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Electron delocalization in disordered films induced by magnetic field and film thickness
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We have studied the delocalization transition of noninteracting electrons in disordered thin films induced by
magnetic field and film thickness. We also report results for two-dimensional systems. We have used for this
purpose~i! a numerical technique based on transfer-matrix method for quasi-one-dimensional systems;~ii !
self-consistent theory of localization for weak fields generalized to situations lacking time-reversal invariance.
Numerical results provide strong evidence for a zero-temperature insulator-to-metal transition~MIT ! with both
field and film thickness. In self-consistent theory we adopt two procedures which give different results on MIT
induced by field, temperature, and thickness. The variance between numerical and analytical results is ana-
lyzed.
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I. INTRODUCTION

In this paper we examine the localization and transp
behavior of noninteracting electrons in weakly disorde
two-dimensional layers and thin films in the presence o
perpendicular magnetic field. The two-dimensional elect
systems~2DES! have continued to be a source of very ri
and fascinating physics for the past twenty-five years. T
most outstanding example of this is the celebrated quan
Hall effect ~QHE!.1 A more recent one is the vanishing o
longitudinal resistance of 2DES by application of micr
waves in resonance with the cyclotron frequency.2 These and
other phenomena in 2DES involve an interplay of on
electron Landau levels, disorder-induced localization, a
electron-electron interactions. The present work is a con
bution to elucidate one aspect of this complex phys
namely, the question of insulator-to-metal transition~MIT ! in
films induced by magnetic field and by increasing film thic
ness.

To place our work in perspective to the vast amount
work done in this area, we review the main results of r
evance. First, we recall the remarkable prediction of the s
ing theory by Abrahamset al.,3,4 according to which all
single-particle states in a two-dimensional disordered la
of electrons are localized, no matter how weak is the dis
der. Physically this result is understood to arise from
quantum interference of amplitudes of time-reversed pa
which leads to an enhanced probability for the particle
return to its starting point.5–8 The two important physica
consequences of this result that have been verified are l
rithmic temperature dependence of resistance9 and negative
magnetoresistance.4,8,10,11The latter effect supports the inte
ference picture in a rather transparent way. The field in
duces a phase difference in the time-reversed paths, the
weakening the interference effect and the localization t
dency.

The effect of field on the localization characteristics of t
2D states is a complex one due to formation of Land
bands. The simple understanding of QHE is based on
existence of extended states in the mid portion of each L
dau band flanked by localized states and gaps~depending on
the relative magnitude of disorder and field! on each side.
0163-1829/2004/69~11!/115420~12!/$22.50 69 1154
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From the intensive numerical studies12–16 and theoretical
arguments17–20 it is now believed that at high fields, there
just one extended state in the middle of each Landau ba
This raises the much debated question, as to what happe
the extended states as the field is reduced toward z
Khmelnitskii21 and Laughlin22 argued that with the decreas
ing field the extended states float up in energy going bey
the Fermi energy. In this picture the system becomes insu
ing when the extended state at the middle of the lowest L
dau level floats up to Fermi energy, which is expected
happen when the magnetic lengthl B

25\c/eB is of order l,
the elastic mean-free path. The idea of floating up of
tended states has recently been nicely confirmed numeric
by Yang and Bhatt16 in a tight-binding model, where the
extended states get annihilated at the edges and get con
trated at the band center as the field is reduced.

Here our focus is on delocalization of states at weak d
orders by a magnetic field, a topic which we feel has n
been fully investigated. In particular, the question wheth
the field can induce an insulator-to-metal transition in tw
dimensions has not been unequivocally answered. For
ample, one might ask how well is the metal-insulator pha
boundary given by Khmelnitskii’s estimate. There have be
experimental studies to investigate this and other aspect
this problem.23,24 But the recent observation of meta
insulator transition in high mobility 2DES in the absence
the field has led to a great surge of interest in the proble
These observations made on metal-oxide-semicondu
field-effect transistors, show that an insulator to metal tr
sition occurs on increasing the electron density.25,26 The be-
havior of the system in fields perpendicular and in the pla
of the film also shows rather unexpected features. Since
there is a clear violation of the scaling theory, strong arg
ments have been given to assign a primary role to elect
electron interactions in understanding this transition.27,28

Motivated by the above discussion, we feel that it is im
portant to resolve the delocalization question for nonintera
ing electrons in the presence of the magnetic field for tw
dimensional layers as well as films of finite thickness. This
continuation of our earlier studies, where we studied
problem without any magnetic field.29,30 Specifically we ex-
amined the role of thickness in inducing delocalization
©2004 The American Physical Society20-1
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electronic states and studied the crossover from two dim
sions to three dimensions at weak disorders. We found
numerically there is strong evidence of insulator to me
transition with increasing thickness, and one can draw
disorder versus thickness plane a phase diagram deline
the metallic and insulating regimes.

The numerical method has the inevitable limitation due
system size, which is particularly severe at weak disord
where the localization lengths become larger or compara
to system size. So we also studied the problem analytic
by extending the self-consistent theory of Vollhardt a
Wölfle31,32 ~VW! to finite-thickness films. This also allow
us to check whether the weak-scattering corrections can
a good description of the 2D to 3D crossover in films w
finite thickness. We found that the theory predicts only loc
ized states, though localization lengths increase very rap
across a boundary in thickness-disorder plane. Continu
these studies with magnetic field which also has the poten
to delocalize states, seems to us a further step to unders
the robustness of the interference phenomenon that lea
2D localization.

In this paper, we present both numerical and analyt
results using magnetic field and film thickness as parame
The coupling of magnetic field to spins is ignored in the
calculations, as the spin polarization plays little role in t
absence of the interactions. For analytical results we use
self-consistent theory as was generalized by Yoshioka, O
and Fukuyama33 to situations lacking time-reversal invar
ance. We use two self-consistent procedures to calculate
metal-insulator transition boundary in the parameter spac
field, thickness and temperature. These two self-consis
procedures lead to different predictions in two dimensio
so it is worth examining them in a more general situatio
The paper is organized as follows. In Sec. II, we pres
numerical results. In Sec. III, following the work of Vollhard
and Wölfle,32 and Yoshiokaet al.,33 we set up the self-
consistent equation for diffusion in thin films with perpe
dicular magnetic field. In Sec. III, we present the solutio
for two-dimensional layers. This extends the work
Yoshioka et al. in some ways, like calculation of meta
insulator boundary when phase-coherence length is finite
expressions for conductivity in the self-consistent theory.
Sec. IV, the above set of results are presented for films
nonzero thickness. Finally, in Sec. V, we summarize all
results, and present a comparison of numerical results
analytical results obtained in two procedures.

II. NUMERICAL RESULTS

We first report numerical studies on disorder-induced
calization in two-dimensional layers and in films with fe
layers in presence of a uniform weak magnetic field. Th
studies are done on the Anderson model with near
neighbor hopping and site disorder. The disorder in on-
energies is described by a rectangular probability distribu
of width W. The magnetic fieldB is incorporated by putting
a phase factor in the hopping matrix elements leading to
Hamiltonian
11542
n-
at
l
n
ing

o
s,
le
ly

ve

l-
ly
g
al
nd
to

l
rs.
e

he
o,

he
of
nt
,
.
t

s
f

nd
n
of
e
th

-

e
t-

te
n

e

H5(
j

e j u jW&^ jWu1(
j , j 8

Vj , j 8~B!u jW&^ jW8u, ~1!

where

Vj , j 8~B!5V exp@22p iax~y2y8!#, ~2!

where jW5(x,y) anda5Ba2/(hc/e), which is the magnetic
flux through a single plaquette measured in units of fl
quantum.

Our numerical results have been obtained using the w
known technique proposed by McKinnon and Kramer34 and
Pichard and Sarma.35 This procedure allows the calculatio
of the localization length at any given energy of a quasi-o
dimensional system in the shape of a long bar of thicknesb
and widthm. To extract information about the electron loca
ization in a film of thicknessb and disorderW, one studies
the localization lengthj(W,a,b,m) for states at the band
center, as a function of the increasing widthm. If states are
localized then asm increases,j(W,a,b,m) saturates to a
valuej`(W,a,b), which may be regarded as the localizatio
length for the band center state of the film. On the oth
hand, if states are extendedj(W,a,b,m) grows faster than
linear withm. The finite-size scaling arguments show that t
linear growth marks the transition between localized and
tended regimes. Further, the curves on either side of the t
sition for different values ofW, a andb can be collapsed on
to a single set of curves by scalingj and m with suitably
chosen values ofj`(W,a,b). On the metal side,j`(W,a,b)
is a length proportional to the resistivity.34 Our calculations
have been done for thicknesses of one to five layers.
highest value of the widthm is taken to be 30, while the
length of the system is taken to be 10 000 layers.

To settle the localization question at weak disorde
where the localization lengths become very large, the us
scaling ideas to analyze the numerical results has been a
successful method. It has provided strong evidence to s
port the conclusions of the scaling theory in two dimensio
in the absence of the field.34 In the presence of the field
single parameter scaling theory does not apply, but Huck
stein and Kramer14 have demonstrated that the scaling pr
cedure employed earlier can still be used effectively. In
presence of the field, a new method based on the calcula
of Chern numbers has been devised, which gives a m
sharper delineation between extended and locali
states.16,36

Since our interest is in the metal-insulator transition,
have limited studies only to the states at the band center
which the scaling procedure of McKinnon and Kramer see
adequate. We first present results for a two-dimensional
tem (b51). Figure 1 shows these results for seven values
disorder at a field corresponding toa50.01. One sees here
discernible trend toward delocalization at disorder valu
W53 and 2. In Fig. 2 we show results at other values ofa,
but now both axes ofj andm have been scaled by appropr
ately chosen values ofj`(W,a,1). We seehere that 12
curves for different values ofW anda can be collapsed into
three curves by scaling. The full lines in the figure are b
possible fits to the scaled data. One sees here the evid
0-2
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for a transition from saturating curves at large values ofW to
curves rising faster than linear at smaller values ofW. In
order to further confirm the existence of both extended
localized regimes, we carry out the scaling analysis used
McKinnon and Kramer34 by drawing plots ofj/m versus
j` /m. These are shown in Fig. 3. Though the data sh
some fluctuation, the evidence for two kinds of behaviors
quite apparent. The inset of Fig. 3 shows the phase boun
between localized and extended regimes in thea-W plane.

Next we show results for thin films. Figure 4 show plo
of j(W,a,b,m) with m for 1 to 5 number of layers forW
55 anda50.01. Here one sees delocalization with thic
ness. These results telly with our earlier results of sim

FIG. 1. Plots ofj(W,a,1,m) with m for two-dimensional layers
at a50.01 for seven different values ofW.

FIG. 2. Scaling plots of j(W,a,1,m)/j`(W,a,1) with
m/j`(W,a,1) in two dimensions. The valuesj`(W,a,1) are cho-
sen by trial to achieve scaling. Solid lines are the best algebraic
11542
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delocalization in the absence of the magnetic field.29,30Again
to confirm the existence of localized and extended regim
we replot in Figs. 5 and 6 data of 14 curves at differe
values ofW and a in two scaled plots mentioned abov
Here we see a fairly clear evidence of delocalization indu
by thickness as well as field. In view of the limitation of th
numerical method at weak disorders, we examine the pr
lem analytically in the following section.

III. SELF-CONSISTENT EQUATIONS FOR DIFFUSION

At the microscopic level, the scaling ideas have been s
ported by the self-consistent theory of localization propos
by Vollhardt and Wolfle.31,32This theory provides an accoun
of both the metallic and insulating regimes, and is partic
larly suitable to deal with weak disorders. VW theory w
extended by Yoshioka, Ono, and Fukuyama33 to situations
when the time-reversal invariance is absent.

In VW theory one calculates the density response fu
tion, which is related to particle-hole pair propagator. T
density fluctuations propagate diffusively due to partic
number conservation, with a diffusion constantD(qW ,v),
which gets strong size and dimension dependent quan
corrections from the vertex involving particle-particle cha
nel. These corrections formally account for the enhanced
terference between the time reversed paths and also hav
same diffusive character when time-reversal invariance
present. Yoshiokaet al. argued that when the time-revers
invariance is not present the particle-hole and partic
particle channels are not related and one needs two diffu
constants. The self-consistency relation of VW gets repla
by a set of two relations between the diffusion constants
the two channels. Applying these ideas to the tw
dimensional system with a magnetic field, Yoshiokaet al.
found that there is no metal-insulator transition induced
the field at any disorder, i.e., the states remain localized
the presence of the field at the weakest disorder.

To set up the self-consistent equations for frequen
dependent diffusion constant, one first deals with the sit
tion in the absence of the field, but without assuming tim
reversal invariance. As mentioned above, this requ
calculation of the density response function, which in tu
involves evaluation of irreducible vertex function involvin
particle-particle channel. This irreducible vertex in turn i
volves scattering ladder in the particle-hole channel. B
these vertices have diffusive character. The self-consis
equations are obtained by replacing the bare diffusion c
stant that occurs in the perturbative treatment of these v
ces by true frequency-dependent diffusion constants,Dph(v)
andDpp(v) corresponding to the two channels. With a m
nor reformulation of Yoshiokaet al.33 one is led to the fol-
lowing equations.

D0

Dph~v!
511

1

p\NF~d!

1

Ld (
q

1

2 iv1Dpp~v!q2
, ~3!

D0

Dpp~v!
511

1

p\NF~d!

1

Ld (
q

1

2 iv1Dph~v!q2
, ~4!

ts.
0-3
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FIG. 3. Scaling plots ofj(W,a,1,m)/m with j`(W,a,1)/m in two dimensions. The values ofj`(W,a,1) are chosen to achieve the be
scaling and they match with those of Fig. 2. The inset graph shows the phase boundary between localized and extended regimW-a
plane.
VW
s
ly.
ero
tic
ec-
s-
nce

if-
s is
er
u-
where D0 denotes the bare diffusion constant,NF(d) the
density of states at the Fermi level ind dimensions, andL is
the linear system size. When time reversal invariance
present,Dph(v) will be equal toDpp(v) and the above two
equations reduce to a single equation recovering the
self-consistent equation.

The conductivitys(v) and localization lengthj(v) are
related toDph(v) by the following relations:

s~v!5e2NFDph~v!, ~5!

j22~v!52
iv

Dph~v!
, ~6!

h22~v!52
iv

Dpp~v!
, ~7!
11542
is

where we have also included another length,h(v), corre-
sponding toDpp(v). In the limit v→0, Eqs.~3! and~4! will
give an insulating solution ifj2(v) andh2(v) tend to limits
that are real positive numbers, whereas Eqs.~3! and~4! give
a metallic solution ifDph(v) and Dpp(v) approach real
positive limits asv→0. Thus we can solve for the two kind
of solutions by taking the zero frequency limit appropriate

Now we extend these considerations to films of nonz
thicknessb,30 in the presence of a perpendicular magne
field. A simple procedure to calculate backscattering corr
tions in thin films is the path-integral method. The key a
sumption of the method is that allowed paths in the prese
of impurities can be taken to be random walks.7,6 This allows
the evaluation of the relevant propagator by solving the d
fusion equation in the desired geometry. In our case thi
just the probability for a particle to return to the origin aft
a time t. The presence of magnetic field modifies the diff
sion equation by changing¹W to @¹W 2(2ie/\c)AW #, whereAW
0-4
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ELECTRON DELOCALIZATION IN DISORDERED FILMS . . . PHYSICAL REVIEW B 69, 115420 ~2004!
is magnetic vector potential. This gives results equivalen
the semiclassical treatment of the magnetic field.10 If we take
(rW,z) to be the coordinates in the thin film, whererW is a
vector along the plane andz is the coordinate along thick
ness, the probability of return,P(rW,z,t), to the starting point
(rW,z) after timet is

P~rW,z,t !5
1

pblB
2 (

n,m
cos2S pmz

b DexpF2D0S p2m2

b2

12enD tG , ~8!

where l B is the magnetic length which is given byl B
2

5\c/2eB. en5(1/l B
2)(n1 1

2 ), n50,1,2,3, . . . , are thedis-
crete Landau-like diffusion eigenvalues. The boundary c
dition is that the current normal to the surfaces of the fi
vanishes.7 Using this probability, extension of the sel
consistent equations of localization takes the form

D0

Dph~v!
511

1

Dpp~v!

1

p2\ l B
2NF~3!b

3 (
n50

nmax

(
m

1

2
iv

Dpp~v!
1

2n11

l B
2

1
p2m2

b2
1

1

Lf
2

,

~9!

D0

Dpp~v!
511

1

Dph~v!

2

p\NF~3!bL2

3(
q,m

1

2
iv

Dph~v!
1q21

p2m2

b2
1

1

Lf
2

. ~10!

Note that the diffusion constants,Dph(v) andDpp(v), de-
pend on parametersl andb, but this dependence is not bein
explicitly written in the above and the following equation
for reasons of brevity. The upper cutoff limit on the summ
tion over n in Eq. ~9! is nmax'p2l B

2/2l 2, where l is the
elastic mean-free path. In writing these equations we h
also accounted for a finite phase coherence lengthLf which
is important when we discuss transport at nonz
temperatures.37 At low temperaturesLf}T2p, where the in-
dex p depends on the mechanism of inelastic scattering.

The important point to note is that the magnetic field
fects only the first equation, which involves the vertex of t
particle-particle channel. The momenta entering the calc
tion of particle-hole channel are such that the modification
¹W to @¹W 2(2ie/\c)AW # does not affect it.33 These arguments
are plausible only in the small field limitl B@ l . In view of
11542
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the additional approximations that go into self-consist
theory in the presence of the field, we have also explore
simpler procedure in which the two diffusion constants ha
been set equal in Eq.~9!. The merit of this procedure is tha
its conclusions regarding field delocalization agree w
some earlier theoretical work21,38 and our numerical work.

It is convenient to write these equations in terms of
mensionless disorder parameterl5\/2pEFt51/pkFl ,
wheret is the elastic mean-free time. To consider the cro
over from two to three dimensions we record th
\NF(2)D05l21 and \NF(3)D054/(3p ll2). It is easily
checked that Eqs.~9! and~10! have correct two-dimensiona

FIG. 4. The variation ofj(W,a,b,m) with m for films with five
thicknesses, at fixed values ofW55 anda50.01.

FIG. 5. Scaling plots of j(W,a,b,m)/j`(W,a,b) vs
m/j`(W,a,b) in films for different values ofb, W, anda. Solid
lines are the best algebraic fits to the scaled data.
0-5
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FIG. 6. Scaling plots ofj(W,a,b,m)/m with j`(W,a,b)/m in films for different values ofb, W, anda. The inset curve shows the phas
diagram inW-b plane showing the localized and extended regimes ata50,01.
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limit as b→0, and three-dimensional limit asb→L. In the
following section we consider the 2D limit of the equatio
and their solutions.

IV. SOLUTIONS IN TWO DIMENSIONS

The 2D limit is obtained by keeping onlym50 term and
letting bNF(3)→NF(2). Themain results were obtained b
Yoshioka et al.33 Here we summarize these and consid
some more situations giving explicit results. We also giv
comparison of these results with those obtained by set
diffusion constants in two channels equal, as discus
above. For the time being we drop theLf term in both the
equations. We first look for insulating solutions by taking t
limit v→0 and allowing for finite positive limits forj(v)
andh(v). One reaches the following equations:
11542
r
a
g
d

S h̃

j̃
D 2

5
l

p2 l̃ B
2 (

n50

nmax 1

h̃221
2n11

l B
2

, ~11!

S j̃

h̃
D 2

5
2l

pL2 (
q

1

j221q2
, ~12!

where j̃5j/ l , h̃5h/ l , l̃ B5 l B / l , b̃5b/ l , L̃5L/ l . Now
eliminatingh̃ from Eqs.~11! and~12!, we obtain the follow-
ing equation forj̃:

S 1

l D 2

5
f ~ L̃,j̃ !

4p4 (
n50

nmax 1

n1
1

2
1

l l̃ B
2

4p2j̃2
f ~ L̃,j̃ !

~13!
0-6



ac

th
d
e

fo

d

w
a
e
a

h

h

s
-

-
in

or

nt,
he

-

o

ELECTRON DELOCALIZATION IN DISORDERED FILMS . . . PHYSICAL REVIEW B 69, 115420 ~2004!
'
f ~ L̃,j̃ !

4p4 FcS p2 l̃ B
2

2
D 2cS 1

2
1

l l̃ B
2

4p2j̃2
f ~ L̃,j̃ !D G ~14!

with

f ~ L̃,j̃ !5 lnS p21 j̃22

p2L̃221 j̃22D . ~15!

Herec is the digamma function and we have used the f
that for small values of the field,nmax is a large number.

First we note that in the limitL̃→`, the right-hand side
of Eq. ~13! increases unboundedly withj, allowing for a
solution forj at all values ofl. This, as Yoshiokaet al. had
concluded, implies that even in the presence of the field
electronic states remain localized at the weakest disor
Next we consider the situation at finite temperatures, wh
Lf is finite. This is done by replacingL̃ by L̃f in Eq. ~13!.
Now the right-hand side of Eq.~13! has a finite value asj̃
→`, which means that localized solutions can exist only
l.l2

c(B,Lf) wherel2
c(B,Lf) is the value at whichj̃5`

and is given by

l2
c~B,Lf!5

2p2

Aln~ L̃f!@c~nmax!2c~ 1
2 !#

'
2p2

Aln~ L̃f!@ ln~2p2 l̃ B
2 !1g#

, ~16!

whereg is the Euler’s constant. Thus for finiteLf , the mag-
netic field does cause a delocalization transition in two
mensions.

As discussed above, we also compare these results
another procedure in which both the diffusion constants
set equal. We label this procedure as II and the earlier on
I to present the results. Now we obtain the following equ
tion for the localization length (Lf5`).

1

l
5

1

p2 (
n50

nmax 1

2n111
l B
2

j2

. ~17!

Since the right-hand side of Eq.~17! has a finite limit asj
→`, we clearly have a threshold disorder below which t
states are extended even withLf5`. This result is consis-
tent with the zero-temperature delocalization implied in K
melnitskii’s work21 and the global phase diagram.38 In Fig.
7~a!, we have plotted the threshold values of disorder a
function of the fieldB obtained in two procedures. For pro
cedure I, we have takenL̃f5100 for comparison. The quali
tative behavior is similar to the numerical results shown
the inset of Fig. 3.

Now let us consider metallic solution in 2D system f
l,l2

c(B,Lf). We first consider procedure I. Takingv→0
in Eqs. ~9! and ~10! and allowing finite values toDph and
Dpp , we reach the following results:
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D0

D2
ph

511
D0

D2
pp

l

2p2 (
n50

nmax 1

n1
1

2

, ~18!

D0

D2
pp

511
D0

D2
ph

l

2p2
ln~ L̃f!. ~19!

From these equations the physical diffusion consta
Dph(l,B,Lf), is easily extracted and one obtains for t
conductivity

s2~l,B,Lf!5e2NF~2!D0

12S l

l2
c~B,Lf!

D 2

11
l

2p2
@ ln~2p2 l̃ B

2 !1g#

.

~20!

FIG. 7. ~a! Plots ofl2
c(B), the critical value of disorder at which

MIT occurs in two dimensions, withB in the two procedures dis
cussed in the text.~b! Variation of j(l2 ,B)/ l with B for a fixed
value of disorderl253 for a two-dimensional layer using the tw
procedures.~c! Plots of diffusion constantD2

ph(l2 ,B)/D0 for a
two-dimensional layer withB for a fixed value of disorderl2

50.05 ~less than thel2
c) in the two procedures.
0-7
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This result is a generalization of the perturbation formula
magnetoresistance.10,11 From this expression the temperatu
and field dependence of the conductivity are easily seen
Figs.~7b! and~7c!, we have given the plots~marked I! of the
variation of localization length and diffusion constant wi
magnetic field. For comparison we also plot these quanti
as obtained by procedure II. The expression for conducti
in this procedure is given by

s2~l,B!5e2NF~2!D0F12
l

l2
c~B!

G . ~21!

The magnitudes in the two procedures are of the same o
at this value ofLf , but procedure I gives smaller localiza
tion lengths. The notable point is that the two procedu
have distinct predictions regarding metal-insulator transiti
According to procedure I, only at nonzero temperature
metal-insulator transition can be driven by field or disord
This MIT should be observable as a change in tempera
variation from logarithmic at higher temperature to a pos
bly Mott’s variable-range-hopping form, exp@(Tm/T)1/4#. On
the other hand procedure II suggests that MIT would
driven by magnetic field alone at zero temperature or a t
perature range whereLf is comparable to the system size.
straightforward extension of the formula allows us to inclu
the temperature effect due toLf in procedure II also.

From these expressions it is straightforward to derive
critical behavior of localization length and conductivi
around MIT line in (B,l) plane. We write these results whe
the transition line is approached along the field axis:

j22~l,B!5CFcS B0

B D2cS B0

Bc
D G , B,Bc , ~22!

s2~l,B!

s2
0

5GFcS B0

Bc
D2cS B0

B D G , B.Bc , ~23!

where B05hc/4el2, and C and G depend on the self
consistent procedure. Their values are

C5
2p2

l l̃ B
2 ln~ L̃f!c8S 1

2D I, ~24!

5
2

l̃ B
2c8S 1

2D II, ~25!

and

G5
l2ln~ L̃f!

4p2
I,

5
l

2p2
II. ~26!

These expressions show that the critical exponent for c
ductivity andj22 with respect to the approach to the MI
11542
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boundary in thel-B plane is unity, but its amplitude bein
proportional toBc

21 increases with decreasing disorder.
We feel that the experimental investigation of this ph

nomenon is nicely extended and sharpened by use of
thickness also as a parameter. The following section is
voted to such considerations.

V. RESULTS FOR FINITE-THICKNESS FILMS

In this section we give results for finite thickness film
Now Eqs.~9! and ~10! are used as such. For the insulatin
regime, thev→0 gives

S h̃

j̃
D 2

5
3l2

8pb̃
g~ h̃,b̃,B!, ~27!

S j̃

h̃
D 2

5
3l2

8pb̃
h~ j̃,b̃,L̃f!, ~28!

where, the functionsg andh are given by

g~ h̃,b̃,B!5(
n F b̃ cothS b̃A2n11

l̃ B
2

1h̃22D
A2n11

l̃ B
2

1h̃22

1
1

2n11

l̃ B
2

1h̃22G , ~29!

h~ j̃,b̃,L̃f!

5 lnFA p21 j̃22

p2L̃f
221 j̃22

sinh~ b̃Ap21 j̃22!

sinh~ b̃Ap2L̃f
221 j̃22!

G .

~30!

Then for j̃ one obtains

S 1

l D 4

5
9

64p2 l̃ B
2 b̃2

h~ j̃,b̃,L̃f! (
n50

nmax F b̃ coth~ b̃AA!

AA
1

1

AG ,

~31!

where

A5
2n11

l̃ B
2

1
3l2

8pb̃j̃2
h~ j̃,b̃,L̃f!. ~32!

Considerations similar to those given above again show
in the limit Lf→`, the solution forj can be found for any
values of magnetic field and thickness. This means tha
zero temperature, neither field nor thickness can induce
0-8
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insulator to metal transition in thin films, a conclusion whi
is at variance with numerical results. The solutions forj as a
function of magnetic field at two thicknesses are shown
Fig. 8. The values ofj increase very rapidly with thickness
indicating the tendency toward delocalization. These res
are very similar to our earlier work on thickness depende
of localization in the absence of the field. WhenLf is finite,
then just as in the two-dimensional case, one can fin
threshold disorderlc(B,Lf ,b), below which a metallic
phase exists. This is given as

lc~B,Lf ,b!5A8pb̃ l̃ B

3 F 1

hcgcG 1/4

, ~33!

where

hc5 lnF L̃f

sinh~pb̃!

sinhS pb̃

L̃f
D G , ~34!

gc5 (
n50

nmax F b̃ l̃ B

cothS b̃

l̃ B

A2n11D
A2n11

1
l̃ B

2

~2n11!
G . ~35!

Since the threshold disorderlc depends onB, b̃, and L̃,
metal-insulator transition would be induced by thickne
temperature, and magnetic field. We show typical variat
of lc(B,Lf ,b) with magnetic field in Fig. 9~a! and with

FIG. 8. Plots ofj(l,B,b) with B in films for two different
values ofb and for disorderl51023 andLf5100 in procedure I.
Plot marked II is obtained using procedure II withLf5` for com-
parison.
11542
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n

thickness in Fig. 9~b! labeled as curves I. Next we look fo
metallic solution in thin films. Following an exercise simila
to the two-dimensional case, we obtain the conductivity
low the threshold disorder to be

s~l,B,Lf ,b!5e2NF~3!D0

12S l

lc~B,Lf ,b!
D 4

11
3l2

8pb̃ l̃ B
2

gc

.

~36!

The variation of the diffusion constant at a disorder va
below threshold with magnetic field and thickness are sho
in Figs. 10~a! and 10~b!, respectively, atL̃f5100. For the
sake of completeness we also report the results accordin
self-consistent procedure II. The insulating solution for t
localization lengthj assumes the form

FIG. 9. ~a! Plots of critical disorderlc(B,b) in films as a func-
tion of B at a fixedb51024, for Lf5100 in procedure I andLf

5` in procedure II.~b! Plots oflc(B,b) with b at fixedB510G in
procedure I forLf5100 and in procedure II forLf5`, respec-
tively.
0-9
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1

l
5

1

2p2l B
2 (

n F b̃ cothS b̃A2n11

l̃ B
2

1 j̃22D
A2n11

l̃ B
2

1 j̃22

1
1

2n11

l̃ B
2

1 j̃22G . ~37!

Here we have setLf to infinity. Now as before we obtain a
threshold value ofl below which insulating solution is no
found. This threshold obtained by settingj2150 is shown in
Fig. 9. Here curves labeled as II show variations of thresh
disorder as a function of field and thickness. Thus we fi
that in this procedure thickness induces MIT in the prese
of the field but not without it. At all events localizatio
lengths increase very rapidly with the thickness. Below

FIG. 10. Plots of diffusion constantDph(l,B,b)/D0 ~a! with B

at l51023 and b̃51024; ~b! with b̃ at l51023 andB510G ob-
tained in procedures I and II.
11542
ld
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e

e

threshold one can calculate the conductivity as function
the field and thickness. This is given by the following fo
mula in procedure II:

s~B,b,l,!5e2NF~3!D0F12
l

lc~B,b!
G . ~38!

The corresponding diffusion constant is shown in Figs. 10~a!
and 10~b! marked as curves II.

VI. SUMMARY AND DISCUSSION

In this section we discuss and compare various res
presented in this paper, in two-dimensional layers and
films with few layers.

A. Results in two dimensions

~a! Numerical calculations for two-dimensional Anderso
model give strong evidence of delocalization of states
band center with magnetic field in the weak disorder regim
The results on localization lengths for quasi-one-dimensio
layers can be scaled by a field and disorder dependent le
and show two distinct behaviors with widthm, correspond-
ing to extended and localized solutions in the presence of
field.

~b! We used self-consistent theory,31 which is valid in the
weak field limit (l B! l ), by adopting two procedures. Th
procedure I~Ref. 33! involves self-consistent equations b
tween two diffusion constants corresponding to particle-h
channel and particle-particle channel. With this procedure
zero temperature (Lf5`), one finds only localized solu
tions at any disorder and any field. So no transition is se
which is at variance with the numerical results. Howev
whenLf is finite, one finds a field-dependent threshold d
order below which diffusion is nonzero. Accordingly, at no
zero temperatures the theory predicts an insulator to m
transition driven by the field, where the temperature dep
dence of conductivity changes from activated form~VRH! to
logarithmic. We give explicit results on the dependence
localization length and conductivity on various parameters
the two regimes.

~c! With the self-consistent procedure II, in which bo
the diffusion constants are set equal, one obtains a diffe
result. Here one finds that the magnetic field can drive
transition to a metallic state even at zero temperature. T
at low temperatures (Lf'`), the predictions of the two pro
cedures can be experimentally distinguished. Procedure
in qualitative agreement with numerical results, but quan
tative comparison is not possible due to different nature
models and their parameters.

We now comment on the difference between the num
cal results and the self-consistent theory. This could poss
be related to the difference between the behaviors of tig
binding model~TBM! and continuum model~CM! in the
presence of the field. The work of Yang and Bhatt16 brings
out the difference between the manner in which exten
states float out on decreasing the field in two models.
TBM with decreasing field, the extended states at the ed
are removed first and MIT happens when the states at
0-10
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band center get annihilated. Whereas in the CM, exten
states float up to infinite energy. This point needs investi
tion.

B. Thin films: role of thickness

~d! Numerical results for thin films with few layers~two
to five! presented here and in our earlier papers29,30show that
the localization length increases rapidly with film thickne
and there is a transition to extended regime. The small m
netic field enhances the tendency toward delocalization.

~e! The self-consistent theory with procedure I does
give conducting solution at any width and any magnetic fi
when temperature is zero. This result is at variance w
numerical results, though localization length does incre
rather rapidly with thickness in these solutions. This resul
in line with our earlier zero-field result. However, whenLf
is taken to be finite, one can have a metal-insulator transi
which should be observable at finite temperatures by vary
the field.

~f! With procedure II, one does get an MIT at zero te
perature with magnetic field. The role of thickness is to d
.

v.

a

r.

,

11542
d
-

g-

t
d
h
e

s

n
g

-
-

crease the field threshold at which the system becomes
ducting. The numerical values for localization length a
conductivity are of same order as in procedure I in most
the range of parameters.

In conclusion, we note that there seems to be a genu
difference between numerical results and self-consis
theory as regards thickness. The self-consistent theor
physically based on the dominance of back-scattering qu
tum corrections. They give correct trends in the more gen
situations arising due to the presence of the magnetic fi
and finite thickness of films, but they are not adequate
give rise to thickness induced MIT.

For comparison to real systems, one has to consider
role of interaction among electrons, but the analysis giv
here is a useful input for such considerations.
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