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Sum rules in inelastic gas-surface scattering

RAMAKRISHNA RAMASWAMY
Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India

Abstract. An explanation for sum-rules observed in gas-surface scattering is offered via a
classical scaling theory for inelastic collisions.
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1. Introduction

A series of elegant experiments have been carried out recently by Janda and co-workers
(Janda et al 1980, 1983; Hurst et al 1983) on the scattering of supersonic monoenergetic
beams from clean metal surfaces. One result from these studies is that the average final
kinetic energy of the scattered particle, <E; >, depends on the average initial kinetic
energy, <E; >, and the surface temperature, T,, via a simple linear relationship,

<Ef > = Oy <E1> +as(2kBTs)v (1)

where the coefficients a,, o, depend only on the scattering angle, and k is the Boltzmann
constant. A number of theoretical models (Baker and Auerbach 1979; Grimmelman
et al 1980; Levine and Silbey 1981) have offered an explanation of the above result,
which has since been seen to hold in a model semiclassical study of gas-surface
scattering as well (Agarwal and Raff 1982).

The purpose here is to point out that an equation such as (1), termed a sum-rule
(Levine and Silbey 1981), derives from a recently formulated classical scaling theory
(DePristo 1981; Ramaswamy 1984a) for inelastic processes. The scaling approach,
described below, offers a novel viewpoint of the inelastic scattering process, and permits
a different interpretation of the experimental results (see also Richard and DePristo
1983).

2. Scaling theory

For convenience we consider a coplanar scattering geometry, for which the total
Hamiltonian is given as

H=H,+H,+V(XxR) ?)

The origin of the coordinate system (see, for example, Goodman 1975; Bernasek and
Somorjai 1975) is located on the surface of the solid; the subscripts s and g denote solid
and gas respectively, and ¥ is the interaction potential. For an atomic gas particle, H, is
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merely the kinetic energy, H, = p2/2m, with m the atomic mass. p r is the momentum
conjugate to the coordinate R, which describes the position of the gas particle relative to
the origin. (We will confine our attention to this simple case). The surface Hamiltonian
can be expressed in terms of normal-mode coordinates (Kittel 1971; Goldstein 1980):

H =} (& + ofx{)/2, €
k

where k indexes the normal modes of frequency . For a given experimental
configuration (Janda et al 1980, 1983; Hurst et al 1983), the angle of incidence, 6;, is
fixed. At the beginning of the collision, the interaction potential ¥ — 0 (at t = to,
R =R° - 0), and then H, and H, are individually constants of the motion. We
“transform to an action-angle representation (Goldstein 1980)at t = t,: the actions are
the constants of motion. Thus

H, - ; wyJy /21 = gmk (m+1/2)h )

where J; are the surface action variables (or alternatively, the n, are the phonon
occupancies). The angle variables conjugate to these actions are w,. Similarly, the
‘parallel’ and ‘perpendicular’ components of the momentum of the gas particle are
action variables as well, #, = p , and £, = P> With conjugate angle variables ¢, and
2.

Within a classical scenario, the gas-solid collision is simulated by an ensemble of
trajectories. For every trajectory, the initial kinetic energy is fixed, E = [(#9)?
+(#9)*1/2m. The initial orientation is fixed at 6,. ¢?, ¢2 are fixed so that R? is some
large value and ¥ (x,R)— 0. The value of all variables at ¢ =t, is indicated by
superscript 0. The phonon occupancies (Kittel 1971) are related to the surface
temperature (in the high temperature approximation) through (Kittel 1971)

(m+1/2) = [exp(Ran/ky T) — 117" = ks T,/ (Ray), O]

which fixes the initial surface actions J§. What differ from trajectory to trajectory are
the surface angle variables, w°. This leads to a distribution in the scattering angle 6,
and the final kinetic energy E .

Since the measurement is carried out at a specific scattering angle, this corresponds to
sampling only a specific set of initial surface-angles, w°. We are interested in
determining the variation in the final kinetic energy with changing initial conditions.
The equation of motion for the kinetic energy of the gas, H » 18 (Ramaswamy 1984a)

dH,/dt= —{H,H,} = —{V,H,} = L,()H,; (6)
{,} is the Poisson bracket. Equation (6) can be solved implicitly to yield
Hy(t = 00)— H,(to) = E;— By = G({V };3% w%; #°, ¢°), @)

where

=) 0 v .
G({V}; 3%, w050, ¢0) = U dr Lv(t’)HF+J d:’j dt" L,(t) L, () H,
to to

o

+ -'--]J=J°,W=W°;J=J°;¢=¢° (8)
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Note that the rus of (8) is evaluated at the initial values of all variables. For a particular

scattering angle, 8, the rHs can be expanded in a Taylor series in the initial action
variables to yield

2 G 0
= . 0. 0 Y o0 Rl 2]
E,—E G({V},o,w,0,¢)+I=21M?f,+k=lngk+... ©)
G 1 0G
=G({V};0,w’0, °+2—-E+2kT —
({V3:0,%5 0,69+ 255 Bt Qky T) Lo o7 + -
= RQ + b?gEi+Es2kaI;, ’ (10)
with
@ =G ({V};0,w°0,¢°, ~ (11a)
8, = 2(8G/0E;), (11b)
8, =Y (0G/3J Q) w. (11c)
k

This analysis yields explicit expressions for the coefficients @ [ through (8) and (11)],
and it is clear that these are independent of the surface temperature or the incident
kinetic energy, but depend on the scattering angle. Further, taking the limit T, —.0,
E; — 0, it can be seen that &, = 0. Taking these limits separately yields &, < 0, &, > 0.
These observations are in accord with experimental results (Janda et al 1983; Hurst et al
1983). Since the scaling form holds (DePristo 1981; Ramaswamy 1984a) for each initial
kinetic energy at fixed T, the proper relationship for average energies, (1), is regained.

It must be noted that (10) is in principle (DePristo 1981; Ramaswamy 1984a) an
infinite expansion in the initial constants of the motion—here E; and T, It is an
empirical observation (Agrawal and Raff 1982; Janda et al 1980, 1983; Hurst et al 1983)
that for gas-metal inelastic scattering the higher order terms are negligible. One can
therefore expect departures from this simple behaviour when the conditions for the

“validity of the linear scaling approximation are not satisfied,

3. Discussion

The applicability of the scaling in the present context suggests some interesting
extensions. For a molecular gas incident on a surface, H, will include an internal
molecular Hamiltonian in (2). Then the Taylor series expansion in (9) will involve the
actions (or quantum numbers) corresponding to the internal degrees of freedom as well.
The scaling law that obtains then is similar to (10), with additional terms in the initial
quantum numbers of the gas molecule,

(ErY =0, (E) + a2k, T)+ s N+ N>+ .. ., (12)
or at fixed E; and T,
(E;Y=PBo+BiN+BN*+ ..., (13)

which is the usual form of the scaling law in atom-molecule collisions (Ramaswamy and
Bhargava 1984). (We have considered a single internal degree of freedom for the gas



4
oy

252 Ramakrishna Ramaswamy

molecule, and the quantum number is denoted by N). It would be of interest to
determine whether such behaviour is indeed followed in an initial state-selected
experiment. In another context, we have shown (Ramaswamy 1984b; Ramaswamy and
Bhargava 1984; Bhargava and Ramaswamy 1985) that the scaling coefficients can be
given precise quantum-mechanical meaning, since they are related to quantum
transition probabilities. A full scaling analysis would thus make possible the interpret-

ation of empirical coefficients, such as appear in (1), (12) or (13), in terms of inelastic
state-to-state quantities.
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