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Abstract

A bounded linear operator T on a complex Hilbert space is called homogeneous
if the spectrum of T is contained in the closed unit disc and all bi-holomorphic
automorphisms of this disc lift to automorphisms of the operator modulo unitary
equivalence. We prove that all the irreducible homogeneous operators are block
shifts. Therefore, as a first step in classifying all of them, it is natural to begin
with the homogeneous scalar shifts.

In this paper we determine all the homogeneous (scalar) weighted shifts. They
consist of the un-weighted bilateral shift, two one-parameter families of unilat-
eral shifts (adjoints of each other), an one-parameter family of bilateral shifts
and a two-parameter family of bilateral shifts. This classification is obtained
by a careful analysis of the possibilities for the projective representation of the
Möbius group associated with an irreducible homogeneous shift.

1 Introduction

All Hilbert spaces in this paper are separable Hilbert spaces over the field of complex
numbers. The set of all unitary operators on a Hilbert space H will be denoted by U(H).
When equipped with any of the usual operator topology U(H) becomes a topological group.
All these topologies induce the same Borel structure on U(H). We shall view U(H) as a
Borel group with this structure.

Z, Z+, Z− will denote the set of all integers, non-negative integers and non-positive
integers respectively. R and C will denote the Real and Complex numbers. D and T will
denote the open unit disc and the unit circle in C, and D̄ will denote the closure of D in C.
Möb will denote the Möbius group of all biholomorphic automorphisms of D. Recall that
Möb = {ϕα,β : α ∈ T, β ∈ D}, where

ϕα,β(z) = α
z − β

1− β̄z
, z ∈ D. (1.1)

Möb is topologised via the obvious identification with T×D. With this topology, Möb becomes
a topological group. Abstractly, it is isomorphic to PSL(2,R) and to PSU(1, 1).



Recall from [1] that an operator T is called homogeneous if ϕ(T ) is unitarily equivalent
to T for all ϕ in Möb for which ϕ(T ) makes sense. It was shown in Lemma 2.2 of [1] that
the spectrum of such an operator is either T or D̄, so that ϕ(T ) actually makes sense (and
is unitarily equivalent to T ) for all elements ϕ of Möb.

In Section 2, we review the projective representations of Möb İt is well known that the
universal cover of Möb (being a semi-simple Lie group) is of Type 1 (see Theorem 7 in ??
and the author’s remark following it). As a simple consequence of this fact, as pointed out
in Lemma ??, all the projective (unitary) representations of Möb are direct integrals of its
irreducible projective representations. The irreducible projective representations of Möbare
clearly obtainable as push-downs of the ordinery irreducible representations of its universal
covering group under the covering map. Therefore a complete list of these irreducible
projective representations may easily be manufactured out of the known list (as obtainable
from [10], for instance. We end Section 2 by making this list explicit. However, we have
reprametrised the list in a convenient fashion in order to get a uniform description. Such
a uniform description will greatly simplify the proof of the main theorem presented in the
final section.

In Theorem 2.2 of Section 3, we show that to any irreducible homogeneous operator is
associated an essentially (i.e., upto equivalence) unique projective unitary representation
of Möb(̇The meaning of ‘associated’ is made precise in Definition 2.1.) The ‘existence’ part
of this Theorem is already there in [6]. However, for the sake of completeness, we have
presented proofs of both parts in this paper. We end this section by presenting a general
non-sense construction of homogeneous operators.

In section 4, we present a list of all the homogeneous scalar shifts known to us. Excepting
the un-weighted bilateral shift, all these examples are irreducible. Though many of these
examples were previously known, the two-parameter family of bilateral homogeneous shifts
(dubbed the complementary series examples) appears to be new.

In Section 5 we show that, as a consequence of Theorem 2.2, all irreducible homogeneous
operators are block shifts (Theorem 5.1). Indeed, if T is an irreducible homogeneous opera-
tor with associated representation π (say) then the blocks of T are precisely the non-trivial
K- isotypic subspaces of the representation space of π. (Here K is the maximal compact sub-
group of Möb)̇ This theorem acquires substance from the fact (Lemma 2.2) that the blocks
of an irreducible block shift are uniquely determined by the operator. As a consequence
of Theorem 5.1 and Lemma ?? it follows that (Lemma 5.1) the projective representation
associated with an irreducible scalar weighted shift must be one of the representations listed
in Section 2. (With the exception of the sporadic principal series representation P1,0, all
the representations in this list are irreducible.) Finally, we find out all the homogeneous
operators associated with the representations in this list. This proves (Theorem 5.2) that
the irreducible homogeneous scalar shifts are precisely the ones listed in Section 4.

One surprising find of this proof technique is that each Principal series representation
Pλ,s is associated with two (generally distinct) homogeneous operators - both unitarily
equivalent to the unweighted bilateral shift. The occurence of only one of these two oper-
ators (namely multiplication by the co-ordinate function on the representation space) is a
priori evident. These two operators coallesce into one precisely when s = 0. We do not
have any convincing explanation for the occurence of the second copy.
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2 Homogeneous operators and weighted shifts

2.1 Generalities

Let ∗ denote the involution (i.e. automorphism of order two) of Möb defined by

ϕ∗(z) = ϕ(z̄), z ∈ D, ϕ ∈ Möb. (2.1)

Thus ϕ∗α,β = ϕᾱ,β̄ for (α, β) ∈ T×D. It is known that essentially (i.e. upto multiplication by
arbitrary inner automorphisms), ∗ is the only outer automorphism of Möb. It also satisfies
ϕ∗(z) = ϕ(z−1)−1 for z ∈ T. It follows that for any operator T whose spectrum is contained
in D̄, we have

ϕ(T ∗) = ϕ∗(T )∗, ϕ(T−1) = ϕ∗(T )−1 (2.2)

the latter in case T is invertible, of course. It follows immediately from (2.2) that the
adjoint T ∗ - as well as the inverse T−1 in case T is invertible - of a homogeneous operator T
is again homogeneous.

Clearly a direct sum (more generally, direct integral) of homogeneous operators is again
homogeneous.

Let I stand for either Z, Z+ or Z−. Recall that an operator T on the Hilbert space
H is called a weighted shift with weight sequence wn, n ∈ I if there is a distinguished
orthonormal basis xn, n ∈ N such that Txn = wnxn+1 for all n ∈ I. T is called a bilateral
shift, forward unilateral shift or backward unilateral shift according as I = Z,Z+ or Z−. To
avoid trivialities, we shall assume throughout that all the weights wn are non-zero. Every
weighted shift (with non-zero weights) is unitarily equivalent to a unique weighted shift
whose weights are strictly positive. The unweighted unilateral (respectively bilateral) shift
is the unilateral (respectively bilateral) weighted shift all whose weights are equal to 1.

2.2 The reducible case

As already stated, the object of this paper is to classify the homogeneous shifts upto unitary
equivalence. We first dispose off the case of reducible homogeneous shifts. To do so, we
need :

Lemma 2.1 If T is a homogeneous operator such that T k is unitary for some positive integer
k then T is unitary.

Proof : Let ϕ ∈ Möb . Since ϕ(T ) is unitarily equivalent to T , it follows that (ϕ(T ))k is
unitarily equivalent to T k and hence is unitary. In particular, taking ϕ = ϕβ (for a fixed
but arbitrary β ∈ D), we find that the inverse and the adjoint of (T − βI)k(I − β̄T )−k are
equal. That is,

(T − βI)−k(I − β̄T )k = (T ∗ − β̄I)k(I − βT ∗)−k

and hence
(I − β̄T )k(I − βT ∗)k = (T − βI)k(T ∗ − β̄I)k

for all β ∈ D. (Note that the two factors on each side of this equation commute.) Expanding
binomially, we get

k∑

m,n=0

(−1)m+n

(
k

m

)(
k

n

)
β̄mβnTmT ∗n =

k∑

m,n=0

(−1)m+n

(
k

m

)(
k

n

)
β̄mβnT k−nT ∗k−m.
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Equating coefficients of like powers, we get TmT ∗n = T k−nT ∗k−m for 0 ≤ m, n ≤ k.
Noting that our hypothesis on T implies that T is invertible, we find Tm+n−k = T ∗k−m−n

for all m,n in this range. In particular, taking m + n = k − 1, we have T−1 = T ∗. Thus T
is unitary. 2

Theorem 2.1 Upto unitary equivalence, the only reducible homogeneous weighted shift
(with non-zero weights) is the unweighted bilateral shift B.

Proof : We shall see in Section ** that B is homogeneous. Being a non-trivial unitary,
it is of course reducible. For the converse, let T be a reducible weighted shift with non-zero
weights. Recall that by a Theorem of R. L. Kelly and N. K. Nikolskii, any such operator
T is a bilateral shift, and its weight sequence wn, n ∈ Z is periodic, say with period k ≥ 1.
That is, wn+k = wn for all n. (See Problem 129 in [3] as well as [8].) Without loss of
generality (replacing T by a unitarily equivalent copy if necessary), we may assume wn > 0
for all n in Z. The spectral radius r(T ) of T is given by the following formula (see Theorem
7 and its Corollary in [11]) : r(T ) = max(r−, r+) where

r+ = lim
n→∞[sup

j≥0
(wjwj+1 · · ·wn+j−1)]1/n

and
r− = lim

n→∞[sup
j<0

(wj−1wj−2 · · ·wj−n)]1/n.

In our case, since the weight sequence wn is periodic with period k, this formula for the
spectral radius reduces to

r(T ) = (w0w1 · · ·wk−1)1/k.

Now assume that T is also homogeneous. Then, by Lemma 2.2 of [1], r(T ) = 1. Thus,
w0w1 · · ·wk−1 = 1. By the periodicity of the weight sequence, it then follows that

wnwn+1 · · ·wn+k−1 = 1 ∀n ∈ Z.

Therefore, if xn, n ∈ Z is the orthonormal basis such that Txn = wnxn+1 for all n, then
we get T kxn = xn+k = Bkxn for all n and hence T k = Bk. Since B is unitary, this shows
that T k is unitary. Therefore, by Lemma 2.1, T is unitary. Hence wn = ‖Txn‖ = ‖xn‖ = 1
for all n. Thus T = B. 2

2.3 Associated representations

In this section we make use of the standard notions of projective representations and their
equivalence. However, for the sake of completeness we shall reproduce some of these defi-
nitions (along with some relevant results on these topics) in the following section.

Definition 2.1 If T is an operator on a Hilbert space H then a projective representation π
of Möb on H is said to be associated with T if the spectrum of T is contained in D̄ and

ϕ(T ) = π(ϕ)∗Tπ(ϕ) (2.3)

for all elements ϕ of Möb.
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Clearly, if T has an associated representation then T is homogeneous. In the converse
direction, we have the following theorem. It will be necessary in order to take care of the
irreducible homogeneous shifts. The ‘existence’ part of this theorem is one of the main
results in [6]. We include proofs of both parts for the sake of completeness and because the
original existence proof in [6] uses a powerful selection theorem which is avoided here.

Theorem 2.2 If T is an irreducible homogeneous operator then T has a projective rep-
resentation of Möb associated with it. Further, this representation is uniquely determined
(upto equivalence) by T .

Proof: For any ϕ ∈ Möb , let Eϕ be the set of all unitary operators U such that
ϕ(T ) = U∗TU . Since T is homogeneous, Eϕ is non-empty for each ϕ. Also, for U1, U2 ∈ Eϕ,
U 1

1U2 commutes with T and hence (by the irreducibility of T ) is a scalar unitary. Thus each
of the sets Eϕ is a coset of the circle group T in U(H). Choose a Borel map π : Möb → U(H)
such that π(ϕ) ∈ Eϕ for all ϕ. (For instance, this may be done as follows. Fix a countable
dense subset {fn : n = 1, 2, · · ·} of the Hilbert space H. Let E denote the subset of U(H)
consisting of all unitaries U such that 〈Uf1, f1〉 = · · · 〈Ufn−1, fn−1〉 = 0 and 〈Ufn, fn〉 > 0
for some n = 1, 2, · · ·. Clearly E is a Borel subset of U(H) which meets every coset of T in a
singleton. Therefore we may choose π(ϕ) to be the unique element of E∩Eϕ, for ϕ ∈ Möb .
It can be shown that if the graph of a map between standard Borel spaces is Borel in the
product space, then the map is Borel. Since π defined here satisfies this requirement, it is
a Borel map.) For ϕ1, ϕ2 ∈ Möb , π(ϕ1ϕ2)π(ϕ2)−1π(ϕ1)−1 commutes with T and hence is
a scalar. Thus π is a projective representation of Möb . By construction, it is associated
with T .

Note that if π1, π2 are two projective representations associated with the same opera-
tor T then for each ϕ in Möb, π1(ϕ)−1π2(ϕ) commutes with T . If T is irreducible then this
implies that π1(ϕ)−1π2(ϕ) is a scalar (necessarily of modulus 1) for all ϕ. Thus if T is an
irreducible homogeneous operator, then the associated projective representation is unique
upto equivalence. 2

For any projective representation π of Möb , let π# denote the projective representa-
tion of Möb obtained by composing π with the automorphism ∗ of Möb (cf. (2.1). That
is,

π#(ϕ) := π(ϕ∗), ϕ ∈ Möb. (2.4)

For future use, we note :

Proposition 2.1 If the projective representation π is associated with a homogeneous oper-
ator T then π# is associated with the adjoint T ∗ of T . If, further, T is invertible, then π# is
associated with T−1 also. It follws that T and T ∗−1 have the same associated representation.

Proof: This is more or less obvious from (2.2). 2

2.4 A construction

Let’s say that a projective representation π of Möb is a multiplier representation if it is
concretely realised as follows. π acts on a Hilbert space H of E - valued functions on Ω,
where Ω is either D or T and E is a Hilbert space. The action of π on H is given by(
π(ϕ)f

)
(z) = c(ϕ, z)f(ϕ−1z) for z ∈ Ω, f ∈ H, ϕ ∈ Möb. Here c is a suitable Borel

function from Möb× Ω into the Borel group of invertible operators on E.
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Theorem 2.3 Let H be a Hilbert space of functions on Ω such that the operator T on H
given by

(Tf)(x) = xf(x), x ∈ Ω, f ∈ H
is bounded. Suppose there is a multiplier representation π of Möb on H. Then T is homo-
geneous and π is associated with T .

Proof : Let U be a sufficiently small neighbourhood of the identity in Möb so that
ϕ(T ) makes sense for all ϕ ∈ U . According to [1, Lemma 2.2], it suffices to verify that
Tπ(ϕ) = π(ϕ)ϕ(T ) for all ϕ ∈ U . Notice that for ϕ ∈ U, ϕ(T ) is just multiplication by
ϕ : (ϕ(T )f)(x) = ϕ(x)f(x). So, we need to verify that for any x ∈ Ω, f ∈ H,

xc(ϕ, x)f(ϕ−1(x)) = c(ϕ, x)(y 7→ ϕ(y)f(y))(ϕ−1(x)).

But this is trivial. 2

This easy but basic construction is from Proposition 2.3 of [1]. To apply this theorem,
we only need a good supply of what we have called multiplier representations of Möb. Notice
that most of the irreducible projective representations of Möb (as concretely presented in
the following section) are multiplier representations.

2.5 Block shifts

Although this paper is essentially about ordinary weighted shifts, along the way we shall
need the following more general notion.

Definition 2.2 Let T be a bounded operator on a Hilbert space H. Then T is called a block
shift if there is an orthogonal decomposition H = ⊕n∈IWn of H into non-trivial subspaces
Wn, n ∈ I such that T (Wn) ⊆ Wn+1. Here I = Z,Z+ or Z−. We say that T is a bi-lateral,
forward unilateral or backward unilateral block shift according as I = Z,Z+ or Z−. The
subspaces Wn, n ∈ I are called the blocks of T . In the case of backward block shift T , it
is understood that T (V0) = {0}. Notice that adjoint of a forward block shift is a backward
block shift and vice-versa.

Note that the weighted shifts are simply the block shifts all whose blocks are one-
dimensional. To distinguish them from more general block shifts, they are sometimes
called the scalar shifts.

One might imagine that the block shifts are too general a class to be of much significance.
Indeed, one might think that most (if not all) operators can be realized as block shifts.
Therefore the following result, showing that block shifts (at least the irreducible ones) has
a very rigid structure, comes as a surprise. In the concluding section we shall see that all
irreducible homogeneous operators are block shifts.

Lemma 2.2 If T is an irreducible block shift then the blocks of T are uniquely determined
by T .

Proof (due to Marc Ordower): Fix an element α ∈ T of infinite order (i.e., α is not a
root of unity) Let Vn, n ∈ I be blocks of T . Define a unitary operator S by Sx = αnx for
x ∈ Vn, n ∈ I. Notice that by our assumption on α the eigenvalues αn, n ∈ I of S are
distinct and the blocks Vn of T are precisely the eigenspaces of S. If Wn, n ∈ J are also
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bloocks of T then define another unitary S1 replacing the blocks Vn by the blocks Wn in
the definition of S. A simple computation shows that we have STS∗ = αT = S1TS∗! and
hence S∗1S commutes with T . Since S∗1S is unitary and T is irreducible, it follows from
Schur’s Lemma that S∗1S is a scalar. That is, S1 = βS for some β ∈ T. Therefore, S has
same eigenspaces as S. thus the blocks of T are uniquely determined as eigenspaces of of
S. 2

Remark 2.1 After we conjectured (and were unable to prove) the validity of Lemma 2.2,
our colleague V. Pati found a proof in the case of unilateral shifts. Finally, Marc Ordower
found the beautiful proof (presented above) which works in all cases. In fact, thhis proof
works equally well for commuting tuples of operators.

Though limited in scope, Pati’s proof has the advantage of being ‘constructive’: it gives
an explicit description of the blocks of an irreducible unilateral block shift T in terms of the
operator (in comparison, Ordower’s proof is ‘existential’). We present a brief sketch of this
proof.

Let T be an irreducible forward block shift. (To get the proof for the backward case, just
apply the following to the adjoint.) Let S be the multiplicative semigroup generated by T
and T ∗. Any element S of this semigroup can be written as a word in the letters T and
T ∗. Define the weight w(S) of S to be the number of T ∗s minus the number of T s in such
a word (although the expression of S as a word need not be unique, looking at the action
of S on the blocks, it is clear that the weight is well defined). Then it can be shown that
the initial block V0 of T is the intersection of the kernels of the elements of S of weight 1.
Also, for n > 0, the nth block Vn is the closed span of the images of the elements of weight
−n.

3 Projective representations and Multipliers

3.1 Generalities

Through out this section, G is a locally compact second countable topological group. (How-
ever, in this paper, our interest is in the case of the Möbius group and its universal cover.)
Then a measurable function π : G → U(H) is called a projective representation of G on
the Hilbert space H if there is a function (necessarily Borel) m : G×G → T such that

π(1) = I, π(g1g2) = m(g1, g2)π(g1)π(g2) (3.1)

for all g1, g2 in G. (More precisely, such a function π is called a projective unitary rep-
resentation of G; however, we shall drop the adjective unitary since all representations
considered in this paper are unitary.)

Two projective representations π1, π2 of G on the Hilbert spaces H1, H2 (respectively)
will be called equivalent if there exists a unitary operator U : H1 → H2 and a function (nec-
essarily Borel) γ : G → T such that π2(g)U = γ(g)Uπ1(g) for all g ∈ G. We shall identify
two projective representations if they are equivalent. Recall that a projective representation
π of G is called irreducible if the unitary operators π(g), g ∈ G have no common non-trivial
reducing subspace. Clearly equivalence respects this property.

The function m associated with the projective representation π via (3.1) is called the
multiplier of π. Clearly m : G × G → T is a Borel map. In view of Equation (3.1), m
satisfies
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m(g, 1) = 1 = m(1, g), m(g1, g2)m(g1g2, g3) = m(g1, g2g3)m(g2, g3). (3.2)

for all group elements g, g1, g2, g3. Any Borel function m into T satisfying Equation 3.2 is
called a multiplier on the group. The multipliers form an abelian group under pointwise
multiplication. This is called the multiplier group.

Recall that π is called an ordinary representation (and we drop the adjective “projec-
tive”) if its multiplier is the constant function 1. The ordinary representation π which
sends every group element to the identity operator on a one dimensional Hilbert space is
called the identity (or trivial) representation. The following definition of equivalence of
multipliers is standard (see [12] for instance):

Definition 3.1 Two multipliers m and m̃ on the group G are called equivalent if there is
a Borel function γ : G → T such that γ(g1g2)m̃(g1, g2) = γ(g1)γ(g2)m(g1, g2) for all g1, g2

in G.

Clearly equivalent projective representations have equivalent multipliers. The multipli-
ers equivalent to the trivial multiplier (viz. the constant function 1) are called exact. The
exact multipliers form a subgroup of the multiplier group. The quotient is called the second
cohomology group H2(G,T) (with respect to the trivial action of G on T).

We shall need :

Theorem 3.1 Let G be a connected semi-simple Lie group. Then every projective repre-
sentation of G (say with multiplier m) is a direct integral of irreducible projective represen-
tations (all with the same multiplier m) of G.

Proof: Let π be a projective representation of G. Let G̃ be the universal cover of G
and let p : G̃ → G be the covering homomorphism. Define a projective representation π0

of G̃ by π0(x̃) = π(x) where x = p(x̃). A trivial computation shows that π0 is indeed a
projective representation of G̃ and its multiplier m0 is given by m0(x̃, ỹ) = m(x, y) where
x = p(x̃), y = p(ỹ).

However, since G̃ is a connected and simply connected Lie group, H2(G̃,T) is trivial.
(This is an easy and well known consequence of Theorem 7.37 in [12] in conjunction with
the Levy-Malcev theorem). Therefore, m0 is exact. That is, there is a Borel function
γ : G̃ → T such that

m(x, y) = m0(x̃, ỹ) = γ(x̃)γ(ỹ)/γ(x̃ỹ) (3.3)

for all x̃, ỹ in G̃, and x = p(x̃), y = p(ỹ). Now define the ordinary representation π̃
of G̃ (equivalent to π0) by : π̃(x̃) = γ(x̃)π0(x̃), for x̃ in G̃. Now, since G̃ is a locally
compact and second countable group, by Theorem 2.9 in [4], the ordinary representation
π̃ of G̃ may be written as a direct integral of (ordinary) irreducible representations π̃t of
G̃ : π̃(x̃) =

∫⊕ p̃it(x̃)d P (t), x̃ ∈ G̃. Replacing π̃ by its definition in terms of π, we get
that for each x ∈ G, π(x) =

∫⊕ γ(x̃)−1π̃td P (t) for any x̃ such that x = p(x̃). So we would
like to define πt : G → U(H) by πt(x) = γ(x̃)−1π̃t(x̃) for any x̃ as above and verify that πt,
thus defined, is an irreducible projective representation of G with multiplier m. But first
we must show that πt is well defined. That is, if x̃ and ỹ are elements of G̃ mapping into
the same element x of G under p then we need to show

γ(x̃)−1π̃t(x̃) = γ(ỹ)−1π̃t(ỹ) (3.4)

8



Let Z̃ be the kernel of the covering map p. Since Z̃ is a discrete normal subgroup of
the connected topological group G̃, Z̃ is a central subgroup of G̃. Since for each t, π̃t is
irreducible, it follows by Schur’s lemma that there is a Borel function (indeed a continuous
character of Z̃) γt : Z̃ → T such that π̃t(z̃) = γt(z̃)I for all z̃ ∈ Z̃. Also, we have
π̃(z̃) = γ(z̃)π0(z̃) = γ(z̃)π(1) = γ(z̃)I for all z̃ ∈ Z̃. Therefore, evaluating π̃(z̃) using its
direct integral representation, we find γ(z̃)I =

∫⊕ γt(z̃)Id P (t) and hence γt(z̃) = γ(z̃) for
all t ina set of full P-measure and all z̃ ∈ Z̃ (Note that, being a discrete subgroup of the
separable group G̃, Z̃ is countable.) Replacing the domain of integration by this subset if
need be, we may assume that γt = γ for all t. Thus,

π̃t(z̃) = γ(z̃)I (3.5)

for all z̃ in Z̃ and for all t. Also, for x̃ ∈ G̃ and z̃ ∈ Z̃, we have γ(x̃)γ(z̃)/γ(x̃z̃) = m0(x̃, z̃) =
m(x, 1) = 1 (where x = p(x̃)) and hence

γ(x̃z̃) = γ(x̃)γ(z̃). (3.6)

Now we come back to the proof of Equation (3.4). Since p(x̃) = p(ỹ) there is a z̃ ∈ Z̃
such that ỹ = x̃z̃. Therefore γ(ỹ)−1π̃t(ỹ) = γ(x̃)−1γ(z̃)−1π̃t(x̃)π̃t(z̃) (by Equation (3.6))
= γ(x̃)−1π̃t(x̃) (by Equation 3.5). This proves Equation 3.4 and hence shows that πt is well
defined.

Now, for x, y ∈ G,

πt(xy) = γ(x̃ỹ)π̃t(x̃ỹ)
= γ(x̃ỹ)π̃t(x̃)π̃t(ỹ)
= (γ(x̃)γ(ỹ)/γ(x̃ỹ))πt(x)πt(y)
= m0(x̃, ỹ)πt(x)πt(y)
= m(x, y)πt(x)πt(y),

where x̃, ỹ in G̃ are such that x = p(x̃), y = p(ỹ). This shows that πt is indeed a projective
representation of G with multiplier m. Since from the definition of πt it is clear that πt

and π̃t have the same invariant subspaces, and since the latter is irreducible, it follows that
each πt is irreducible. Thus we have the required decomposition of π as a direct integral of
irreducible projective representations πt with the same multiplier as π : π =

∫⊕ πtd P (t).
2

As a consequence of (the proof of) Theorem 3.1, we have the following corollary. Here,
as above G̃ is the universal cover of G, p : G̃ → G is the covering map. Fix a Borel section
s : G → G̃ for p (that is, s is a Borel function such that p ◦ s is the identity function on G)
such that s(1) = 1. Note that the kernel Z̃ of p is naturally identified with the fundamental
group π1(G) of G. Define the map α : G×G → Z̃ by :

α(x, y) = s(xy)s(y)−1s(x)−1, x, y ∈ G. (3.7)

For any character (i.e., continuous homomorphism into the circle group T) of π1(G), define
mχ : G×G → T by

mχ(x, y) = χ(α(x, y)), x, y ∈ G.

Since Z̃ is a central subgroup of G̃, it is easy to verify that α satisfies the multiplier identity
3.2. Hence mχ is a multiplier on G for each character χ of Z̃.
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Let H1(G) denote the first homology (with integer coefficients) of G as a manifold. Since
H1(G) is the abelianisation of π1(G), the group of characters χ of π1(G) may be identified
with the Pontryagin dual Ĥ1(G).

Finally, for any multiplier m on G, let [m] denote its image in H2(G,T) under the
quotient map. In terms of these notations, we have :

Corollary 3.1 Let G be a connected semi-simple Lie group. Then the multipliers mχ are
mutually inequivalent, and every multiplier on G is equivalent to mχ for a unique character
χ. In other words, χ 7→ [mχ] defines a group isomorphism :

H2(G,T) ≡ Hom(H1(G),T).

Proof: Let m be any multiplier on G. Define a projective representation π of G on the
Hilbert space L2(G) by :

(π(g)F )(x) = m(x, g)F (xg), g, x ∈ G, F ∈ L2(G).

Then, using the defining equation (3.2) for a multiplier, it is easy to verify that π is indeed
a projective representation of G and the multiplier associated with π is m. Therefore,
the calculations done in proving Theorem 3.1 apply to m. Let χ denote the restriction
to Z̃ of the Borel map γ which occurs in this proof. Equation (3.6) implies, in par-
ticular, that χ is a character of Z̃. Define the Borel map f : G → T by f = γ ◦ s.
Then, for x, y ∈ G (s(xy)s(y)−1s(x)−1 ∈ Z̃ and hence) Equation (3.6) gives f(xy) =
γ(s(x)s(y))mχ(x, y). Also, Equation (3.3) (with the choice x̃ = s(x), ỹ = s(y)) gives
m(x, y) = f(x)f(y)/γ(s(x)s(y)). Hence m(x, y) = f(x)f(y)

f(xy) mχ(x, y). Thus the multiplier m
is equivalent to mχ.

Finally, since χ 7→ mχ is a group homomorphism, to show that the multipliers mχ are
mutually inequivalent, it suffices to show that mχ ≡ 1 implies that χ is the trivial character.
So let χ be a character of Z̃ such that mχ is exact. Hence there is a Borel function g : G → T
such that mχ(x, y) = g(x)g(y)/g(xy) for x, y ∈ G. Hence we have

mχ(p(x̃), p(ỹ)) = h(x̃)h(ỹ)/h(x̃ỹ)

for x̃, ỹ ∈ Z̃. Here the Borel function h : G̃ → T is given by h = g ◦ p. But, by Equation
(3.3) (with m = mχ, x = p(x̃), y = p(ỹ)) shows that

mχ(p(x̃), p(ỹ)) = γ(x̃)γ(ỹ)/γ(x̃ỹ)

for x̃, ỹ ∈ G̃. Comparing these two equations we see that γ/h is a character of
tildeG. But there is no non-trivial character of G̃. (A semi-simple Lie group is its own
commutator, so there is no non-trivial homomorphism from such a group into any abelian
group.) Therefore γ = h = g ◦ p. But g ◦ p is a constant function on the kernel Z̃ of p,
while the restriction of γ to Z̃ is the character χ thus χ is trivial. 2

Remark 3.1 (a) The isomorphism χ 7→ [mχ] in Corollary 3.1 appears to depend on the
choice of the section s. But it is quite easy to prove that actually there is no such dependence.
Thus the isomorphism of this corollary is a natural one.

(b) The beginning of the proof of Corollary 3.1 shows that any multiplier m on a locally
compact second countable group G is actually associated with (‘comes from’) some projective
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unitary representation of G. In conjunction with Theorem 3.1, it then follows that if G is
a connected semi-simple Lie group then any multiplier of G comes from an irreducible
projective unitary representation.

(c) Let G be a connected semi-simple Lie group and let G̃ be its universal cover. Also,
let Z̃ be as above. Finally, let χ be a character of Z̃. Let us say that an ordinary projective
representation π̃ of G̃ is of pure of type χ if π̃(z̃) = χ(z̃)I for all z̃ ∈ Z̃. The proof
of Theorem 3.1 shows that there is a natural bijection π 7→ π̃ between the (equivalence
classes of) projective representations of G and the (equivalence classes of) pure ordinary
representations of G̃. Further, under this bijection, the projective representations with
multiplier mχ correspond to the representations of pure type χ. Finally (since in general
π and π̃ have the same invariant subspaces, and since by Schur Lemma the irreducible
representations of G̃ are pure) the irreducible projective representations of G are in bijection
with the irreducible representations of G̃ under this map.

3.2 The irreducible representations of the Möbius group

In view of Theorem 3.1, to understand all the projective representations of Möb it suffices
to know its irreducible projective representations. Most of these representations happen to
arise out of the following construction.

For ϕ in Möb, ϕ′ is a non-vanishing analytic function on D̄. Hence there is an analytic
branch of log ϕ′ on D̄. For the rest of this paper, fix such a branch for each ϕ such that
(a) for ϕ = 1, log ϕ′ ≡ 0 and (b) the map (ϕ, z) 7→ log ϕ′(z) from Möb × D̄ into C is
a Borel function. With such a determination of the logarithm, we define the functions
(ϕ′)λ/2 (for any fixed real number λ > 0) and argϕ′ on D̄ by ϕ′(z)λ/2 = exp(λ

2 log ϕ′(z)
and argϕ′(z) = Im logϕ′(z). (If our determination of the logarithms are changed then - it
is easy to see - the representations of Möb introduced below as well as the multipliers on
Möb defined in the next subsection remain unchanged modulo equivalence.)

For n ∈ Z, let fn : T → T be defined by fn(z) = zn. In all of the following examples,
the Hilbert space H is spanned by an orthogonal set {fn : n ∈ I} where I is some subset
of Z. Thus the Hilbert space of functions is specified by the set I and {‖fn‖, n ∈ I}. (In
each case, ‖fn‖ behaves at worst like a polynomial in |n| as n → ∞, so that this really
defines a space of function on T.) For ϕ ∈ Möb and complex parameters λ and µ, define
the operator Rλ, µ(ϕ−1) on H by

(Rλ,µ(ϕ−1)f)(z) = ϕ′(z)λ/2|ϕ′(z)|µ(f(ϕ(z)), z ∈ T, f ∈ H, ϕ ∈ Möb.

Of course, there is no a priori gurantee that this is a unitary (or even bounded) operator.
But, when it is, it is easy to see that Rλ,µ is then a projective representation of Möb. (See
the proof of Theorem 3.2 below.) Thus the description of the representation is complete if
we specify I, {‖fn‖2, n ∈ I} and the two parameters λ, µ. It turns out that all the irreducible
projective representation of Möb have this form (excepting the anti-holomorphic discrete
series representations which are of the form R#

λ,µ).
By Remark 3.1(c), there is a natural bijection between the irreducible projective repre-

sentations of Möb and the irreducible (ordinary) representations of its universal cover. But
a complete list of the irreducible representations (upto equivalence) of the universal cover
of Möb was obtained by Bargmann (see [10], for instance). Hence one obtains a complete
list of the irreducible projective representations of Möb. This is as follows. (However, see
Remark 3.2 of this section.)

11



List 3.1 Holomorphic discrete series representations D+
λ . Here λ > 0, µ = 0, I = Z+

and ‖fn‖2 = Γ(n+1)Γ(λ)
Γ(n+λ) for n ≥ 0. For each f in the representation space there is an f̃ ,

analytic in D, such that f is the non-tangential boundary value of f̃ . By the identification
f ↔ f̃ , the representation space may be identified with the functional Hilbert space H(λ)

of analytic functions on D with reproducing kernel (1− zw̄)−λ, z, w ∈ D.
Anti-holomorphic discrete series representations D−

λ , λ > 0. D−
λ may be defined as the

composition of D+
λ with the automorphism ∗ of Equation (2.1). Thus, D−

λ = (D+
λ )# (recall

Equation (2.4)). This may be realized on a functional Hilbert space of anti-holomorphic
functions on D, in a natural way.

Principal series representations Pλ,s, − 1 < λ ≤ 1, s purely imaginary. Here λ =
λ, µ = 1−λ

2 + s, I = Z, ‖fn‖2 = 1 for all n. (so the space is L2(T)).
Complementary series representation Cλ,σ, − 1 < λ < 1, 0 < σ < 1

2(1 − |λ|). Here
λ = λ, µ = 1

2(1− λ) + σ, I = Z, and

‖fn‖2 =
|n|−1∏

k=0

k ± λ
2 + 1

2 − σ

k ± λ
2 + 1

2 + σ
, n ∈ Z,

where one takes the upper or lower sign according as n is positive or negative.

Remark 3.2 All the projective representations in the List 3.1 are mutually inequivalent.
Moreover, they are all irreducible with the sole exception of P1,0 for which we have the
decomposition P1,0 = D+

1 ⊕D−
1 .

3.3 The multipliers of the Möbius group

Next we describe the multipliers of Möb upto equivalence. Let’s define the Borel function
n : Möb ×Möb → Z by

n(ϕ−1
1 , ϕ−1

2 ) =
1
2π

( arg(ϕ2ϕ1)′(0)− arg ϕ′1(0)− arg ϕ′2(ϕ1(0))). (3.8)

The chain rule implies that this is indeed an integer valued function. For any ω ∈ T, define
mω : Möb×Möb → T by

mw(ϕ1, ϕ2) = ωn(ϕ1,ϕ2). (3.9)

Then we have :

Theorem 3.2 (a) mω is a multiplier of Möb for each ω ∈ T. Upto equivalence, mω, ω ∈ T
are all the multipliers on Möb; further, these are mutually inequivalent multipliers. In other
words, H2(Möb,T) is naturally isomorphic to T via the map ω 7→ mω.

(b) For each of the representations of Möb in List 3.1, the associated multiplier is mw,
where (in terms of the parameter λ of the representation) w = eiπλ in each case, except for
the anti-holomorphic discrete series representation(s) for which w = e−iπλ

Proof : We first prove Part (b). Let π = Rλ,µ be a representation in List 3.1. Thus π
is not in the anti-holomorphic discrete series. From the definition of Rλ,µ, one calculates
that the associated multiplier m is given by :

m(ϕ−1
1 , ϕ−1

2 ) =

(
(ϕ2ϕ1)′(z)

)λ/2

(ϕ′1(z))λ/2(ϕ′2(ϕ1(z)))λ/2
, z ∈ T,
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for any two elements ϕ1, ϕ2 of Möb. Notice that the right hand side of this equation is an
analytic function of z for z in D̄ and it is of constant modulus 1 in view of the chain rule for
differentiation. Therefore, by the maximum modulus principle, this formula is independent
of z for z in D̄. Hence we may take z = 0 in this formula. This yields m = mω with
ω = eiπλ. Notice that if m is the multiplier associated with the representation π then the
multiplier associated with π# is m̄. Since D−

λ = D+#
λ , it follows that if π = D−

λ is in the
anti-holomorphic discrete series, then its multiplier is mω where ω = e−iπλ.

This argument also shows that mω is indeed a multiplier of Möb for each ω ∈ Möb .
Further, since these multipliers include all the multipliers of Möb associated with irreducible
projective representations, Remark 3.1(b) shows that modulo equivalence these are all the
multipliers on Möb. Unfortunately, it seems very hard to see directly that the multipliers
mω, ω ∈ T are mutually inequivalent. (Since ω 7→ [mω] is clearly a group homomorphism
from T onto H2(Möb,T), this amounts to verifying that mω is never exact for ω 6= 1.) This
fact may be deduced from Corollary 3.1 as follows.

Identify Möb with T× D via ϕα,β 7→ (α, β). The group law on T× D is given by :

(α1, β1)(α2, β2) =
(
α1α2 · 1 + ᾱ2β1β̄2

1 + α2β̄1β2
,
β1 + α2β2

α2 + β1β̄2

)
.

The identity in T× D is (1, 0) and the inverse map is (α, β)−1 = (ᾱ,−αβ).
Then the universal cover M̃öb is naturally identified with R × D. Taking the covering

map p : R× D→ T× D to be p(t, β) = (e2πit, β), the group law on R× D is determined, by
(continuity and) the requirement that p be a group homomorphism, as follows :

(t1, β1)(t2, β2) =
(
t1 + t2 +

1
π

Im Log(1 + e−2πit2β1β̄2),
β1 + e2πit2β2

e2πit2 + β1β̄2

)
,

where ‘Log’ denotes the principal branch of the logarithm on the right half plane. The
identity in R× D is (0, 0) and the inverse map is (t, β)−1 = (−t,−e2πitβ). The kernel Z̃ of
the covering map p is identified with the additive group Z via n 7→ (n, 0).

Let’s choose a Borel branch arg : T → R of the argument function satisfying arg(z̄) =
−arg(z), z ∈ T. Let’s then make an explicit choice of the Borel function (ϕ, z) 7→ arg(ϕ′(z)
(which occurs in the definition of n in Equation 3.8) as follows :

argϕ′α,β(z) = arg(α)− 2Im Log(1− βz).

Let’s also choose the section s : T×D→ R×D as follows : s(α, β) = ( 1
2πarg(α), β). An easy

computation shows that, for these choices, we have s(ϕ1ϕ2)s(ϕ2)−1s(ϕ1)−1 = −n(ϕ1, ϕ2)
for ϕ1, ϕ2 in Möb. Hence we get that, for ω ∈ T, mω = mχ where χ = χω is the character
nmapstoω−n of Z. Thus the map ω 7→ [mω] is but a special case of the isomorphism
χ 7→ mχ of Corollary 3.1. 2

3.4 The simple representations of the Möbius group

Let K be the maximal compact subgroup of Möb given by {ϕα,0 : α ∈ T}. Of course, K is
isomorphic to the circle group T via α 7→ ϕα,0.

Definition 3.2 Let π be a projective representation of Möb. We shall say π is normalised
if π|K is an ordinary representation of K.
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Lemma 3.1 Any projective representation of Möb is equivalent to a normalised represen-
tation.

Proof: Take any projective representation σ of Möb. Then σ|K is a projective repre-
sentation of K, say, with multiplier m. But H2(K) is trivial [9, ]. So, there exists Borel
function f : K→ T such that

m(x, y) =
f(x)f(y)

f(xy)
, x, y ∈ K.

Extend f to a Borel function g : Möb → T. Define π by π(x) = g(x)σ(x), x ∈ Möb. Then
π is normalised and equivalent to σ. 2

Notation 3.1 For n ∈ Z, let χn be the character of T given by χn(x) = x−n, x ∈ T. For
any normalised projective representation π of Möb and n ∈ Z, let

Vn(π) = {v ∈ H : π(x)v = χn(x)v, ∀ x ∈ T}.
Then H = ⊕n∈ZVn(π). The subspaces Vn(π) are usually called the K-isotypic subspaces of
H. Put

dn(π) = dimVn(π) and T (π) = {n ∈ Z : dn(π) 6= 0}.

Definition 3.3 (a) A subset A of Zis said to be connected if for any three elements a <
b < c in Z, a, c ∈ A implies b ∈ A. If B is any subset of Z, a connected component of B
is a maximal connected subset of B (with respect to set inclusion). Since the union of two
intersecting connected sets is clearly connected, the connected components of a set partition
the set.

(b) Let π be a normalised projective representation of Möb. We shall say that π is
connected if T (π) is connected. π will be called simple if if π is connected and, further,
dn(π) ≤ 1 for all n ∈ Z. More generally, a projective representation is connected/simple if
it is equivalent to a connected/simple (normalised) representation.

Remark 3.3 Notice that if π and σ are equivalent normalised representations then there is
an integer h such that Vn(σ) = Vn+h(π) for all n in Z. Consequently, T (σ) is an additive
translate of T (π). Hence σ is connected/simple if and only if π is. Thus the definitions
given above are consistent.

Lemma 3.2 Let π be any normalised projective representation of Möb. Then each connected
component of T (π) is unbounded.

Proof: By Theorem 3.1, we may write

π =
∫ ⊕

πt dP (t),

where P is a regular measure and πt is an irreducible projective representation of Möb for
all t. An inspection of the entries in List 3.1 shows that T (πt) is connected and unbounded
for each t. So it suffices to show that the same must be true of their direct integral π. To
this end, we claim that, for each n in Z,

Vn(π) =
∫ ⊕

Vn(πt) dP (t). (3.10)
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Indeed, the inclusion ⊇ is trivial. To prove the inclusion ⊆, take v ∈ Vn(π). Then v =∫⊕ vt dP (t) for some vt ∈ Ht. Consequently,
∫ ⊕

χn(x)vt dP (t) = χn(x)v

= π(x)v

=
∫ ⊕

πt(x)vt dP (t).

This implies that χn(x)vt = πt(x)vt for almost all t. Therefore, vt ∈ Vn(πt) for almost all
t. This proves Claim (3.10).

Therefore, n ∈ T (π) if and only if Vn(πt) 6= 0 for t in a set of positive P measure. Now
suppose some component of T (π) is bounded. Then there exists a < b < c in Zsuch that b
is in T (π) but a and c are not in T (π). It follows that a and c are not in T (πt) for almost
all t but b is in T (πt) for all t in a set of positive measure. Therefore, there is a t for
which b ∈ T (πt) but a, c 6∈ T (πt). Then the component of T (πt) containing b is bounded.
Contradiction. 2

Theorem 3.3 Upto equivalence, the only simple projective representations of Möb are the
irreducible projective representations of Möb and the representations D+

λ ⊕D−
2−λ, 0 < λ < 2.

Proof: If π is irreducible then we have nothing to prove. So, assume π = π1 ⊕ π2. By
Equation (3.10), we have Vn(π) = Vn(π1)⊕ Vn(π2). We have dn(π1) + dn(π2) = dn(π) ≤ 1.
Since π is simple, we have T (π) = T (π1)∪T (π2), T (π1)∩T (π2) = ∅. Therefore, by Lemma
3.2, the connected components of T (π), i = 1, 2 together form a collection of pairwise
disjoint unbounded connected sets. Since three unbounded connected subsets of Zcannot
be pairwise disjoint, it follows that this collection contains atmost (and hence exactly) two
sets. Thus both π1 and π2 are (connected and hence) simple. Since the connected set T (π)
is the disjoint union of the two unbounded connected sets T (π1) and T (π2), it follows that
T (π) = Z. In consequence, (upto interchanging of π1 and π2) the connected sets T (π1)
(respectively T (π2)) must be bounded below (respectively bounded above).

The argument so far shows, in particular, that whenever simple projective represen-
tation π is reducible, T (π) = Z is forced. Since π1 and π2 are simple but T (πi) is a
proper subset of Z, it follows that π1 and π2 are irreducible. From the complete list of
irreducible projective representations of Möb in Section 2.1, one sees that, upto equiva-
lence, the only irreducible projective representations π1 (respectively π2) for which T (π1)
(respectively T (π2) is bounded below (respectively above) are the holomorphic (repectively
anti-holomorphic) discrete series representations. Therefore, there are positive real num-
bers λ and µ such that π1 and π2 are equivalent to D+

λ and D−
µ , respectively. Since D+

λ and
D−

µ occur as a subrepresentation of a common projective representation (viz. an equiva-
lent copy of π), they must have a common multiplier. In view of Remark ??, this means
e−πiλ = eπiµ. Thus λ+µ is an even integer. Now, a computation shows that (upto additive
translation) for π = D+

λ ⊕D−
µ , we have

T (π) = {n ∈ Z : n ≥ 0} ∪ {n ∈ Z : n ≤ −(λ + µ)/2}.

Since T (π) = Z, we must have λ+µ = 2. Thus upto equivalence π = D+
λ ⊕D−

2−λ, 0 < λ < 2.
2
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4 Examples of homogeneous weighted shifts

Now we present a list of homogeneous weighted shifts. Later in this paper we shall see that
this list is exhaustive.

List 4.1 Principal series example. The unweighted bilateral shift B (i.e., the bilateral shift
with weight sequence wn = 1, n ∈ Z,) is homogeneous. To see this, apply Theorem 2.3
to any of the principal series representations of Möb. Being normal (in fact unitary) this
operator is far from irreducible. By construction, all the Principal series representations
are associated with it.

The Holomorphic discrete series examples. For any real number λ > 0, the unilateral
shift M (λ) with weight sequence

√
n+1
n+λ , n ∈ Z+ is homogeneous. To see, this, apply

Theorem 2.3 to the Discrete series representation D+
λ . These are irreducible, and, by

construction, the representation associated with M (λ) is D+
λ .

The Anti-holomorphic discrete series examples. Being adjoints of homogeneous opera-
tors, the operators M (λ)∗, λ > 0, are homogeneous. Since D+

λ
# = D−

λ , the representation
associated with M (λ)∗ is D−

λ . It was shown in [5] that these operators are the only homo-
geneous operators in the Cowen-Douglas class B1(D).

The Complementary series examples. For any two distinct real numbers a and b in
the open unit interval (0, 1), the bilateral shift Ka,b with weight sequence

√
n+a
n+b , n ∈ Z, is

homogeneous. To see this in case 0 < a < b < 1, apply Theorem 2.3 to the Complementary
series representation Cλ,σ with λ = a + b − 1 and σ = (b − a)/2. If 0 < b < a < 1 then
Ka,b is the inverse of the homogeneous operator Cb,a, and hence is homogeneous. Since
C#

λ,σ = Cλ,σ, we see that for any two numbers 0 < a 6= b < 1, the representation associated
with the irreducible operator Ka,b is Cλ,σ with λ = a + b− 1, σ = |a− b|/2.

The constant characteristic examples. For any strictly positive real number λ 6= 1,
the bilateral shift Br with weight sequence · · · , 1, 1, 1, r, 1, 1, 1, · · · , (r in the zeroth slot,
1 elsewhere) is homogeneous. Indeed, if 0 < r < 1 then Br is a completely non unitary
contraction with constant characteristic function −r; hence it is homogeneous because of
Theorem 2.10 in [1]. (In [1] we show that apart from the unweighted unilateral shift and its
adjoint, these are the only irreducible contractions with a constant characteristic function.)
If r > 1, Br is the inverse of the homogeneous operator Bs with s = r−1, hence it is
homogeneous. (In [1] we presented an unnecessarily convoluted argument to show that Br

is homogeneous for r > 1 as well.) It was shown in [1] that the representation D+
1 ⊕ D−

1

is associated with each of the operators Br, r > 0. (Recall that this is the only reducible
representation in the Principal series!)

5 Classification

Theorem 5.1 If T is an irreducible homogeneous operator then T is a block shift. If π is a
normalised representation associated with T then the blocks of T are precisely the K-isotypic
subspaces Vn(π), n ∈ T (π).

Proof: Because of Lemma 2.2, it suffices to show that

T (Vn(π)) ⊆ Vn+1(π) for all n ∈ T (π). (5.1)
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Indeed, since T is irreducible, (5.1), shows that π is connected (if there were a < b < c in
Zwith a, c ∈ T (π) and b 6∈ T (π) then (5.1) would imply that ⊕n<bVn(π) is a non-trivial
reducing subspace of T ). Since T (π) is also unbounded by Theorem 3.3, it follows that by
re-indexing, the index can be taken to be either all integers or the non-negative integers or
the non-positive integers. Therefore, T is a block shift.

So, it only remains to prove (5.1). To do this, fix n ∈ T (π) and v ∈ Vn(π). For x ∈ K,
we have π(x)v = χn(x)v. Consequently,

π(x)Tv = π(x−1)∗Tv

= π(x−1)∗Tπ(x−1)(π(x)v)
= (x−1T )(x−nv)
= x−(n+1)Tv.

So, Tv ∈ Vn+1(π). This proves (5.1). 2

Lemma 5.1 Let T be any homogeneous (scalar) weighted shift. Let π be the projective rep-
resentation of Möb associated with T . Then upto equivalence, π is one of the representa-
tions in List 3.1. Further,

(a) If T is a forward shift then the associated representation is holomorphic discrete
series.

(b) If T is a backward shift then the associated representation is anti-holomorphic dis-
crete series, and

(b) If T is bilateral shift then the associated representation is either principal series or
complementary series.

Proof: Let T be a homogeneous shift. If T is reducible, then by Theorem 2.1, T = B
and hence the associated representations are Principal series. So assume T is irreducible.
Notice that a scalar shift is by definition a block shift with one dimensional blocks. But
by Lemma 5.1, the subspaces Vn(π), n ∈ T (π) are blocks of T . Therefore, by Lemma
2.2, we have dn(π) ≤ 1 for all n. Also, by Lemma 5.1 π is connected. Thus π is simple.
Thus by Lemma 3.3, either π is irreducible or π = D+

λ ⊕ D−
2−λ for some λ in the range

0 < λ < 2. In the first case we are done since the list in Section 2.1 includes alll irre-
ducible projective representations. In the latter case, T (π) = Z and hence T is a bi-lateral
shift. Therefore, T ∗ is unitarily equivalent to T . Since π is associated with T , π# is aqsso-
ciated with T ∗. Therefore, by the uniqueness statement in Theorem 2.2, π# is equivalent
to π. That is,

D+
2−λ ⊕D−

λ ≡ (D−
2−λ)# ⊕ (D+

λ )# ≡ (D−
2−λ ⊕D+

λ )# ≡ D+
λ ⊕D−

2−λ.

Hence we have D+
2−λ ≡ D+

λ and hence 2 − λ = λ, i.e., λ = 1. Thus in this case, π is
equivalent to D+

1 ⊕D−
1 = P1,0 which is a principal series representation belonging to our

List 3.1.
Now a simple calculation shows that if π is a normalised representation equivalent to

one of the representations in Section 2.1, then (upto additive translations) T (π) = Z+

(respectively Z−) if π is holomorphic (respectively anti-holomorphic) discrete series and
T (π) = Z if π is principal or complementary series. Therefore, the staements (a), (b), (c)
in the Lemma follow. 2
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Theorem 5.2 Upto unitary equivalence, the only homogeneous (scalar) weighted shifts
(with non-zero weights) are the ones in List 4.1.

Proof: Let T be a homogeneous weighted shift. If T is reducible, we are done by Theorem
2.1. So assume T is irreducible. Then by Theorem 2.2 there is a projective representation π
of Möb associated with T . By Lemma 5.1, π is one of the representations in List 3.1.
Further, replacing T by T ∗ if necessary, we may assume that T is either a forward or
bi-lateral shift. Accordingly, π is either a holomorphic discrete series representation or a
principal/complemantary series representation. Hence π = Rλ,µ for some parameters λ, µ.
Recall that the representation space Hπ is the closed linear span of the functions fn, n ∈ I,
where fn(z) = zn, n ∈ I and I = Z+ in the former case and I = Z in the latter case. The
elements fn, n ∈ I, form a complete orthogonal set of vectors in Hπ but these vectors are
(in general) not unit vectors. Their norms are as given in List 3.1 (depending on π). Since
T is a weighted shift with respect to the orthonormal basis of Hπ obtained by normalising
fns, there are scalars an > 0, n ∈ I such that

Tfn = anfn+1, n ∈ I.

Notice that since the fns are (in general) not normalised, the numbers an are not the
weights of the weighted shift T . These weights are given by wn := an‖fn+1/‖fn‖, n ∈ I.
It follows that the adjoint T ∗ acts by :

T ∗fn =
‖fn‖2

‖fn−1‖2
an−1fn−1, n ∈ I,

where one puts a−1 = 0 in case I = Z+.
Let M be the multiplication operator on Hπ defined by Mfn = fn+1, n ∈ I. Notice

that for each representation in List 3.1, the corresponding operator M is in List 4.1. Also,
in case M is invertible, M∗−1 is also in the latter list.

Let β be a fixed but arbitrary element of D, and let ϕβ := ϕ−1,β ∈ Möb (recall the
notation in Equation 1.1).Note that ϕβ is an involution, and this simplifies the following
computation of π(ϕβ) a little bit. Indeed, a straightforward calculation shows that, for
π = Rλ,µ, we have

〈π(ϕβ)fm, fn〉 = c(−1)nβ̄n−m‖fn‖2
∑

k≥(m−n)+

Ck(m,n) rk, 0 ≤ r ≤ 1, (5.2)

where we have put r = |β|2, c = ϕ′β(0)λ/2+µ and

Ck(m,n) =

(
−λ− µ−m

k + n−m

)(
−µ + m

k

)
.

Since π is associated with T , from the defining equation (2.3) we have Tπ(ϕβ)(I−β̄T ) =
π(ϕβ)(βI − T ). That is,

β̄Tπ(ϕβ)T + βπ(ϕβ) = Tπ(ϕβ) + π(ϕβ)T.

Fix m,n in I. Evaluate each side of the above equation at fm and take the inner product of
the resulting vectors with fn. We have, for instance, 〈Tπ(ϕβ)Tfm, fn〉 = 〈π(ϕβ)Tfm, T ∗fn〉 =
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amān−1‖fn‖2/‖fn−1‖2〈π(ϕβ)fm+1, fn−1〉, and similarly for the other three terms. Now sub-
stituting from Equation 5.2 and cancelling the common factor c(−1)n−1‖fn‖2β̄n−m , we
arrive at the following identity in the indeterminate r :

amān−1

∑

k≥(m−n+2)+

Ck(m + 1, n− 1)rk −
∑

k≥(m−n)+

Ck(m,n)rk+1

= ān−1

∑

k≥(m−n+1)+

Ck(m,n− 1)rk − am

∑

k≥(m−n+1)+

Ck(m + 1, n)rk.

(5.3)

Taking m = n in Equation 5.3 and equating the co-efficients of r1, we obtain :

(n + 1− µ)an = (n− µ)ān−1 + 1, n ∈ I. (5.4)
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