at'iohs -df :an extended system to be adjoined to A.

e If we form the antlsymmetnc product :
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we have. - 7 ;
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Of this, four terms comc1de with those in (1.8), but for sign.
Adding the two, we obtain a further system which, when taken with
the equations of compatibility, is to replace the group condition :
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2. Since the formulae of the last section are utterly unwieldy,
and incapable of being interpreted to any particular extent, I shall
consider a special case, We recall the condition that a\ + buisa
generator with A and u, ¢ and b being arbitrary constants not both
zero. To this end, it is sufficient that the system (A) be homogeneous.
We take then, the system

L= gyt i k=

(B) w' = wi+ P‘jk uk =0,

This is to be regarded as tensor invariant and it then follows at
once that the Pijk can be taken to form the co-efficients of affine connec-

tions for an n dimensional manifold. The group and compatibility
conditions are respectively:

o A
ul Rhljk = 0. - $93)

Here, the tensor R is the Riemann-Christoffel tensor of the
connection, and . is twice the torsion-tensor. The vertical bar is used
for covariant differentiation and the equations (B) are simply those of
a parallel vector. The case where (2.2) are identically satisfied is
trivial, since the space then becomes Euclidean, the R’s vanishing
identically and with proper choice of co-ordinates the IVs also, In
case the equations (2.3) are not identically satisfied, further equations
may be derived by covariant differentiation. Of all these, the distinct
ones must be fipite in number, say ¢, that have precisely the r inde-
pendent solutions that form our generators. From each of these,
a certain number of bilinear formsin A, w can be built up. Now if
‘the group condition is not to place extra restrictions on the solutions,
then the form (2.1) must belong to the field of the forms derivable
from our compatibility conditions. We may sum up the results by :

The homogeneous system (B) possesses the group property if and
only if (@) the torsion-tensor has a vanishing covariant derivative, or
(b) the covariant derivative of the torsion-tensor can be linearly ex-
pressed in terms of the curvature tensor Ri’jkz and its first ¢g— 1 co-

variant devivatives.
i ae
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As a corollary, it is seen that the symmetric affine connections,
possess the group property for parallel fields. In all cases, it must be
remembered that the connection is to admit » and only r independent
parallel fields.

3. The case is different for equations of the higher order. We
consider homogeneous equations of the second order, and again postu-

late a first order operator of covariant differentiation. In particular,
take the system

(C) u’ i A}kz ul

This has the compatibility conditions :

(3.1) [Ah,-jk - Ahjithkij] Wt =0,
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Using now the fact that N, w are both solutions of (C), we proceed
to compute the second covariant derivative of the alternant, and find
the group property to be
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From (3.2), we can derive as before a binary expression in A, -
This, however, is no longer a form. Eliminating the curvature tensor
by means of (3.1) we find an equation of the same type as (3.3). The
two coincide when and only when the tensor A"j;,l obeys the same sub-
script identities as the. curvature tensor, and actually coincides with it,
or when the tensor A’jk; vanishes identically. In the former case we
find the equations to be those of * affine collineation.”
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A similar result seems to hold for those homogeneous equations
wherein first covariant derivatives are assumed to enter : for any symme-
tric connection, the first covariant derivative cannot enter without extra
conditions on the solutions, and a consequent loss of the group property.
As the computations are too long to trust without verification, I omit
them, and state the result in the form of a conjecture.

For symmetric affine connections, the only homogeneous partial
differential equations of the second order possessing the group property
are
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4, There are still some considerations which remain. For
instance, it may be possible for a certain subset of the set of solutions
to possess the group property. This would mean essentially that the
group conditions do introduce new restrictions on the solutions, in the
form of further partial differential equations which form a completely
integrable system with the original one, but naturally with fewer
common solutions. There is again the line of approach indicated by
the classical theorems of Lie on the constants of compositions of a group;
geometrically, this leads to the investigation of the Ricci * coefficients of
rotétion," and is of special interest for transitive groups, since here it is
possible to associate certain covariant vectors with the contravariant
vectors that form the solutions under consideration, A case of some
interest is also furnished by the introduction of a metric in the space,
which allows among other things, the equations of Killing, -

The second order case is of interest because of the highly specialized
type of possible systems. The principal system corresponds to the
* equations of variation” for the paths of the space, as follows from my
work on parallelism. The same paper (under publication) shows that
the general covariant derivative is non-distributive, and may lead to non-
hotnogeneous linear equations, a case not considered here since the
methods outlined give a successful treatment of that type as well,



