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Photon states in anisotropic media
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Abstract. Quantum aspects of optical polarization are discussed for waves traveling in anisotropic
dielectric media with a view to relate the dynamics of polarization with that of photon spin and its
manipulation by classical polarizers.
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1. Motivation

The motivation for this study came from a suggestion that the photon polarization states
form a two state quantum system and should be able to serve as qubits for quantum compu-
tation. This would require (i) ability to manipulate the polarization states of single photons,
(ii) ability to create polarization entangled states of two and more photons. Concerning the
first requirement, one notes that polarization of classical electromagnetic waves can be eas-
ily manipulated using devices like polarizers, quarter-wave plate etc., which are made of
birefringent medium. So the question here is related to the understanding of the dynamical
behaviour of photon spin states, as they propogate in an anisotropic medium.

Concerning the second requirement, one notes that in the past twenty years, the en-
tangled photon polarization states have played a central role in experiments investigating
quantum entanglement. For example, the non-local EPR (Einstein–Podolsky–Rosen) cor-
relations as codified in Bell’s inequalities have been tested for the polarization-entangled
states of two photons. Similarly, quantum teleportation and quantum encryption have also
been accomplished using photon polarization states.

In this paper, we shall concern ourselves with the first aspect, namely, the manipula-
tion of photon spin states by classical elements. When light passes through an optically
active medium or a quarter-wave plate, its polarization state changes continuously, which
is understood by saying that the passage through the medium introduces a further phase
difference between the oscillation of the two components of the electric field. Quantum
mechanically this must be understood in terms of the evolution of the wave function for
photon polarization. Here, we provide the field-theoretic underpinning for such a descrip-
tion, by discussing the quantization of the electromagnetic (EM) waves in an anisotropic
medium. This quantization differs in some significant aspects from the quantization of EM
field in vacuum or isotropic medium. In the latter situation, it is most convenient to work
in the radiation gauge, where the EM energy can be written as a piece containing only
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transverse EM fields and a piece that contains external charges interacting via Coulomb
potential. In the absence of charges one needs to quantize only the first piece to yield
photons with two transverse polarization states, which can also be written as eigenstates of
spin angular momentum.

For the anisotropic medium on the other hand, the electric field is not transverse even
in the absence of external charges. So the separation of the EM energy into a radiation-
related piece and a charge-related piece is not based on transverse condition. We present
a gauge in which such a decomposition is made and proceed with the quantization. One
is led to two photon polarization states which are dependent on the direction of the wave
vector. These states are not transverse, not orthogonal to each other and are not eigenstates
of spin angular momentum. All these results carry over from the classical analysis.

The paper is organized as follows. Starting from the classical description of polarization
states as harmonic oscillations, we first review the quantum mechanical analog of these
oscillations. We then make a correspondence with the classical description in terms of co-
herent states for EM fields in vacuum. This is then generalized for the anisotropic medium
by incorporating the effect of the medium through the introduction of dielectric constant
in the Maxwell equations.

2. Coherent state description of classical polarization

The classical view of the polarization of electromagnetic waves is related to the direction
of oscillation of the electric field vector. Since the electric field vector can oscillate in a
plane perpendicular to the propagation vector~k, the oscillations of the electric field are
described in terms of oscillations of the two perpendicular components of the electric field
in the plane. The different states of polarization then depend upon the relative magnitudes
and phase difference of the oscillations of the two components. For a plane wave moving
in thez-direction, we have

Ex(z; t) = εx cos(kz�ωt);

Ey(z; t) = εy cos(kz�ωt +φ): (1)

Then the electric field traverses the curve given by

E2
x

ε2
x
+

E2
y

ε2
y
� 2ExEy

εxεy
cosφ = 1: (2)

The quantum mechanical treatment of polarization requires us to treat the oscillations of
the two electric field components by their wave functions. Representing the two compo-
nents asX andY, the wave function of oscillation in a typical eigenstate is

jnx;nyi ∝ e�X2=2Hnx(X)e�Y2=2Hny(Y); (3)

whereHn’s are the Hermite polynomials.
But this state has no description of the amplitude or phase for either of the oscillators.

Thus the notion of polarization does not exist for an energy eigenstate. One expects these
notions to emerge when quantum numbersnx andny become large. Since the phase is

330 Pramana – J. Phys.,Vol. 59, No. 2, August 2002



Photon states in anisotropic media

associated with the time-dependence of oscillation one needs to consider appropriate su-
perpositions of the above energy eigenstates. For the oscillator problem these are the well
known coherent states [1].

Coherent states are superposition of infinite number of energy eigenstates. So here the
phase emerges as a variable conjugate to the number operaterbN whose eigenvalues aren.
A coherent state for a two-dimensional oscillator characterized by amplitudesε x andεy is
given by

jεx;εy;0i= e�[jεxj
2+jεyj

2]=2
∞

∑
nx=0

∞

∑
ny=0

(εx)
nx

p
nx!

(εy)
nyp

ny!
jnx;ny;0i: (4)

The time-dependence of these states is given by

jεx;εy; ti= jεxe�iωt ;εye�iωt ;0i: (5)

Coherent states are the right eigenstates of the ‘annihilation operator’. This property allows
us to write

hεx;εy; tjXjεx;εy; ti=
r

~

2ω
Re(εxe

�iωt);

hεx;εy; tjYjεx;εy; ti=
r

~

2ω
Re(εye�iωt): (6)

These expectation values have the behaviour identical to the classical two-dimensional
oscillator. The above discussion is straightforwardly generalized to EM waves.

3. Field theoretic treatment of the electromagnetic waves

The quantum field theoretic description of the EM field is done in terms of the vector
potential,~A(~r; t). The vector field is associated with an internal spin of value one. The
polarization is regarded as the spin of the photon. Physically, the photon exists in only two
transverse polarization states, which theoretically is a consequence of the additional gauge
condition on theA-field. We now review the quantization of the EM field in vacuum, as
a prelude to considering the same in a dielectric medium. The Hamiltonian of the field is
given by

H =
1

8π

Z
[~E2(~r ; t)+~B2(~r; t)]d3r: (7)

One expresses the EM fields in terms of potentialsφ and~A,

~B= ~∇�~A;

~E =�1
c

∂~A
∂ t

�~∇φ : (8)

In the radiation gauge,~∇:~A= 0, the potentialφ obeys the Poisson equation, and can thus
be eliminated in favour of external charge densitiesρ(~r). This allows us to write the EM-
Hamiltonian as [2]
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H =
1

8π

Z 24
 

1
c

∂~A
∂ t

!2

+(~∇�~A)2

3
5d3r +

Z
d3r

Z
d3r 0

ρ(~r)ρ(~r 0)
j~r �~r 0j : (9)

The second term is the energy related to field generated by matter while the first term
describes the source-free radiation field. Since the vector potential is transverse, this part
involves only the transverse EM fields.

The field~A can be expanded in terms of eigenmodes, which we take to be plane waves,

~A(~r ; t) =

�
4πc2

V

�1=2

∑
k;α

s
~

2ωk

h
akα~eαei~k:~re�iωkt +a�

kα~e
�

αe�i~k:~reiωkt
i
; (10)

whereωk = ck denote the eigenfrequencies,V is the volume and~eα ’s denote the two
polarization modes (α = 1;2), which are perpendicular to~k due to the transverse condition
on~A. We also record below the expansion of the electric field in terms of these eigenmodes,

~E(~r; t) =
�ip
V

∑
k;α

r
~ωk

2

h
akα~eαei~k:~re�iωkt �a�

kα~e
�

αe�i~k:~reiωkt
i

= ~E+(~r ; t)+~E�(~r; t): (11)

In the quantum treatment, one treatsakα anda�

kα as the creation and annihilation operators
for the plane wave modes, which obey the usual bosonic commutation rule[a kα ;a†

k0β ] =

δk;k0 δαβ . In terms of these operators the Hamiltonian can be written as a sum of two-
dimensional harmonic oscillators for each mode in the following way:

H =
1
2 ∑

kα
~ωk

h
a†

kαakα +akαa†
kα

i
: (12)

The operatora†
k;α creates a one-photon state in the plane wave mode with wave vector~k

and polarization given by~eα . For~k along thez-axis one can generate one-photon states
with arbitrary polarization wave functions using linear combinations of operatorsa †

kx
and

a†
ky

. For example, the operator

a†
kθ = [cosθa†

kx+sinθa†
ky] (13)

generates the analog of linearly polarized state, in the wave function sense. If we mea-
sured the polarization, we would find it fully polarized in thex-direction with probability
cos2 θ , and fully polarized in they-direction with probability sin2 θ . On the other hand, the
coherent state constructed using this operator,

je~k;θ i= e
�1=2je2

~k;θ
∞

∑
n
~k;θ

=0

(e~k;θ )
n
~k;θ

n~k;θ !
a†

kθ
n
~k;θ j0i (14)

is the eigenstate of the annihilation part of the field operator
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~E+(~r ; t)je~k;θ i=�i

r
~ωk

2
~e~k;θ ei~k:~r je~k;θ ie

�iωkt : (15)

This state has the well-defined polarization at an angleθ to thex-axis. Similarly coherent
states of arbitrary polarization as in eq. (2) may be constructed by taking linear combina-
tions of the operatorsa†

kx
anda†

ky
with complex coefficients.

It is of interest to consider the spin angular momentum associated with these states. The
angular momentum of the EM field is defined by

~G=
1

4πc

Z
~r � (~E�~B)d3r: (16)

~G can be separated into an orbital part which depends on the origin of coordinates, and a
spin part~Gs, which is independent of~r [2]. The latter is given by

~Gs =
1

4πc

Z
(~E�~A)d3r: (17)

Writing it in terms of photon operators with linear polarizations in two perpendicular di-
rections, one finds

~Gs = i~∑
k

k̂[a†
k2ak1�a†

k1ak2]: (18)

One can bring this expression to a diagonal form using the operators

akl =
ak1+ iak2p

2
; akr =

ak1� iak2p
2

; (19)

which correspond to left- and right-circularly polarized states. Then

~Gs = ~∑
k

k̂[a†
krakr�a†

klakl ]: (20)

Thus these states are eigenstates of the angular momentum in the directionk̂ and of values
�~. Note these states are degenerate.

4. EM fields in a dielectric medium

We now consider the quantization of EM waves in a nondispersive dielectric medium. If
one treats the medium at the atomic level, EM fields vary rapidly with position and time.
For most physical purposes, such as propagation of optical waves etc., it is sufficient to
work with space-time averaged fields, which are again smooth. This is done by introducing
fields~D and~B which incorporate the induced electric dipole density~P and magnetic dipole
density~M of the medium,

Dα = Eα +4πPα = εαβ Eβ ;

Bα = Hα +4πMα = µαβ Hβ ; (21)
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where εαβ and µαβ are the dielectric permittivity and magnetic permeability tensors.
We shall take them to be frequency independent and in the following treatment take the
medium to be nonmagnetic, for whichµαβ = δαβ . There is a straightforward generaliza-
tion for the magnetic medium, which is mentioned towards the end of the section.

We first recall the Maxwell equations obeyed by the fields,

~∇:~D = 4πρext; (22)

~∇:~B= 0; (23)

~∇�~E =�1
c

∂~B
∂ t

; (24)

~∇� ~H =
1
C

∂~D
∂ t

+
4π
c

~Jext: (25)

The EM field energy is now given by

H =
1

8π

Z h
Eα εαβ Eβ +B2

i
d3r: (26)

Again the homogeneous equations are solved by potentials~A andφ defined in eq. (8).
Substituting them in the other two Maxwell equations yields

1
c

∂
∂ t

(εαβ ∂α Aβ )+ εαβ ∇α ∇β φ =�4πρext; (27)

∇α ∇β Aβ �∇2Aα +
1
c2 εαβ

∂ 2Aβ

∂ t2 =
4π
c

�
Jα �

1
4π

εαβ ∇β
∂φ
∂ t

�
: (28)

Now we make a choice of the gauge by the equation

εαβ ∂αAβ = 0: (29)

In this gauge, the charge conservation equation allows us to identify the longitudinal com-
ponent of current to be

Jl
α = εαβ ∇β

∂φ
∂ t

: (30)

Thus the inhomogenous Maxwell equations take the form

εαβ ∇α ∇β φ =�4πρext; (31)

∇α ∇β Aβ �∇2Aα +
1
c2 εαβ

∂ 2Aβ

∂ t2 =
4π
C

Jt
α ; (32)

whereJt
α refers to the transverse part of the current.

The field energy can now be expressed in terms of these potentials as

H =
1

8π

Z
d3r

"
1
c2

∂Aα
∂ t

εαβ

∂Aβ

∂ t
+(~∇�~A)2

#
(33)

+
1
2

Z ρext(~r)ρext(~r
0)

j~ξ (~r)�~ξ(~r 0)j
d3rd3r 0; (34)
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where the potentialφ has been eliminated in favour of the charge densityρ ext(~r), using
the solution of eq. (31). In the coordinate system coinciding with the principal axes of
the dielectric tensor,~ξ (~r) = (x=ε1;y=ε2;z=ε3), whereε1;ε2 and ε3 denote the diagonal
values of the dielectric tensor along the three respective axes. Thus, in this gauge, one can
again separate the energy in two parts, one associated with the radiation field, and the other
with the charges. In the absence of external charges and currents, we need to consider the
dynamics of only the~A field. The corresponding Lagrangian is

Lr =
1

8π

Z
d3r

"
1
c2

∂Aα
∂ t

εαβ

∂Aβ

∂ t
� (~∇�~A)2

#
: (35)

As before, we expand~A(~r ; t) in terms of plane waves,

Aα(~r ; t) =

r
4πc2

V ∑
k;α

"
qkαei~k:~r +q�

kαe�i~k:~r

#
(36)

and obtain

Lr =
1
2 ∑

k;α

"
q̇kαεαβ q̇kβ �qkαVαβ (k̂)qkβ

#
; (37)

where

Vαβ (k̂) = c2k2(δαβ � k̂α k̂β ): (38)

This leads to the standard generalized eigenvalue problem [3] of the form

Vαβ eβ ν(
~k) = ω2

ν (~k)eαν(~k): (39)

The eigenvalue equation for each~k is the well-known Fresnel equation [4]

detjω2εαβ �Vαβ (
~k)j= 0: (40)

Of the three eigenvalues, one is eliminated by the gauge condition, as the corresponding
eigenvector does not satisfy eq. (29). The eigenvectors, which give the polarization obey
the orthogonality and normalization corresponding to the metricε αβ ,

e�µαεαβ eβ ν = (~eµ ;~eν ) = δµν : (41)

Now one can introduce the normal coordinatesξ kν ,

qkα = eαν ξkν ; (42)

and the Lagrangian can be written as

Lr =
1
2 ∑

kν

"
(ξ̇kν )

2�ω2
ν(~k)ξ

2
kν

#
: (43)
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It should be noted that the two polarization vectors and~k are mutually orthogonal with
respect to the metricεαγ , i.e.,

(~k;~eµ) = 0 ; (~eµ ;~eν) = δµν ; (44)

with the scalar product being defined in eq. (41).
Now the quantization proceeds in exactly the same manner as in the previous section.

The expansions of the~A field and the electric field are the same as in eqs (10) and (11)
with polarization vectors obtained from eq. (39). The eigenstates in the medium are no
longer eigenstates of the angular momentum. Thus if a photon of a given spin state enters
the medium, its spin wave function continuously evolves in time, as the two polarization
eigenfunctions have different frequencies.

One can similarly construct counterparts of coherent states to make correspondence with
the classical polarization states. The generalization to magnetic media is also straight
forward. It simply leads to the following change in the matrixVαβ (

~k),

Vαβ (
~k) = Kαη µηνKνβ ; Kαη = εαγη kγ ; (45)

whereεαβ γ is the usual third-rank antisymmetric tensor.
To conclude, within the linear regime, the photon states in the medium have a direct

correspondence with the classical states. The various polarization phenomena related to
double refraction have thus analogs in terms of photon wave functions and the action of
various polarization devices can be understood in terms of changes in the photon wave
function.
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