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1 Introduction

The lower bound theorem (LBT) provides the best possible lower bound for the number
of faces of each dimension (in terms of the dimension and the number of vertices) for any
normal pseudomanifold. When the dimension is at least three, equality holds precisely for
stacked spheres. (This is Theorem 3 in Section 8 below.)

Walkup, Barnette, Klee, Gromov, Kalai and Tay proved various special cases of the
LBT, with Tay providing the first proof in the entire class of normal pseudomanifolds (cf.
[3, 8, 10, 11, 14, 15]). However, Tay’s proof rests on Kalai’s, and that in turn depends on
the theory of rigidity of frameworks.

Kalai showed in [10] that for d > 3, the edge graph of any connected triangulated
d-manifold without boundary is “generically (d + 1)-rigid” in the sense of rigidity of frame-
works. Namely, a particular embedding of a graph in the (d + 1)-dimensional Euclidean
space is rigid if it can’t be moved to a nearby embedding without distorting the edge-lengths
(except trivially by bodily moving the entire embedded graph by applying a rigid motion
of the ambient space). A graph is generically (d + 1)-rigid if the set of its rigid embed-
dings in (d + 1)-space is a dense open subspace in the space of all its embeddings. The
LBT for triangulated manifolds without boundary is an immediate consequence of Kalai’s
rigidity theorem. Kalai also used these ideas to settle the equality case of LBT. Actually,
he proved this theorem in the somewhat larger class of normal pseudomanifolds whose two-
dimensional links are spheres. In [14], Tay showed that Kalai’s argument extends almost
effortlessly to the class of all normal pseudomanifolds. This class has the advantage of being
closed under taking links, so that an induction on dimension is facilitated. Further, the so

'Partially supported by DST (Grant: SR/S4/MS-272/05) and by UGC-SAP/DSA-IV.
E-mail addresses: bbagchi@isibang.ac.in (B. Bagchi), dattab@math.iisc.ernet.in (B. Datta).


http://arXiv.org/abs/0802.3747v2

called M-P-W reduction (after McMullen, Perles and Walkup) works in a link-closed class of
pseudomanifolds and this reduces the proof of the general LBT to proving the lower bound
only for the number of edges.

The interesting application of the LBT found in [2] led us to take a close look at Kalai’s
proof. However, we found it difficult to follow Kalai’s proof in its totality because of our
lack of familiarity with the rigidity theory of frameworks, which in turn is heavily dependent
on analytic considerations that seem foreign to the questions at hand. We have reasons to
suspect that many experts in Combinatorial Topology share our desire to see a self-contained
combinatorial proof of this fundamental result of Kalai. For instance, in a relatively recent
paper [5], Blind and Blind present a combinatorial proof of the LBT in the class of polytopal
spheres, even though much more general versions were available. These authors motivate
their paper by stating that “no elementary proof of the LBT including the case of equality is
known so far”. One objective of this paper is to rectify this situation. It may be noted that
Blind and Blind use the notion of shelling to prove the LBT for polytopal spheres. Shelling
orders do not exist in general triangulated spheres (let alone normal pseudomanifolds), so
that the proof presented here is of necessity very different.

A pointer to a combinatorial proof of LBT for triangulated closed manifolds was given
by Gromov in [8, pages 211-212]. There he introduced a combinatorial analogue of rigidity
(which we call Gromov-rigidity, or simply rigidity in this paper) and sketched an induction
argument on the dimension to show that triangulated d-manifolds without boundary are
(d + 1)-rigid in his sense for d > 2. However, there was an error at the starting point
d = 2 of his argument. Reportedly, Connelly and Whiteley filled this gap, but it seems
that their work remained unpublished. In [14], Tay gave a proof of Gromov 3-rigidity of
2-manifolds. Here we present an independent proof of this result, based on the notion of
generalised bistellar moves introduced below. It is easy to see that if all the vertex-links
of a d-pseudomanifold are Gromov d-rigid, then the d-pseudomanifold is (d + 1)-rigid in
the sense of Gromov. Therefore, (d + 1)-rigidity of d-dimensional normal pseudomanifolds
follows. Now, it is an easy consequence of Gromov’s definition that any n-vertex (d+1)-rigid
simplicial complex of dimension d satisfies the lower bound (d+1)n — (d-52) on its number of
edges, as predicted by LBT. However, Gromov himself never considered the case of equality
in LBT. Here we refine Gromov’s theory to tackle the case of equality. It may be pointed
out that in the concluding remark of [10], Kalai suggested that it should be possible to prove
his theorem using Gromov’s ideas. However, the details of such an elementary argument
were never worked out in the intervening twenty years. It is true that Tay uses Gromov’s
definition of rigidity in his proofs. But, to tackle the case of equality, Tay shows that when
equality holds in LBT for a normal pseudomanifold, it must actually be a triangulated
manifold, so that Kalai’s initial argument (based on rigidity of frameworks) applies.

We should note that the notion of generic rigidity pertains primarily to graphs and Kalai
calls a simplicial complex generically g-rigid if its edge graph is generically g-rigid. On the
other hand, Gromov’s definition pertains to simplicial complexes. For this reason, it is not
possible to compare these two notions in general. However, such a comparison is possible
when the dimension d of the simplicial complex is > ¢ — 1 (and we are interested in the
case d = ¢ — 1). In these cases, Gromov’s notion of rigidity is weaker than the notion of
generic rigidity. From the theory of rigidity of frameworks, it is known that if an n-vertex
graph G is minimally generically ¢-rigid (i.e., G is generically ¢-rigid but no proper spanning
subgraph of G is generically ¢-rigid) then either G is a complete graph on at most g + 1
vertices, or else G has n > ¢+ 1 vertices and has exactly ng — (qgl) edges, and any induced

subgraph of G (say, with p > ¢ vertices) has at most pq — (q;rl) edges (cf. [7]. By a theorem



of Laman, this fact characterizes minimally generically ¢-rigid graphs for ¢ < 2). Using
this result, it is easy to deduce that generic ¢-rigidity (of the edge graph) implies Gromov’s
g-rigidity for any simplicial complex of dimension > ¢ — 1.

Apart from the pedagogic/esthetic reason for providing an elementary proof of the
LBT for normal pseudomanifolds (surely an elementary statement deserves an elementary
proof!), we also hope that the arguments developed here should extend to yield a proof
of the generalised lower bound conjecture (GLBC) for triangulated spheres. Stanley [13]
proved this conjecture for polytopal spheres using heavy algebraic tools, but the general case
of this conjecture due to McMullen and Walkup [12] remains unproved. Even in Stanley’s
result, the characterisation of the equality case remains to be done.

This paper is organized as follows. In Section 2, we give the preliminary definitions, in-
cluding an explanation of most of the technical terms used in this introduction. In the next
four sections, we develop the necessary tools for our proofs. Section 3 provides a combina-
torial version of the topological operations of cutting or pasting handles and of connected
sums. These combinatorial operations were introduced by Walkup in [15]. However, the pre-
cise combinatorics of these operations was never worked out. Section 4 introduces the main
actors in the game of LBT’s, namely stacked spheres and stacked balls. We also present
some elementary but useful results on these objects. These are mostly well known, at least
to experts. In Section 5, we introduce the notion of generalized bistellar moves (GBM) and
establish their elementary properties. As the name suggests, this is a generalization of the
usual notion of bistellar moves. It is also shown that any n-vertex triangulated 2-sphere
(with n > 4) is obtained from an (n — 1)-vertex triangulated 2-sphere by a GBM. More
generally, we show that any triangulated orientable 2-manifold (without boundary) X is
either the connected sum of two smaller objects of the same sort, or it is obtained from a
similar object of smaller genus by pasting a handle, or else it may be obtained by a GBM
from a triangulation X of the same manifold using one less vertex. (We wonder if similar
results are true for triangulated 3-manifolds.) These results for triangulated 2-manifolds
without boundary are used to give an inductive proof of their Gromov 3-rigidity in Section
7. Section 6 contains the general theory of Gromov-rigidity, including a careful treatment
of the minimal situations. In Section 7, we prove the Gromov (d + 1)-rigidity of normal
d-pseudomanifolds, and show that for d > 2 the minimally Gromov (d + 1)-rigid normal
pseudomanifolds are precisely the stacked d-spheres. This is Theorem 2, the main result of
this paper. As already indicated, the proof is an induction on d. Cutting handles plays an
important role here. In Section 8, we describe the M-P-W reduction and use it to present
the routine deduction of the LBT for normal pseudomanifolds from Theorem 2. In the
concluding section, we state and discuss the GLBC in a form which brings out its similarity
with the LBT (which is the case k = 1 of the GLBC). Included in this section is a discussion
of the k-stacked spheres which are expected to play a role in the GLBC similar to the role
played by the stacked spheres in LBT. We conclude by posing a new lower bound conjecture
for non-simply connected triangulated manifolds.

2 Preliminaries

Recall that a simplicial complex is a set of finite sets such that every subset of an element is
also an element. For ¢ > 0, an element of size ¢ + 1 is called a face of dimension ¢ (or an i-
face) of the complex. By convention, the empty set is a face of dimension —1. All simplicial
complexes which appear in this paper are finite. The dimension of a simplicial complex
X (denoted by dim(X)) is by definition the maximum of the dimensions of its faces. The



1-dimensional faces of a simplicial complex are also called the edges of the complex. V(X)
denotes the set of vertices of a complex X and is called the vertez-set of X.

For a simplicial complex X, |X]| is the set of all functions f : V(X) — [0, 1] such that
Yvev(x) f(v) = Land support(f) := {v € V(X) : f(v) # 0} is a face of X. (Such a function
f may be thought of as a convex combination of the Dirac delta-functions §, as z ranges
over the face support(f).) As a subset of the topological space [0,1]Y(X)| | X| inherits the
subspace topology. The topological space | X| thus obtained is called the geometric carrier
of X. If | X| is a manifold (with or without boundary) then X is said to be a triangulated
manifold, or a triangulation of the manifold | X|.

A graph is a simplicial complex of dimension at most 1. A set of vertices of a graph
G is said to be a clique of G if any two of these vertices are adjacent in G (i.e., form an
edge of G). For a general simplicial complex X, the edge graph (or 1-skeleton) G(X) of X
is the subcomplex of X consisting of all its faces of dimensions < 1. (More generally, for
0 <k < dim(X), the k-skeleton skelx(X) of X is the subcomplex consisting of all the faces
of X of dimension < k.) Notice that each face of X is a clique in the graph G(X).

If X, Y are two simplicial complexes with disjoint vertex sets, then their join X *Y is
the simplicial complex whose faces are the (disjoint) unions of faces of X with faces of Y.
In particular, if X consists of a single vertex z, then we write x xY for X xY. The complex
x xY is called the cone over Y (with cone-vertex x).

If Y is a subcomplex of a simplicial complex X and Y consists of all the faces of X
contained in V(Y'), then we say that Y is an induced subcomplex of X. If A C V(X), then
the induced subcomplex of X with the vertex-set A is denoted by X[A]. If v is a k-face of
X, then the closure @ of « is the induced subcomplex X[a]. Notice that @ consists of all
the subsets of a. Thus @ is a triangulation of the k-ball and is also denoted by B,fﬂ(oz).

If V(X) = AU B is the disjoint union of two subsets A and B, then the induced
subcomplexes X[A] and X[B] are said to be simplicial complements of each other. If YV is
an induced subcomplex of X, then the simplicial complement of Y is denoted by C(Y, X).
For a face a of X, the simplicial complement C(@, X) is called the antistar of a, and is
denoted by ast(«). Thus, ast(«) is the subcomplex of X consisting of all faces disjoint from
a. The link of o in X, denoted by lk(a) (or lkx(«)) is the subcomplex of ast(«) consisting
of all faces (3 such that a U 8 € X. For a vertex v of X, the cone v * lkx(v) is called the
star of v in X and is denoted by star(v) (or starx (v)).

A d-dimensional simplicial complex X is said to be pure if all the maximal faces of X
have dimension d. The maximal faces in a pure simplicial complex are called its facets. The
facet graph A(X) of a pure d-dimensional simplicial complex X is the graph whose vertices
are the facets of X, two such vertices being adjacent in A(X) if the corresponding facets
intersect in a (d — 1)-face.

A simplicial complex X is said to be connected if |X| is connected. Notice that X is
connected if and only if its edge graph G(X) is connected (i.e., any two vertices of X are
the end vertices of a path in G(X)). A pure simplicial complex X is said to be strongly
connected if its facet graph A(X) is connected. The connected components of X are the
maximal connected subcomplex of X. The strong components of X are the maximal pure
subcomplexes of dimension d = dim(X) which are strongly connected. Notice that the
connected components are vertex-disjoint, while the strong components may have faces of
codimension two or more in common.

For d > 1, a d-dimensional pure simplicial complex is said to be a weak pseudomanifold
with boundary if each (d—1)-face is in at most two facets, and it has a (d—1)-face contained in
only one facet. A d-dimensional pure simplicial complex is said to be a weak pseudomanifold



without boundary (or simply weak pseudomanifold) if each (d—1)-face is in exactly two facets.
If X is a d-dimensional weak pseudomanifold with boundary then its boundary 0.X is defined
to be the (d — 1)-dimensional pure simplicial complex whose facets are those (d — 1)-faces
of X which are in unique facets of X. Clearly, the link of a face in a weak pseudomanifold
is a weak pseudomanifold.

A pseudomanifold (respectively pseudomanifold with boundary) is a strongly connected
weak pseudomanifold (respectively weak pseudomanifold with boundary). A d-dimensional
weak pseudomanifold (respectively weak pseudomanifold with boundary) is called a normal
pseudomanifold (respectively normal pseudomanifold with boundary) if each face of dimen-
sion < d — 2 has a connected link. Since we include the empty set as a face, a normal
pseudomanifold is necessarily connected. But we actually have:

Lemma 2.1. FEvery normal pseudomanifold (respectively, normal pseudomanifold with
boundary) is a pseudomanifold (respectively pseudomanifold with boundary).

Proof. Let X be a normal pseudomanifold of dimension d > 1. We have to show that its
facet graph A(X) is connected. If not, choose two facets o1, oo from different components
of A(X) for which dim(oq Nog) is maximum. Then dim(o; Noy) < d — 2 but k(o1 N o) is
disconnected, a contradiction. O

Lemma 2.2. If X is a weak pseudomanifold with boundary then 0X is a weak pseudoman-
ifold without boundary.

Proof. Take a vertex z outside X and set X = X U (x * 0X). Clearly X is a weak
pseudomanifold without boundary. Since X = lkz(z), the result follows. O

From the definitions, it is clear that any d-dimensional weak pseudomanifold (respec-
tively weak pseudomanifold with boundary) has at least d + 2 (respectively d + 1) vertices,
with equality if and only if it is the simplicial complex S, dd+2 (respectively de+1) whose faces
are all the proper subsets of a set of size d + 2 (respectively, all subsets of a set of size
d+1). Clearly, de+2 and de+1 triangulate the d-sphere and the d-ball, respectively. They
are called the standard d-sphere and the standard d-ball respectively.

A simplicial complex X is called a combinatorial d-sphere (respectively, combinatorial
d-ball) if | X| (with the induced pl structure from X) is pl homeomorphic to S ol (respec-
tively, |BJ,4]).

If « is a face of a simplicial complex X, then the number of vertices in lkx(«) is called
the degree of @ in X and is denoted by degy () (or deg(c)). So, the degree of a vertex v
in X is the same as the degree of v in the edge graph G(X). Since the link of an i-face «
in a d-dimensional weak pseudomanifold X without boundary is a (d — i — 1)-dimensional
weak pseudomanifold, it follows that degy(a) > d — i + 1, with equality only if lkx («) is
the standard sphere S j__iﬂ:ll.

If X is a d-dimensional simplicial complex then, for 0 < j < d, the number of its j-faces
is denoted by f; = f;(X). The vector (fo,..., fq) is called the face-vector of X and the
number x(X) := %L (—1)f; is called the Euler characteristic of X. As is well known,
x(X) is a topological invariant, i.e., it depends only on the homeomorphic type of | X]|.

3 Cutting and pasting handles

Definition 3.1. Let 01, 0o be two facets in a pure simplicial complex X. Let ¢ : 01 — 09
be a bijection. We shall say that v is admissible if (1) is a bijection and) the distance



between = and ¥(z) in the edge graph of X is > 3 for each x € o1 (i.e., if every path in
the edge graph joining = to ¢ (x) has length > 3). Notice that if o1, o9 are from different
connected components of X then any bijection between them is admissible. Also note that,
in general, for the existence of an admissible map 1 : 01 — o3, the facets o1 and o9 must
be disjoint.

Definition 3.2. Let X be a weak pseudomanifold with disjoint facets oy, o9. Let ¢:07 —
o2 be an admissible bijection. Let X¥ denote the weak pseudomanifold obtained from
X\ {01,092} by identifying x with ¢(z) for each 2 € 0. Then XV is said to be obtained from
X by an elementary handle addition. If X1, X5 are two d-dimensional weak pseudomanifolds
with disjoint vertex-sets, o; a facet of X; (i = 1,2) and ¢: 07 — 09 any bijection, then (X; U
Xg)w is called an elementary connected sum of X1 and Xs, and is denoted by X;# X5 (or
simply by X1#X>). Note that the combinatorial type of Xi#,X> depends on the choice of
the bijection 1. However, when X, X are connected triangulated d-manifolds, | X#,Xs|
is the topological connected sum of |X;| and |X2| (taken with appropriate orientations).
Thus, X;#,X> is a triangulated manifold whenever X, X5 are triangulated d-manifolds.

Lemma 3.1. Let N be a (d — 1)-dimensional induced subcomplex of a d-dimensional sim-
plicial complex M. If both M and N are normal pseudomanifolds then

(a) for any vertex u of N and any vertex v of the simplicial complement C(N, M), there
is a path P (in M) joining u to v such that u is the only vertex in PN N, and

(b) the simplicial complement C'(N, M) has at most two connected components.

Proof. Part (a) is trivial if d = 1 (in which case, N = S and M = S}). So, assume
d > 1 and we have the result for smaller dimensions. Clearly, there is a path P (in the
edge graph of M) joining u to v such that P = xyxe---xxy; - -y, where z1 = u, y; = v
and z;’s are the only vertices of P from N. Choose k to be the smallest possible. We
claim that k = 1, so that the result follows. If not, then z;_1 € lky(zg) C lkps(x) and
y1 € C(lky(x),lkps(z)). Then, by induction hypothesis, there is a path @ in lky/(xg)
joining xp_q and y; in which xp_q is the only vertex from lky(z). Replacing the part
Tr—17ky1 of P by the path @, we get a path P’ from u to v where only the first & — 1
vertices of P’ are from N. This contradicts the choice of k.

The proof of Part (b) is also by induction on the dimension d. The result is trivial for
d = 1. For d > 1, fix a vertex u of N. By induction hypothesis, C(lky(u),lkps(u)) has at
most two connected components. By Part (a) of this lemma, every vertex v of C(N, M) is
joined by a path in C(NN, M) to a vertex in one of these components. Hence the result. O

Let N be an induced subcomplex of a simplicial complex M. One says that N is two-
sided in M if |N| has a (tubular) neighbourhood in |M| homeomorphic to |N| x [—1, 1] such
that the image of |N| (under this homeomorphism) is |N| x {0}.

Lemma 3.2. Let M be a normal pseudomanifold of dimension d > 2 and A be a set of
vertices of M such that the induced subcomplex M[A] of M on A is a (d — 1)-dimensional
normal pseudomanifold. Let G be the graph whose vertices are the edges of M with exactly
one end in A, two such vertices being adjacent in G if the union of the corresponding edges
is a 2-face of M. Then G has at most two connected components. If, further, M|[A] is
two-sided in M then G has exactly two connected components.



Proof. Let E = V(G) be the set of edges of M with exactly one end in A. For z € A, set
E,={e€ E:z € e}, and let G, = G[E,]| be the induced subgraph of G on E,. Note that
G is isomorphic to the edge graph of C(lky;4(),lkas(z)). Therefore, by Lemma 3.1 (b),
G, has at most two components for each z € A. Also, for an edge zy in M[A], there is a
d-face o of M such that zy is in 0. Since the induced complex M[A] is (d — 1)-dimensional,
there is a vertex u € 0 \ A. Then ey = zu € E, and e3 = yu € E, are adjacent in G.
Thus, if x, y are adjacent vertices in M[A] then there is an edge of G between E, and E,.
Since M[A] is connected and V(G) = UgeaEy, it follows that G has at most two connected
components.

Now suppose S = M[A] is two-sided in M. Let U be a tubular neighbourhood of |S| in
|M| such that U \ |S| has two components, say U and U~. Since |S] is compact, we can
choose U sufficiently small so that U does not contain any vertex from V(M) \ A. Then,
for e € E, |e| meets either U or U~ but not both. Put E* = {e € E: [e|nU* # ()}. Then
no element of ET is adjacent in G with any element of E~. From the previous argument,
one sees that each x € A is in an edge from ET and in an edge from E~. Thus, both E*
and E~ are non-empty. So, GG is disconnected. O

Lemma 3.3. Let X be a normal d-pseudomanifold with an induced two-sided standard
(d — 1)-sphere S. Then there is a d-dimensional weak pseudomanifold X such that X is
obtained from X by elementary handle addition. Further,

(a) the connected components of X are normal d-pseudomanifolds,
(b) X has at most two connected components,

(c) z'f)N(; is not connected, then X = Y1#Y5, where Y1, Yy are the connected components
of X, and

(d) if C(S,X) is connected then X is connected.

Proof. As above, let E be the set of all edges of X with exactly one end in S. Let ET
and E~ be the connected components of the graph G' (with vertex-set E) defined above (cf.
Lemma 3.2). Notice that if a facet o intersects V(S) then o contains edges from E, and
the graph G induces a connected subgraph on the set E, = {e € E: e C ¢}. (Indeed, this
subgraph is the line graph of a complete bipartite graph.) Consequently, either E, C E*
or E, C E~. Accordingly, we say that the facet o is positive or negative (relative to S). If
a facet o of X does not intersect V(.S) then we shall say that o is a neutral facet.

Let V(S) =W and V(X)\V(S) = U. Take two disjoint sets W+ and W™, both disjoint
from U, together with two bijections fi: W — W*. We define a pure simplicial complex X
as follows. The vertex-set of X is U UW LW . The facets of X are: (i) WT, W, (ii) all
the neutral facets of X, (iii) for each positive facet o of X, the set 7 := (cNU)U f1(cNW),
and (iv) for each negative facet 7 of X, the set 7 := (rNU) U f_(r "W). Clearly, X is a
weak pseudomanifold. Let ¢ = f_ o f;lz W+ — W~. It is easy to see that v is admissible
and X = (X)?.

Since the links of faces of dimension up to d — 2 in X are connected, it follows that the
links of faces of dimension up to d — 2 in X are connected. This proves (a).

As X is connected, choosing two vertices fi(zo) € W* of X, one sees that each vertex
of X is joined by a path in the edge graph of X to either f+(xo) or f_(zp). Hence X
has at most two components. This proves (b). This arguments also shows that when X is
disconnected, W+ and W~ are facets in different components of X. Hence (c) follows.



Observe that C(S,X) = C(W* U W™, X). Assume that C(S, X) is connected. Now,
for any (d — 1)-simplex 7 C W™, there is a vertex z in C(S, X) such that 7 U {z} is a facet
of X. So, C (S, X) and W are in the same connected component of X. Similarly, C (S, X)
and W~ are in the same connected component of X. This proves (d). O

Definition 3.3. If S is an induced two-sided S 5;11 in a normal d-pseudomanifold X, then

the pure simplicial complex X constructed above is said to be obtained from X by an
elementary handle deletion over S.

Remark 3.1. In Lemma 3.3, if X is a triangulated manifold then it is easy to see that X
is also a triangulated manifold.

Example 3.1. It is well known that the real projective plane has a unique 6-vertex trian-
gulation, denoted by RPZ. It is obtained from the boundary complex of the icosahedron
by identifying antipodal vertices. The simplicial complement of any facet in RP62 is an Sg}.
But, it is not possible to obtain a triangulated 2-manifold M by deleting the handle over
this S4. Such a 2-manifold would have face vector (9,18,12) and hence Euler characteristic
X = 3. But, arguing as in the proof of Lemma 3.3 (d), one can see that M must be con-
nected - and any connected closed 2-manifold has Euler characteristic < 2, a contradiction.
Thus the hypothesis “two-sided” in Definition 3.3 is essential. Indeed, in this example, the
graph G of Lemma 3.2 is connected: it is a 9-gon.

4 Stacked spheres

Let X be a pure d-dimensional weak pseudomanifold and ¢ be a facet of X. Take a symbol v
outside V(X), and Y be the pure simplicial complex with vertex set V(X )U{v} whose facets
are facets of X other than o and the (d+ 1)-sets 7U{v} where 7 runs over the (d — 1)-faces
in 0. Clearly, Y is a weak pseudomanifold and |X| and |Y'| are homeomorphic topological
spaces. This Y is said to be the weak pseudomanifold obtained from X by starring the
new vertex v in the facet o. (In the literature, this is also known as the bistellar 0-move.)
Notice that the new vertex v is of (minimal) degree d + 1 in Y. Conversely, let Y be a
d-dimensional weak pseudomanifold with a vertex v of degree d + 1. Let o = V(lky (v)).
If o is not a face of Y (which is automatically true if ¥ is a pseudomanifold other than
the standard d-sphere Sj+2) then consider the pure simplicial complex X with vertex-set
V(Y)\ {v} whose facets are the facets of ¥ not containing v and the (d + 1)-set o. Clearly,
X is a weak pseudomanifold. This X is said to be obtained from Y by collapsing the vertex
v. (This is also called a bistellar d-move in the literature.) Obviously, the operations of
starring a vertex in a facet and collapsing a vertex of minimal degree are inverses of each
other.

Definition 4.1. A simplicial complex X is said to be a stacked d-sphere if X is obtained
from the standard d-sphere Sj+2 by a finite sequence of bistellar O-moves. Clearly, any
stacked d-sphere is a combinatorial d-sphere.

Lemma 4.1. Let X be a triangulated d-sphere and x be a vertex of X. Iflkx(z) is a trian-
gulated sphere then astx () is a triangulated d-ball. In particular, if X is a combinatorial
d-sphere then the antistar of every vertex of X is a triangulated ball.



Proof. Note that |astx (x)]| is the closure of a component of | X |\ |k x (z)|. Also, |lkx(x)| has
a neighbourhood in |X| which is homeomorphic to |lkx(z)| x [-1, 1] via a homeomorphism
mapping |lkx (z)| onto |lkx (x)| x {0}. Therefore, by the generalized Schonflies theorem (cf.
[6, Theorem 5]), |astx(x)| is a d-ball. If X is a combinatorial d-sphere, then each vertex
link is a triangulated (indeed combinatorial) sphere, so that this argument applies to each
vertex of X. 0

Definition 4.2. A stacked d-ball is by definition the antistar of a vertex in a stacked d-
sphere. Thus if X is a stacked d-sphere and x is a vertex of X, then the simplicial complex
Y, whose faces are the faces of X not containing z, is a stacked d-ball. Lemma 4.1 implies
that stacked d-balls are indeed triangulated balls. It’s not hard to see that they are actually
combinatorial balls.

From the above discussion, we see that any stacked d-sphere is a triangulation of the d-
dimensional sphere. Since an n-vertex stacked d-sphere is obtained from S, dd+2 by (n—d—2)
d+1

starring and each starring induces ( j ) new j-faces and retains all the old j-faces for 1 < j <

d (respectively, kills only one old j-face for j = d), it follows that it has (n—d—2) (d}'l) + (?ﬁ)

j-faces for 1 < j < d, and (n — d — 2)d + (d + 2) facets. On simplifying, we get :
Lemma 4.2. The face-vector of any d-dimensional stacked sphere satisfies

gD =3GH), i 1<i<d
T dfo—(d+2)(d—1), if j=d.

Lemma 4.3. Let X be a normal pseudomanifold of dimension d > 2.
(a) If X # Sj+2 then any two vertices of degree d + 1 in X are non-adjacent.
(b) If X is a stacked d-sphere then X has at least two vertices of degree d + 1.

Proof. Let x1, z2 be two adjacent vertices of degree d + 1 in X. Thus, lk(z1) = 55;11,
so that all the vertices in V' = V(st(z1)) are adjacent. It follows that V' \ {z2} is the
set of neighbours of z9. Hence all the facets through zo are contained in the (d + 2)-set
V. Since there must be a facet containing xo but not containing x1, such a facet must be
V \ {z1}. Thus, X induces a standard d-sphere on V. Since X is a d-dimensional normal
pseudomanifold, it follows that X = S¢,,(V). This proves Part (a).

We prove (b) by induction on the number n of vertices of X. If n = d+2 then X = S, ,
and the result is trivial. So assume n > d+ 2, and the result holds for all the smaller values
of n. Since X is a stacked sphere, X is obtained from an (n — 1)-vertex stacked sphere Y
by starring a new vertex x in a facet o of Y. Thus, «x is a vertex of degree d+1in X. If Y
is the standard d-sphere then the unique vertex y in V(Y') \ o is also of degree d + 1 in X.
Otherwise, by induction hypothesis, Y has at least two vertices of degree d + 1, and since
any two of the vertices in o are adjacent in Y - Part (a) implies that at least one of these
degree d + 1 vertices of Y is outside 0. Say z ¢ o is of degree d+ 1 in Y. Then z (as well
as x) is a vertex of degree d+ 1 in X. O

Lemma 4.4. Let X, Y be d-dimensional normal pseudomanifolds. Suppose Y is obtained
from X by starring a new vertex in a facet of X. Then Y is a stacked sphere if and only if
X is a stacked sphere.



Proof. The “if” part is immediate from the definition of stacked spheres. We prove the
“only if” part by induction on the number n > d 4+ 3 of vertices of Y. The result is trivial
for n = d+ 3. So, assume n > d+ 3. Let Y be obtained from X by starring a vertex x in a
facet o of X. Suppose Y is a stacked sphere. Then Y is obtained from some stacked sphere
Z by starring a vertex y in a facet 7 of Z. If x = y then Z is obtained from Y by collapsing
x, so that X = Z is a stacked sphere, hence we are done. On the other hand, if x # y, then
both x and y are of degree d + 1 in Y, so that by Lemma 4.3, x and y are non-adjacent.
Therefore, z is a vertex of degree d + 1 in Z. Let W be obtained from Z by collapsing the
vertex x. By induction hypothesis, W is a stacked sphere. But, X is obtained from W by
starring the vertex y. Hence by the “if” part, X is a stacked sphere. O

Lemma 4.5. The link of a vertex in a stacked sphere is a stacked sphere.

Proof. Let X be a d-dimensional stacked sphere and v be a vertex of X. We prove the
result by induction on the number n of vertices of X. The result is trivial for n = d + 2.
So, assume n > d+ 3 and the result is true for all stacked spheres on at most n — 1 vertices.
Let X be obtained from an (n — 1)-vertex stacked sphere Y by starring a vertex z in a facet
oof Y. If v =z then lkx(v) is a standard (d — 1)-sphere and hence is a stacked sphere.
So, assume that v # x. Since the number of vertices in Y is n — 1, by induction hypothesis,
lky (v) is a stacked sphere. Clearly, either lkx (v) = lky (v) or lkx (v) is obtained from lky (v)
by starring x in a facet of lky (v). In either case, lkx(v) is a stacked sphere. O

Lemma 4.6. Let X be a stacked d-sphere with edge graph G and d > 1. Let X denote the
simplicial complex whose faces are all the cliques of G. Then X is a stacked (d + 1)-ball
and X = 0X.

Proof. We prove the result by induction on the number n of vertices of X. If n = d+2 then
X = Sjl+2 and X = Bjjg, so that the result is obviously true. So assume that n > d + 2
and the result is true for (n — 1)-vertex stacked d-spheres. Let = be a vertex of degree d + 1
in X, and let X be the (n — 1)-vertex stacked d-sphere obtained from X by collapsing the
vertex x. Note that, since d > 2, the edge graph Gy of Xy is the induced subgraph on the
vertex-set V(Go) = V(G) \ {z}, and G may be recovered from Gy by adding the vertex x
and making it adjacent to the vertices in a (d + 1)-clique o of Gy (which formed a facet of
Xy, i.e., a boundary d-face of the stacked (d+ 1)-ball X 0). Thus the simplicial complex X is
obtained from the stacked (d+ 1)-ball X by adding the (d+ 1)-face & := o U {z}. Since X,
is a stacked (d + 1)-ball, it is the antistar of a (new) vertex y in a stacked (d + 1)-sphere Yj
with vertex set V(Xo)U{y}. Since ¢ is a boundary face of Xy, it follows that 6 := oL {y} is
a facet of Yy. Let Y be the (n+1)-vertex stacked (d+1)-sphere obtained from Yj by starring
the vertex z in the facet 6. Clearly, X is the antistar in Y of the vertex y. Therefore, X is
a stacked (d + 1)-ball. Now, lky (y) is obtained from lky; (y) by starring the vertex x in the
d-face 0. Since lky (y) = X and lky, (y) = 80X = Xy, it follows that X is obtained from
Xy by starring the vertex z in the facet o. That is, X = X. This completes the induction
and hence proves the lemma. O

Lemma 4.7. Any stacked sphere is uniquely determined by its edge graph.

Proof. Let G be the edge-graph of a stacked d-sphere X. If d =1 then X = G, and there
is nothing to prove. If d > 1, then Lemma 4.6 shows that G determines X (by definition)
and X determines X via the formula X = 9X. O
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Remark 4.1. (a) From the definition and Lemma 4.5, it follows that the boundary of any
stacked ball is a stacked sphere. Convegsely, from Lemma 4.6, every stacked d-sphere X is
the boundary of a stacked (d+ 1)-ball X canonically constructed from X for d > 2. Indeed,

X is the unique triangulated ball such that skely_;(X) = skely_;(X). Thus, any stacked
sphere is a 1-stacked sphere as defined in Section 9.

(b) Lemma 4.2 implies that any stacked d-ball with n boundary vertices and m interior
vertices has exactly n+ (m — 1)d facets. In particular, if X is an n-vertex stacked d-sphere,

then the stacked (d + 1)-ball X constructed above has n boundary vertices and no interior
vertices, so that X has exactly n—d — 1 cliques of size d+ 2. Of course, this may be directly
verified by induction on n.

Lemma 4.8. Let X1, Xy be d-dimensional normal pseudomanifolds. Then (a) X1#Xo is
a triangulated 2-sphere if and only if both X1 and Xa are triangulated 2-spheres; and (b)
X1# X5 is a stacked d-sphere if and only if both X1, Xo are stacked d-spheres.

Proof. Let d = 2. Then X, X5 are connected triangulated 2-manifolds and hence X;# X5
is a connected triangulated 2-manifold. For 0 < ¢ < 2,1 < j < 2, let fi(Xj) denote the
number of i-faces in X;. Then, from the definition, x(X1#X2) = (fo(X1) + fo(X2) —3) —
(fl(Xl) + fl(Xg) — 3) + (fg(Xl) + f2(X2) — 2) = X(Xl) + X(Xg) — 2. Part (a) now follows
from the fact that the Euler characteristic of a connected closed 2-manifold M is < 2 and
equality holds if and only if M is a 2-sphere.

We prove Part (b) by induction on the number n > d + 3 of vertices in X #X5. If
n = d + 3 then both X7, Xo must be standard d-spheres (hence stacked spheres) and then
X1#Xy = SO« Sj;ll is easily seen to be a stacked sphere. So, assume n > d + 3, so that
at least one of X7, Xs is not the standard d-sphere. Without loss of generality, say X is
not the standard d-sphere. Of course, X = X1# X5 is not a standard d-sphere. Let X be
obtained from X; U Xo \ {01, 02} by identifying a facet o1 of X; with a facet o9 of Xy by
some bijection. Then, o1 = o9 is a clique in the edge graph of X, though it is not a facet of
X. Notice that a vertex x € V(X1) \ 01 is of degree d+ 1 in X if and only if it is of degree
d+1in X. If either X7 is a stacked sphere or X is a stacked sphere then, by Lemma 4.3,
such a vertex x exists. Let X (respectively, X) be obtained from X (respectively, X) by
collapsing this vertex x. Notice that X=X #X5. Therefore, by induction hypothesis and
Lemma 4.4, we have: X is a stacked sphere <= X is a stacked sphere <= both )Z'l and
X, are stacked spheres <= both X; and X5 are stacked spheres. O

Definition 4.3. For d > 2, (d) will denote the family of all d-dimensional normal pseu-
domanifolds X such that the link of each vertex of X is a stacked (d — 1)-sphere. Since all
stacked spheres are combinatorial spheres, it follows that the members of K(d) are triangu-
lated d-manifolds.

Lemma 4.9 (Walkup [15]). Let X be a normal d-pseudomanifold and ): 01 — o9 be an
admissible bijection, where o1, 09 are facets of X. Then (a) XY is a triangulated 3-manifold
if and only if X is a triangulated 3-manifold; and (b) X¥ € K(d) if and only if X € K(d).

Proof. For a vertex v of X, let o denote the corresponding vertex of X¥. Observe that
Ik 4 (©) is isomorphic to lkx (v) if v € V(X) \ (01 Uog) and lkyu (0) = lkx (v)#lkx (¢ (v))
if v € o1. The results now follow from Lemma 4.8. O

Notice that, Lemma 4.5 says that all stacked d-spheres belong to the class K(d). In-
deed, we have the following characterization of stacked spheres of dimension > 4. This is
essentially a result from Kalai [10].
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Lemma 4.10 Ford > 4, every member of K(d), excepting Sj+2, has an Sj;ll as an iduced
subcomplez.

Proof. Let X € K(d), X # S¢.,. Then X has a vertex of degree > d + 2. Fix such a

vertex z, and let o be an interior (d — 1)-face in the stacked d-ball lkx (z). (If there was no
such (d — 1)-face, then we would have lkx(z) = B, ;, and hence deg(z) = d + 1, contrary
to the choice of z.) We claim that X induces an S dd;ll on o U{z}. In other words, the claim
is that o € X.

Choose any vertex y € o, and let o/ = (¢ U {z})\ {y}. Since lkx(z) and lkx(z) have
the same (d — 2)-skeleton and o is a (d — 1)-face of the latter, it follows that every proper
subset of ¢/ U{y} = o U {z} which contains x is a face of X. Since d > 4, it follows in
particular that ¢’ is a clique of the edge graph of lkx(y). Hence o’ € M) Thus every
proper subset of ¢’ is in lkx(y). Since o C ¢/ U{y} and y € o, it follows that c € X. O

Theorem 1. Let X be a normal pseudomanifold of dimension d > 4. Then X is a stacked
sphere if and only if X € K(d) and X is simply connected.

Proof. If X is a stacked sphere of dimension d > 2 then X is simply connected and
X € K(d) by Lemma 4.5. Conversely, let X € K(d) be simply connected and d > 4. We
prove that X is a stacked sphere by induction on the number n of vertices of X. If n = d+2
then X = Sjl+2 is a stacked sphere. So, assume n > d 4 2, and we have the result for all
smaller values of n. Now, take an induced standard (d — 1)-sphere S in X (Lemma 4.10).
Let X be obtained from X by deleting the handle over S (Lemma 3.3). Clearly, since X is
simply connected, X must be disconnected. If X1, Xy are the connected components of X ,
then we have X = X1#X5. Clearly, X1, X5 are also simply connected. Also, by Lemma
4.9 (b), X1,X, € K(d). Hence by the induction hypothesis, X7, X2 are stacked spheres.
Therefore, by Lemma 4.8, X is a stacked sphere. O

We shall not use this theorem in what follows. It is included only for completeness.

5 Generalized bistellar moves (GBMs)

Definition 5.1. Let X be a d-dimensional weak pseudomanifold. Let B, By be two
combinatorial d-balls such that By is a subcomplex of X and 0B; = 0By = Bo N X. Then
the pure d-dimensional simplicial complex X = (X \ By)U By is said to be obtained from X
by a generalised bistellar move (GBM) with respect to the pair (By, Bz). Observe that X
is also a d-dimensional weak pseudomanifold. [Let 7 be a (d— 1)-face of X. If 7 € By \ 0B
then 7 is in two facets in By. If 7 € X \ By then 7 is in two facets in X \ B} = X \ By. If
T € 0By = 0B5 then 7 is in one facet in X \ By = )Z'\B2 and in one facet in Bs.] Notice that
we then have 0By = 0B1 = B1 N X , and X is obtained from X by the (reverse) generalised
bistellar move with respect to the pair (Bg, By). In case both B; and Bs are d-balls with at
most d+ 2 vertices (and hence at least one has d+ 2 vertices) then this construction reduces
to the usual bistellar move. Clearly, if X is obtained from X by a generalised bistellar move
then |X| is homeomorphic to |X| and if the dimension of X is at most 3 then |X| is pl
homeomorphic to | X|.

Lemma 5.1. If)~( is obtained from X by a GBM, then X is a normal pseudomanifold if
and only if X is a normal pseudomanifold.
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Proof. Let X be a normal pseudomanifold. We prove that X is a normal pseudomanifold
by induction on the dimension d of X. If d = 1 then the result is trivial. Assume that
the result is true for all normal pseudomanifolds of dimension < d and X is a normal
pseudomanifold of dimension d > 2. Let X be obtained from X by a GBM with respect to
the pair (By, By). Since X is connected, it follows that X is connected. We have observed
that X is a weak pseudomanifold. Let a be a face of dimension at most d—2. If & € B3\ 0B,
then lk(a) = lkp, () is connected. If a € X \ By then lkz(a) = lkx(a) is connected. If
o € 0By = 0By then lk¢(«) is obtained from lkx (o) by the GBM with respect to the pair
(Ikp, (o), lkp,(a)). Since lkx () is a normal pseudomanifold of dimension < d, by induction
hypothesis, lkg(a) is a normal pseudomanifold. In particular, lk)?(a) is connected. This

implies that X is a normal pseudomanifold. Since X is obtained from X by the reverse
GBM, the converse follows. O

Lemma 5.2. Let X be an n-vertex connected oriented triangulated 2-manifold. Then one
of the following four cases must arise: (i) X = S2, (i1) X = X1#Xo where X1, Xo
are connected orientable triangulated 2-manifolds, (iii) X is obtained from a connected
orientable triangulated 2-manifold Y by an elementary handle addition or (iv) for each
u € V(X), there exists a ball B, with V(B,) = V(lkx(u)), 0B, = B, N X = lkx(u)
so that X is obtained from the (n — 1)-vertex connected orientable triangulated 2-manifold
Y := (X \ starx(u)) U B, by the GBM with respect to the pair (B,,starx (u)).

Proof. Assume that X # S2. Take a vertex z of X. If Ikx(x) has a diagonal yz which is
an edge of X, then the set {x,y, z} induces an S5 in X. Since X is orientable, this Sy is
two sided. Let Y be obtained from X by a handle deletion over this S (Y exists by Lemma
3.3). Clearly, Y is also orientable. If Y is connected then we are in Case (7i7) of this lemma.
Otherwise, by Lemma 3.3, X = Y1#Y5, where Y7, Y5 are the connected components of Y.
Here we are in Case (i¢) of the lemma.

Finally, assume that none of the diagonals of the cycle lkx(z) are edges of X for each
x € V(X). Then, for each x € V(X), X is obtained from an (n — 1)-vertex triangulated 2-
manifold Y by a GBM with respect to (B, starx(x)), where B, is any 2-ball with V(B,) =
V(lkx(x)) and 0B, = lkx(z). Then we are in the Case (iv) of the lemma. O

Remark 5.1. Lemma 5.2 shows, in particular, that any minimal triangulation of a con-
nected, orientable 2-manifold of positive genus must arise as the connected sum of two
triangulated 2-manifolds or by handle addition over a triangulated 2-manifold of smaller
genus. This fact should be useful in the explicit classification of minimal triangulations of
orientable 2-manifolds of small genus. Lemma 5.2 also shows that any triangulated 2-sphere
on n (> 4) vertices arises from an (n — 1)-vertex triangulated 2-sphere by a GBM. This
should help in simplifying the existing classifications and obtaining new classifications of
triangulated 2-spheres with few vertices.

6 Gromov’s combinatorial notion of rigidity

Throughout this section, we use the following definition due to Gromov (except that Gromov
does not include connectedness as a requirement for rigidity; but it seems anathema to call
a disconnected object rigid!). Thus ¢-rigidity hitherto refers to Gromov’s ¢-rigidity, without
further mention.
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Definition 6.1. Let X be a d-dimensional simplicial complex and g be a positive integer.
We shall say that X is ¢-rigid if X is connected and, for any set A C V(X)) which is disjoint
from at least one d-face of X, the number of edges of X intersecting A is > mgq, where

m = #(A).

Lemma 6.1. Let X be an n-vertex d-dimensional simplicial complex. If X is q-rigid then
the number of edges of X is > (n—d —1)q+ (CHQ'I).

Proof. Let e be the number of edges of X. Fix a d-face o of X and put A = V(X) \ 0.
Then #(A) =n —d — 1 and exactly e — (“}") edges intersect A. 0

Definition 6.2. Let X be an n-vertex d-dimensional simplicial complex and ¢ a positive
integer. We shall say that X is minimally q-rigid if X is ¢-rigid and has exactly (n —d —

1)g + (dgl) edges (i.e., if the lower bound in Lemma 6.1 is attained by X).

Lemma 6.2. A connected simplicial complex is q-rigid if and only if the cone over it is
(q+1)-rigid. It is minimally q-rigid if and only if the cone over it is minimally (q+1)-rigid.

Proof. Let X be an n-vertex d-dimensional simplicial complex and C'(X) = z * X be the
cone over X with cone-vertex x. Note that all the (d 4 1)-faces of C'(X) pass through x, so
that A C V(C(X)) is disjoint from a (d 4 1)-face if and only if A C V(X)) and A is disjoint
from a d-face of X. Also C'(X) has exactly m = #(A) more edges than X which intersect
A (viz., the edges joining z with the vertices of A). In consequence, the number of edges
of X intersecting A is > myq if and only if the number of edges of C(X) intersecting A is
> m(q + 1). This proves the first part. The second part follows since C'(X) has one more
vertex and n more edges than X. O

Lemma 6.3. Let X1, Xy be subcomplexes of a simplicial complex X such that X = X1 UXo
and dim(X; N Xq) = dim(X). If Xy, Xy are both q-rigid then X is q-rigid. If, further, X
1s minamally q rigid then both X1, Xo are minimally q-rigid.

Proof. Since X7, X5 are both connected, our assumption implies that X is connected.
Let dim(X) = d. Since dim(X; N X2) = dim(X), it follows that dim(X;) = dim(Xs) =
dim(X; N Xs) =d. Let A C V(X) be disjoint from some d-face o € X = X1 U Xy. Without
loss of generality, o € X;. Write A; = ANV (X;) and Ay = A\ V(X1). Say m = #(A4),
m; = #(A4;), i = 1,2. Thus, m = m; + ma. Note that A; C V(X3) is disjoint from the
d-face o of X;. Also, if 7 is a d-face of X; N X5, then 7 is a d-face of X5 disjoint from A,
(since 7 C V(X;) and Ay is disjoint from V(X7)). Since, X7, Xo are ¢-rigid, we have at
least m1q edges of X7 meeting Ay and at least moq edges of X9 meeting Ay. Also, as V(X7)
and A, are disjoint, no edge of X; meets Ay. Therefore, we have at least my1q + mag = mgq
distinct edges of X meeting A. This proves that X is ¢-rigid.

Now, if X is minimally ¢-rigid, then taking A to be the complement in V' (X) of a d-face
of X7, one gets exactly mq edges of X meeting A. Since we have equality in the above
argument, it follows that exactly miq edges of X intersect A; = ANV(X;). Since 4; is
the complement in V' (X7) of a d-face of X7, this shows that X; is then minimally g-rigid.
Since the assumptions are symmetric in X7 and Xs, in this case X5 is also minimally ¢-rigid.
Od
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Lemma 6.4. Let {X, : a € I} be a finite family of q-rigid subcomplexes of a simplicial
compler X. Suppose there is a connected graph H with vertex set I such that whenever
a, 3 € I are adjacent in H, we have dim(X, N Xg) = dim(X). Also suppose Upecr Xo = X.
Then X is q-rigid. If, further, X is minimally q-rigid, then each X, is minimally q-rigid.

Proof. Induction on #(I). If #(I) = 1 then the result is trivial. For #(I) = 2, the result
is just Lemma 6.3. So suppose #(I) > 2 and we have the result for smaller values of #(I).
Since H is a connected graph, there is «g € I such that the induced subgraph of H on
the vertex set I\ {ag} is connected (for instance, one may take ag to be an end vertex of
a spanning tree in H). Applying the induction hypothesis to the family {X, : a # ap},
one gets that Y7 = Ugza,Xq is ¢-rigid. Since Yo = X, is also ¢-rigid, X = Y; UY3, and
dim(Y; NYs) = dim(X) (if «g is adjacent to ay in H then dim(X) > dim(Y; NYs2) >
dim(X,, NY2) = dim(X)), induction hypothesis (or Lemma 6.3) implies that X is ¢-rigid.
Now, if X is minimally g-rigid then, by Lemma 6.3, so are Y7 and Y5. Since Y; is minimally
g-rigid, induction hypothesis then implies that X, is minimally ¢-rigid for o # g (and also
for a = ag since X,, = Y2). O

Lemma 6.5. Let X be a connected pure d-dimensional simplicial complex. (a) If each
vertez link of X is q-rigid then X is (q + 1)-rigid. (b) If, further, X is minimally (¢ + 1)-
rigid then all the vertex links of X are minimally q-rigid.

Proof. Let I = V(X) and H be the edge graph of X. Since X is connected, so is H.
For a € I, st(a) is a cone over the g-rigid complex lk(«), and hence by Lemma 6.2, st(«)
is (¢ + 1)-rigid for each o € I. Since X is pure, the family {st(a) : a € I} satisfies the
hypothesis of Lemma 6.4. Hence X is (¢ + 1)-rigid. If it is minimally (g + 1)-rigid, then
by Lemma 6.4, each st(«) is minimally (¢ + 1)-rigid, and hence, by Lemma 6.2, lk(a) is
minimally ¢-rigid for all a € 1. O

Lemma 6.6. Let X1, X5 be d-dimensional normal pseudomanifolds. If X1, Xo are (d+1)-
rigid then their elementary connected sum X1#Xo is (d + 1)-rigid. If, further, X1#Xs is
minimally (d + 1)-rigid then both X1 and Xo are minimally (d + 1)-rigid.

Proof. Since X;, Xy are both connected, so is X1#Xs. Let o; be a facet of X; (i = 1,2)
and f:01 — 09 be a bijection, such that X = X;#X} is obtained from X; U X5\ {01,092} via
an identification through f. We view V(X;) as a subset of V(X)) in the obvious fashion. Put
X = (X1#X9)U{o1 = 02}. Then X;, X9 are subcomplexes of X satisfying the hypothesis
of Lemma 6.3 with ¢ = d 4+ 1. Hence, by Lemma 6.3, X is (d + 1)-rigid. Since X1#Xo is a
subcomplex of X of the same dimension with the same set of edges, it follows that X;# X,
is (d 4 1)-rigid.

If X3# X5 is minimally (d + 1)-rigid, then so is X and hence, by Lemma 6.3, so are X,
Xo. O

Lemma 6.7. Let Y be a d-dimensional normal pseudomanifold which is obtained from a
d-dimensional normal pseudomanifold X by an elementary handle addition. If X is (d+1)-
rigid then Y is (d + 1)-rigid.

Proof. Let Y = XY, where 1):0; — 09 is an admissible bijection between two disjoint

facets o1, o2 of X. Thus Y is obtained from X \ {01, 02} by identifying x with ¢(x) for
each = € o1 (cf. Definition 3.2). Let’s identify V(Y') with V(X) \ o2 via the quotient map
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V(X) = V(Y). Let ACV(Y) be an m-set disjoint from a facet o of Y. Then, under this
identification A C V(X)) is disjoint from o and it follows from the definition of X¥ that o is
a facet of X. This implies, by (d + 1)-rigidity of X, that at least m(d + 1) edges of X meet
A. Since ANoy = (), these edges corresponds to distinct edges of Y under our identification.
Hence Y is (d + 1)-rigid. O

Lemma 6.8. Let X be a triangulated 2-manifold. Suppose for each vertexr u of X, there is
a triangulated 2-manifold X,, with vertex-set V(X)\ {u}, and a triangulated 2-ball B,, C X,
with vertex-set V (lkx (u)) such that X is obtained from X, by the GBM with respect to the
pair (By,starx (u)). If X, is 3-rigid for all uw € V(X), then X is 3-rigid.

Proof. Take any set A C V(X) which is disjoint from at least one 2-face o of X. Say
#(A) = m. Fix a vertex = € A, say of degree k. Take a 2-ball B with vertex set V(B) =
V(Ik(z)) as in the hypothesis. Note that B is a k-vertex 2-ball with k edges in the boundary
(viz., the edges of lkx(z)), hence it has k — 3 edges in the interior: these are not edges of
X. By assumption X, = (X \ st(x)) U B is 3-rigid, so that at least 3(m — 1) edges of X,
intersect ﬁ, and hence also A. Of these edges, at most k — 3 edges are not in X. Thus at
least 3(m — 1) — (k — 3) edges of X (not passing through x) meet A. Also, all the k edges
of X through x meet A. Thus we have a total of at least 3(m — 1) — (k — 3) + k = 3m edges
of X meeting A. Hence X is 3-rigid. O

7 (d+ 1)-rigidity of normal d-pseudomanifolds

Lemma 7.1. Let X be a 2-dimensional normal pseudomanifold. Then X is 3-rigid. X is
minimally 3-rigid if and only if X is a triangulated 2-sphere.

Proof. Since X is 2-dimensional normal pseudomanifold, it follows that X is a connected
triangulated 2-manifold.

First assume that X is orientable. Recall that the connected orientable closed 2-
manifolds are classified up to homeomorphism by their genus g. The genus is related to the
Euler characteristic x by the formula x = 2 — 2g. With any X as above, we associate the
parameter (g,n), where g is the genus of | X| and n is the number of vertices of X. Let’s
well order the collection of all possible parameters by the lexicographic order <. That is,
(g1,n1) < (g2,n2) if either g1 < go or else g3 = g2 and ny < ng. We prove the 3-rigidity of X
by induction with respect to <. Notice that the smallest parameter is (0,4) corresponding
to X = S2, which is trivially 3-rigid. This starts the induction. If (g,n) = (0,4), then X is
as in Case (#1), (i27) or (iv) of Lemma 5.2.

If X is as in (i), then X = X;#X5 where X1, X2 are connected orientable 2-manifold
with small parameters. Hence by induction hypothesis, Xi, X5 are 3-rigid. Hence by
Lemma 6.6, X is 3-rigid. If X is as in Case (i4i), then X is obtained from a connected
orientable triangulated 2-manifold Y of smaller genus, by elementary handle addition. By
induction hypothesis, Y is 3-rigid, and hence by Lemma 6.7, X is 3-rigid. If X is as in Case
(iv) of Lemma 5.2, then it satisfies the hypothesis of Lemma 6.8, and hence is 3-rigid. This
completes the induction.

Now suppose X is non-orientable. Let X be the orientable double cover of X. By the
above, X is 3-rigid. Since the covering map V(X ) — V(X)) is a two-to-one simplicial map,
it is immediate that X is 3-rigid.

Finally, X is minimally 3-rigid <= number of edges in X is 3(n — 2) <= the Euler
characteristic of X is 2 <= X is a triangulated 2-sphere. O
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Proposition 7.1. Let X be a d-dimensional normal pseudomanifold. If d > 2 then X is
(d+ 1)-rigid. If, further, d > 3 and X is minimally (d + 1)-rigid, then all the vertex links
of X are minimally d-rigid.

Proof. The proof is by induction on d. For d = 2 this is Lemma 7.1. For d > 3, all
the vertex links of X are (d — 1)-dimensional normal pseudomanifolds and hence, by the
induction hypothesis, all vertex links of X are d-rigid. So the result follows from Lemma
6.5. O

Lemma 7.2. Let X be a minimally (d + 1)-rigid normal pseudomanifold of dimension
d > 3. Then every clique of size < d in the edge graph of X is a face of X.

Proof. Let I = V(X) and let H be the edge graph of X. For a € I, let H, be the induced
subgraph of H on the vertex-set V(lk(«)) and put X, = st(a) U Hy. By Lemma 6.2 and
Theorem 7.1, st(a) is (d + 1)-rigid and hence so is X,. Thus {X, : o € I} satisfies the
hypothesis of Lemma 6.4. Since X is minimally (d-+1)-rigid, it follows that X, is minimally
(d + 1)-rigid for each o € I. But X, D st(a), V(Xa) = V(st(«)) and st(«) is (d + 1)-rigid.
Therefore, X, and st(a) have the same edge graph. That is, H, C st(«). Thus, each clique
of size < 3 through « is a face of X. Since this holds for each o € I, it follows that each
clique of size < 3 in H is a face of X.

Now, by an induction on k, one sees that for k < d, any k-clique of H is a face of X: if
C'is a k-clique (and k > 4 and hence d > 4), then for any z € C, C'\ {z} is a (k — 1)-clique
of Ik(x) and dim(lk(z)) = d — 1 > 3. Therefore, C'\ {z} is a face of lk(x) and hence C'is a
face of X. O

Lemma 7.3. Let X be a minimally (d + 1)-rigid normal pseudomanifold of dimension
d > 3. Then the edge graph of X has a clique of size d + 2.

Proof. If we have the result for d = 3 then the result follows for all d > 3 by a trivial
induction on dimension (using the second statement in Proposition 7.1). So, we may assume
d=3.

Let n > 5 be the number of vertices of X. Since X is minimally 4-rigid, it has 4n — 10
edges and hence the average degree of the vertices is w < 8. Therefore, X has a
vertex = of degree < 7. Then, by Lemmas 6.5 and 7.1, lk(z) is a triangulated 2-sphere on
< 7 vertices. If possible, suppose lk(z) has no vertex of degree 3. It is easy to see that up to
isomorphism there are only two such S2, namely S$* S} with m = 4 or 5. Thus lk(z) is one
of these two spheres, say lk(z) = SY({y, 2})*S} (A). Since xyz is not a 2-face, by Lemma 7.2,
yz is not an edge of X. Put By = stx (), By = Ba({z,y})* S} (A). Set X = (X \ B;)UBo.
Then X is obtained from X by a GBM. Hence X is a 3-dimensional normal pseudomanifold
with n — 1 vertices and 4n — 10 — (m+2)+1 =4n — 11 —m < 4(n — 1) — 10 edges (as
m > 4). This is impossible since X is 4-rigid by Proposition 7.1. This proves that lk(z)
has a vertex y of degree 3. Then the vertex-set of st(xy) is a 5-clique. This completes the
proof. O

Lemma 7.4. Let X be an n-vertex minimally (d + 1)-rigid d-dimensional normal pseudo-
manifold. If d > 3 and n > d+2 then X contains a standard (d—1)-sphere S as an induced
subcomplex.
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Proof. By Lemma 7.3, there is a (d + 2)-set C C V(X)) which is a clique of the edge graph
of X. If all the (d + 1)-subsets of C' were facets of X then the induced subcomplex of X
on the vertex-set C' would be a proper subcomplex which is a (standard) d-sphere. This is
not possible since X is a d-dimensional normal pseudomanifold. So, there is a (d + 1)-set
Cp C C such that Cp is not a facet of X. But Cj is a (d + 1)-clique of the edge graph of X,
so by Lemma 7.2, all proper subsets of Cjy are faces of X. Thus the induced subcomplex S
of X on the vertex-set Cp is a standard (d — 1)-sphere. O

Lemma 7.5. If X is a minimally 4-rigid 3-dimensional normal pseudomanifold then X is
a stacked 3-sphere.

Proof. By Theorem 7.1, all the vertex links are minimally 3-rigid. Therefore, by Lemma
7.1, X is a triangulated 3-manifold. Let the number of vertices in X be n. We wish to
prove by induction on n that X must be a stacked 3-sphere. This is trivial for n = 5, so
that we may assume that n > 5 and we have the result for smaller values of n.

By Lemma 7.4, X contains a standard 2-sphere S as an induced subcomplex. Since S
is a 2-sphere, S is two-sided in X. Let Y be the simplicial complex obtained from X by
deleting the “handle” over S. Since X is a triangulated 3-manifold, by Lemma 4.9 (a), Y
is a triangulated 3-manifold. Also, Y has n + 4 vertices and 4n — 10 + (5) < 4(n +4) — (5)
edges. Therefore Y is not 4-rigid and hence, by Theorem 7.1, Y must be disconnected.
Since X is connected, Lemma 3.3 implies that X = Y;#Y5, where Y7, Y5 are 3-dimensional
normal pseudomanifolds. Since X is minimally 4-rigid, Lemma 6.6 implies that Y7, Y5 are
both minimally 4-rigid. Let Y; have n; vertices (i = 1,2). Since ny +ngs =n +4, ny > 4,
ng > 4, it follows that ny < n, ne < n. Therefore, by induction hypothesis, Y7, Y5 are
stacked 3-spheres. Since X is an elementary connected sum of Y7 and Ys, Lemma 4.8 (b)
implies that X is a stacked 3-sphere. O

Proposition 7.2. For d > 3, the stacked d-spheres are the only minimally (d + 1)-rigid
d-dimensional normal pseudomanifolds.

Proof. If X is an n-vertex stacked d-sphere then (cf. Lemma 4.2) the number of edges of
X is (d+ 1)n — (*4?), so that X is minimally (d 4 1)-rigid by Theorem 7.1.

For the converse, let X be a minimally (d + 1)-rigid d-dimensional normal pseudomani-
fold, with d > 3. We prove by induction on d that X is a stacked d-sphere. The d = 3 case
is Lemma 7.5. So, assume d > 3 and we have the result for smaller values of d. By Theorem
7.1 and induction hypothesis, all the vertex links of X are stacked (d — 1)-spheres. That is,
X is in the class K(d) (cf. Definition 4.3). In particular, X is a triangulated d-manifold.

Let the number of vertices in X be n. We wish to prove by induction on n that X must
be a stacked d-sphere. This is trivial for n = d + 2, so that we may assume that n > d + 2
and we have the result for smaller values of n.

By Lemma 7.4 (also by Lemma 4.10), X contains a standard (d — 1)-sphere S as an
induced subcomplex. Since d > 3, S is two-sided in X. Let Y be the simplicial complex
obtained from X by deleting the “handle” over S. Since X is in the class K(d), by Lemma
4.9 (b), Y is in the class (d). In particular, Y is a triangulated d-manifold. Also, Y has
n+d + 1 vertices and ((d + 1)n — (d'gz)) + (d;rl) =n+d+1)(d+1)—(d+1)(d+2) <
m+d+1)(d+1) — (d;r?) edges. Therefore Y is not (d + 1)-rigid and hence, by Theorem
7.1, Y must be disconnected. Since X is connected, Lemma 3.3 implies that X = Y1#Y5,
where Y7, Y5 are d-dimensional normal pseudomanifolds. Since X is minimally (d+ 1)-rigid,
Lemma 6.6 implies that Y7, Y5 are both minimally (d + 1)-rigid. Let Y; have n; vertices
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(1 =1,2). Sinceny +ny =n+d+1,ny >d+1, ng > d+1, it follows that n; < n, ny <n.
Therefore, by induction hypothesis, Y7, Y> are stacked d-spheres. Since X is an elementary
connected sum of Y7 and Y,, Lemma 4.8 (b) implies that X is a stacked d-sphere. a

Theorem 2. For d > 2, all d-dimensional normal d-pseudomanifold are (d + 1)-rigid. For
d > 3, the stacked d-spheres are the only minimally (d + 1)-rigid d-dimensional normal
pseudomanifolds.

Proof. Immediate from Propositions 7.1 and 7.2. O

8 LBT for normal pseudomanifolds

Now we are ready to state and prove the main result of this paper:

Theorem 3. Let X be any d-dimensional normal pseudomanifold. Then the face-vector of
X satisfies;
d+1 d+2 . .
: X) - 1<4<d,
fj(X)z{ (N fo(X) =551, yo1sy
dfo(X) — (d+2)(d—1), if j=d.
Further, for d > 3, equality holds here for some j if and only if X is a stacked sphere.

Proof. This is trivial for d = 1. So, assume d > 1. For j = 1, the result is immediate from
Lemma 6.1, Definition 6.2 and Theorem 2. So let 1 < j < d. Counting in two ways the
incidences between vertices and j—faces of X, we obtain

fi(X > fica(kx(v
‘7+ veV(X)

Since lkx (v) is a (d —1)-dimensional normal pseudomanifold with deg(v) vertices, induction

hypothesis (on the dimension) implies that
d ~ d+1 . ,
' d B -1 i) f 1 < < d,
fi-1(lkx (v)) = (%) deg(v) = G = )(5) i j
(d—1)deg(v) — (d+1)(d—2), if j=d.

Adding this inequality over all vertices v, and noting that > cy(x) deg(v) = 2f1(X), we
conclude:

L] A (2G4 AX) = G- DTN P(X)), i 1<j<d,
a1 2@ =D AX) = ([d+1)(d = 2)fo(X)), if j=d.
But, by the j =1 case of the theorem, f1(X) > (d+ 1) fo(X) — (dJ2r2). Hence we get :

d . d d d . .
0> L ((2G5)@+1D) = G- D) X)) —2(2 (1), if1<i<d,
7 (@A =1)(d+1) = @+ 1)(d = 2) fo(X) = 2(d = 1)(*)), if j=d.
Since (d+ 1)( )= j(d+1) and (] ) (2 = (‘;ﬁ) (?$1), this inequality simplifies to the one
stated in the theorem From this argument, 1t is clear that if the equality holds for some
Jj, then it also holds with j = 1, so that (when d > 3) X is a stacked sphere in the case of

equality. The converse is immediate from Lemma 4.2. O

Remark 8.1. The argument in the above proof (reducing the inequality for arbitrary j
to the case j = 1) is known as the M-P-W reduction - after its independent inventors
McMullen, Perles and Walkup.
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9 Some more lower bound conjectures

Definition 9.1. For 0 < k < d, a triangulated d-sphere X is said to be a k-stacked sphere
if there is a triangulated (d + 1)-ball B such that 0B = X and skel;_x(B) = skelj_x(X).
Recall that skely_;(X), for instance, is the subcomplex of X consisting of all its faces of
dimension at most d — k.

Definition 9.2. Let X be a d-dimensional pseudomanifold and u be a vertex of X. Then,
for a new symbol v ¢ V(X), the (d + 1)-dimensional pseudomanifold ¥, ,(X) = (u *
astx(u))U (v*X) is called an one point suspension of X. The geometric carrier of 3, ,(X)
is the suspension of |X|. In particular, ¥, ,(X) is a triangulated (d 4 1)-sphere if X is a
triangulated d-sphere (cf. [1]).

Lemma 9.1. If X is a triangulated d-sphere then there is a triangulated (d + 1)-ball X
such that V(X) =V (X) and 0X = X.

Proof. Fix a vertex u of X, and let X,, = uxastx(u). Since X is a triangulated d-sphere, it
follows that ¥, ,(X) is a triangulated (d+ 1)-sphere. Thus, X, is the antistar of the vertex
v in the triangulated (d + 1)-sphere ¥, ,(X) and the link of v in ¥, ,(X) is X. Therefore
Lemma 4.1 implies that X, is a triangulated (d + 1)-ball. Clearly, V(X,) = V(X) and
X, = X. Thus X = X, works for any vertex u of X. O

Remark 9.1. Trivially, for 0 < k < [ < d, every k-stacked d-sphere is also [-stacked.
Further, the standard sphere de+2 is the only 0-stacked d-sphere, while Lemma 9.1 shows
that all triangulated d-spheres are d-stacked. Remark 4.1 (a) shows that every stacked
sphere is 1-stacked. Conversely, the case k = 1 of the following proposition shows that
the face-vector of any 1-stacked sphere satisfies the LBT with equality, so that 1-stacked
spheres are precisely the stacked spheres.

Proposition 9.1. Let k > 0. Then for d > 2k + 1, the k components fo,..., fu_1 of the
face-vector of any k-stacked d-sphere determines the rest of its face-vector by the formulae

k-1 o '
Z(—l)k—z’ﬂ(]_z;l)<d_,z—.kl>fz‘, if k<j<d-k,

i=—1 J= J—t

= i j—i—1\[{d—i+1 k d—i
st e U (S

Y d—i , ,

l=d—j

(Here f_1 =1, consistent with the convention that the empty face is the only face of dimen-
sion —1 in any simplicial complez.)

Sketch of proof. Let X be a k-stacked d-sphere. Let B be a (d 4 1)-ball as in Definition
9.1. Put X = BU (x+X), where z is a new symbol. Thus X is a triangulated (d+1)-sphere.
Let (fo, f1,---, fa) and (fo, f1,- ., far1) be the face-vectors of X and X, respectively. From
the relation between X and B, we get

fj:fj“l‘fj_l, 0<j<d—k. (1)
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Being triangulated spheres of dimension d and d + 1 respectively, X and X satisfy the
following Dehn-Sommerville equations (cf. [9, 9.2.2, Page 148]):

j-1 Lyt d— d—j 1id—z’  g<i<|d
Z(_) d— ]+1 fz—Z( ) j fis _]_LEJ,

i=—1 1=—1

= d—i+1 I fd—it1)
d—i i : ; d+1
PAE) (d ]+2>fz—zzz_:1( 1)( : )fz, 0o<i<l @
Substituting (1) in (2), we get a system of {%J + {d;rlj + 2 = d + 2 independent linear
equations in the (d—k+1)+ (k+1) = d+2 unknowns f, ..., fq, fa Kl - - fd+1 Solving
these equations, we get the result (in terms of fo,..., fk_1, Which are regarded as “known”
quantities in this calculation). Notice that this calculation shows that fj is given by the
same formula as f; (with d + 1 in place of d and fl = fi + fi—1 in place of f;). This
is no surprise: putting B = z * B, one sees that Bis a (d + 2)-ball with OB = X and
skelgyi— k(B) = skelgi1_ (X ) Thus, X is also a k-stacked sphere. O

Now we are ready to state the generalized lower bound conjecture :

Conjecture 1 (GLBCQC). For d > 2k + 1, the face-vector (fo, ..., fq) of any triangulated
d-sphere X satisfies

k—1 . .
Z(—l)’f‘”l(];f;l)(d_Z“)ﬂ, if k<j<d-k,

=1 )=t

kol i (i—i=1\[(d—i+1 k d—1i
£ > i:z_:l(—l)k +1[< ik )( i—i >_<d_j+1><d—k+l>
k—1 el l d
2o ()T

Equality holds here for some j if and only if X is a k-stacked d-sphere.

fio if d=—k+1<j<d

Remark 9.2. The k& = 1 case of this conjecture is precisely the LBT (for triangulated
spheres). The j = k case of this conjecture was first stated by McMullen and Walkup
[12] for the smaller class of polytopal spheres (i.e., boundary complexes of convex (d + 1)-
polytopes). Note that, when X is a combinatorial sphere, all its vertex links are spheres,
so that using the j = k case of the conjecture (if settled), one may deduce the general case
by an obvious extension of the M-P-W reduction.

However, note that the vertex links of triangulated spheres need not be simply connected.
(Bjérner and Lutz [4] have constructed a 16-vertex triangulation i of the Poincaré ho-
mology 3-sphere. Then S4 * X% is an example of a triangulated 5- sphere some of whose
vertex-links are not simply connected. Note that the face-vector of X3 i6 1s (16,106, 180, 90),
and hence the face-vector of the triangulated 5-sphere Si * X% is (19, 157, 546, 948, 810, 270),
which does satisfy Conjecture 1 with d = 5, k = 2.) Moreover, the cases of larger j (the case
j = d, for instance) of the conjecture may be easier to settle. In [13], Stanley proved the
inequality in Conjecture 1 for polytopal spheres (in the case j = k, but as the vertex links
of polytopal spheres are again polytopal, this settles the inequalities for all j). However,
even for polytopal spheres, the case of equality remains unsolved. It has been suggested
that Conjecture 1 holds for all simply connected triangulated manifolds.
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We end with a conjecture on non-simply connected triangulated manifolds.

Conjecture 2 (LBC for the non-simply connected manifolds). For d > 3, the
face-vector of any connected and non-simply connected triangulated d-manifold X satisfies

£(X) >{ ("N fo(X), if 1<j<d,
P dfo(X), if j=d.

Equality holds here for some j if and only if X is obtained from a stacked d-sphere by an
elementary handle addition.

Remark 9.3. Notice that Conjecture 2 would imply, in particular, that the face-vector
of any connected and non-simply connected manifold of dimension d > 3 must satisfy
(f2°) > f1 > (d+ 1) fo, so that any such triangulation requires fy > 2d + 3 vertices, and the
triangulation must be 2-neighbourly when fy = 2d + 3. Indeed, in [2], we proved that any
non-simply connected triangulated d-manifold requires at least 2d 4+ 3 vertices, and there is
a unique such (2d + 3)-vertex triangulated d-manifold for d > 3. It is 2-neighbourly, and
does arise from a stacked sphere by an elementary handle addition. Thus, the main theorem
of [2] would be a simple consequence of Conjecture 2. The special case fy = 2d + 4 of this
conjecture was posed in [2]. In [15], Walkup proved that this conjecture holds for d = 3.

Acknowledgement : The authors are thankful to Siddhartha Gadgil and Vishwambhar
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