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Dynamics of excitable nodes on random graphs
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Abstract. We study the interplay of topology and dynamics of excitable nodes on random networks.
Comparison is made between systems grown by purely random (Erdős–Rényi) rules and those grown
by the Achlioptas process. For a given size, the growth mechanism affects both the thresholds for the
emergence of different structural features as well as the level of dynamical activity supported on the
network.
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1. Introduction

Networks of dynamical systems arise in a wide variety of contexts, ranging from neuro-
science [1], gene interactions [2], sociology [3], ecology [4] to evolutionary models [5].
The nodes of the network are dynamical systems that interact with one another through
coupling, and together with the topological properties of the network, they play a major
role in the generation of ‘activity’ in the system.

Understanding the interplay of dynamics and structure on such networks has been a
subject of enduring interest [6]. Sustained activity, by which one means the avoidance of
eventual fixed point dynamics, usually implies the existence of periodic solutions or the
generation of rhythmic processes [7]. Network structure can play a crucial role in this
regard [8]: it is well known that topological (connectivity) features have a major impact
on a variety of contact process wherein dynamics is important. Examples can be drawn
from diverse areas – the spread of epidemics [9,10] or opinions [11], and in communi-
cation and information processing [12]. Other contexts where connectivity has a major
impact includes the study of synchronization on networks [13] or the generation of complex
physiological rhythms [7,13,14].

In our earlier work [15], we have extensively studied the relationship between the topol-
ogy and dynamics of excitable nodes on Erdős–Rényi (ER) [16] random graphs. Our focus
is on rhythmic dynamics, namely periodic solutions, in this representative model. Since
the network topology plays an important role, the question of how different growth rules
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affect such dynamics is also of interest. For instance, when the graph is grown using pref-
erential attachment [17] to obtain a scale-free network, cycles do not form and therefore
rhythmic dynamics is relatively uncommon. In this work, we contrast our earlier results for
random networks with those evolved from the Achlioptas growth process [18]. A natural
question, given the fact that both networks are random, is whether the growth mechanism
affects structural features and thereby alters the dynamics, in particular the thresholds for
the emergence of various types of dynamical activity.

This paper is organized as follows. In §2, we briefly discuss the ER and Achlioptas
mechanisms and the structural properties of the resulting networks. In §3, the intrinsic
dynamics of discrete excitable nodes and the rules of interaction between them are dis-
cussed. The interplay between structure and dynamics on these random graphs is described
in §4, and a summary is given in §5.

2. Random graphs

We first briefly describe the growth mechanisms for the undirected random graphs being
studied here. Consider a graph G(n, m), where n is the number of nodes and m is the
number of edges. A given graph can be characterized by the fraction f = 2m/n(n − 1);
as f → 1, the graph becomes fully connected. The adjacency matrix, which is symmetric,
contains information on structural properties of the network and is defined in the usual way:
if there is a connection between nodes i and j , the element Ai j of the adjacency matrix A is
1, else it is 0. In the ER process, the m edges are added at random between pairs of nodes,
independently. In the Achlioptas growth process, there is an additional constraint to ensure
that the formation of a large cluster is suppressed. At each time step, two random edges m1

and m2 are picked independently and a choice between them is made based on the product
rule, PRm , which is as follows [19]:

1. If both edges lead to intercomponent connections, the edge with a lower value of the
product of the sizes of the components it merges is selected.

2. If the edge m1 is intercomponent while the other is intracomponent, then m2 is chosen
since that would not lead to any change in the component size.

3. If both connections are intracomponent, one is chosen at random.

In the present simulations we study graphs with n = 30 nodes, and ensemble averages
are computed with at least 1000 samples. Shown in figures 1a and c are the proportion
of nodes that have an edge (solid curves) for Achlioptas and ER graphs respectively as a
function of f . With increasing f the number of isolated nodes decreases (dashed curves).
At f = f a

1 and f = f e
1 , on an average half the nodes are connected while the other half

are isolated in the two graphs, with f a
1 < f e

1 . PRm favours the growth of isolated small
clusters, and thus about n/4 links are needed to reach 50% connectivity, fewer than for ER
graphs.

A cluster is a subset of connected nodes, and the number of clusters of size k is denoted
by Ck . Clearly, for f = 0, C1 = n and Ck = 0 for k �= 1, while for f = 1, Cn = 1
and Ck = 0 for k �= n. In figures 1b and d, C2, C3 and C30 are plotted in both ER and
Achlioptas networks. Curve C plots the growth of the total number of clusters normalized
by the number of nodes n. The largest cluster C30 rises and reaches the plateau of the
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C curve at f = f a
2 and f = f e

2 in the two graphs. Henceforth, with an increase in f ,
every realization of the network leads to the formation of this largest size cluster. As may
be expected, there are quantitative differences since PRm favours the formation of smaller
clusters and delays the formation of the fully connected cluster, Cn . Thus f a

2 > f e
2 . Since

the merging of components is discouraged, this leads to the formation of a larger number
of clusters of different sizes and its cumulative effect can be seen on the height of curve C.
Also, the peak of the curve C does not coincide with the point f a

1 (figure 1c) where half of
the nodes get connected, rather it has shifted to its right (unlike the ER case). The reason
behind this is that even beyond the point f a

1 , smaller clusters keep getting formed and the
decrease in the number of clusters (implying the merging of components) only begins at a
larger value of f .

A cluster of k nodes connected cyclically with k edges is termed a k-cycle, and these
emerge at f ∼ O(1/n) [16]. This remains true in Achlioptas networks even at this
low n (figure 2c, dotted curve). At small f the tendency for the formation of k-cycles
is more for Achlioptas networks (compared to ER) and the reverse is true for larger f .
The origin of this effect can be traced to the relative frequency of the three components
of the PRm rule, the latter two options are significant only near the formation of the giant
component [19].
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Figure 1. Structural features of the network as a function of f : (a) and (b) for ER,
(c) and (d) for PRm graphs. The solid (dashed) curves in (a) and (c) show the fraction of
nodes in the network which (do not) have an edge. (b) and (d) Growth in the number of
clusters of different sizes normalized by n (C2 dotted, C3 dashed and C30 with dots and
dashes). The solid curve C shows the total number of clusters which is also normalized
by n. The values for f e

1 , f e
2 , f a

1 and f a
2 are described in the text.
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3. Excitable nodes

Each node of the random graph is occupied by a finite state cellular automaton that aims
to model excitable dynamics. Each node can be active, silent, or refractory, corresponding
to positive, zero or negative integer values for the variable [15]. Nodes are denoted (r : b)

where r is the total number of states allowed and b is the number of active states. So, there
are (r −b−1) possible refractory states in addition to the single silent state. Thus, the state
at node i denoted σi , takes values in {−(r − b − 1),−(r − b − 2), . . . ,−1, 0, 1, 2, . . . , b}.

Excitable nodes can be classified into two types depending on the intrinsic time-scale of
active and inactive stages. If r > 2b, nodes spend greater amount of time in the inactive
states than in the active states in a complete cycle, while the reverse is true if r ≤ 2b.

Given a configuration of the system at time t , the evolution proceeds as follows. When
σi (t) = 0, σi (t + 1) → 1 depending on the states of the nodes in the neighbourhood. If the
node is in a refractory or active state, the value of the variable increases by 1 at each step,

σi (t + 1) = σi (t) + 1 if

{
1 ≤ σi (t) ≤ b − 1 or
−(r − b − 1) ≤ σi (t) < 0

. (1)

Once σi (t) reaches the highest active state b, then it goes to the lowest refractory state,
namely

σi (t + 1) = −(r − b − 1) if σi (t) = b, (2)

and in the consequent time steps, σi (t) increases by one till it reaches the silent state.
The manner in which the silent state turns into an active state is termed the loading

rule [15] and this typically depends on the number of active and inactive neighbours Na(t)
and Ni(t) respectively, that a node has. Of the many possible loading rules, we consider
two here.

In simple loading (SL) a silent state node switches to the active state provided it has at
least one active neighbour,

σi (t + 1) = 1 if Na(t) ≥ 1. (3)

In the majority rule (MR) a silent state switches provided a majority of its neighbours are
active, namely

σi (t + 1) = 1 if Na(t) ≥ Ni(t). (4)

In the next section we study the dynamics of 3:1 and 4:2 nodes on ER and Achlioptas
random networks.

4. Interplay between structure and dynamics

A state of the network of n nodes is given by the n-vector

	σ(t) = {σ1(t), σ2(t), . . . , σn(t)} (5)

which evolves, by the rules discussed above, to the state σ(t + 1), and with time defines a
trajectory in the phase space of dimension rn . Since the phase space is finite, all trajectories
must converge to an attractor which is either periodic with period p,

	σ(t) = 	σ(t + p) (6)
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or the unique fixed point [15],

	σ(t) ≡ 0. (7)

which is stable.
We generate 2000 different random graphs with given f at fixed n, and for each

choose 10,000 random initial conditions 	σ(0) to obtain the ensemble averaged steady state
response of the network. A quantity that measures the dynamical activity is the fraction of
initial conditions A f that tend to a periodic solution [15], and this is evaluated for different
loading rules on the two different random networks.

4.1 r > 2b nodes

A network of 3:1 nodes has a state space of size 3n . Under simple loading, any network
can support a periodic solution if it contains a k-cycle (k ≥ 3), and so the threshold for
periodic solutions coincides with the threshold for the emergence of k cycles [15] for both
the graphs as shown in figures 2a and c.

Next, we consider the majority loading rule (eq. (4)). The nature of activity observed in
this scenario is fundamentally different from that observed in the SL case [15] (figures 2b
and d). Here, very few initial states converge to a sustained activity pattern. Periodic solu-
tions found in this case are the ones which live on minimal k-cycles, namely those where
each node has degree 2. While the qualitative behaviour observed for both graphs is similar,
the activity level of Achlioptas graphs is higher than on ER networks. With increasing f ,
though, the ER mechanism tends to reduce minimal cycles, while the Achlioptas process
suppresses the addition of new nodes to clusters or cycles, thereby preserving them.
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Figure 2. Activity curves of 3:1 nodes for the ER and PRm graphs. (a), (c) Monotonic
dynamics under SL (solid curve) emerges at the same threshold for the emergence of
k-cycles (dashed curve). (b), (d) Dynamics under MR has a non-monotonic dependence
on f .
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Figure 3. Activity curves for 4:2 nodes for the (a) ER and (b) PRm networks. The solid
(dashed) curve is the activity curve for nodes under MR (SL) loading rule. Prior to the
local maximum for both graphs, the activity curves under the different loading rules are
identical.

For different r and b, although the time-scales and thresholds will change depending on
the specific loading rules that are applied, the dynamics tends to be qualitatively similar to
the 3:1 case.

4.2 r ≤ 2b nodes

For r ≤ 2b node single edges suffice in supporting sustained dynamical activity: minimal
k-cycles are not essential [15]. We consider networks of 4:2 nodes here as a representative
example, however, in the large n limit the choice of r and b becomes very important in
deciding the nature of dynamics [15].

Figure 3 gives a plot of A f vs. f for the two networks with the different loading rules.
Here also the majority rule results in a higher activity level for the Achlioptas network
largely due to the maintenance of smaller structures over a larger range of f .

5. Summary

In the present paper we have investigated the interplay of network architecture and coupling
in determining the dynamics of an automaton model on random graphs. These automata
share many characteristics of neuronal systems – in particular, they have active, refractory
and silent stages, and are coupled to each other through realistic mechanisms.

The manner in which the network is generated plays some role in determining the thresh-
old for different dynamical phenomena. The two growth mechanisms studied here – ER and
PRm – belong to different universality classes [20]. The selection constraint that favours
explosive percolation [18] also promotes the formation of pairs and triples of linked nodes
while suppressing the merging of clusters over a larger range of connectivity. This has the
effect of increasing the level of dynamical activity supported on the network and altering
the thresholds for the emergence of some structural features in the random graphs. Some
instances of such kinetic growth processes in physical systems are known [21], and thus it
would be interesting to examine whether such examples also occur in extended excitable
systems.
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