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Electron delocalization in disordered films induced by magnetic field and film thickness
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We have studied the delocalization transition of noninteracting electrons in disordered thin films induced by
magnetic field and film thickness. We also report results for two-dimensional systems. We have used for this
purpose(i) a numerical technique based on transfer-matrix method for quasi-one-dimensional sysjems;
self-consistent theory of localization for weak fields generalized to situations lacking time-reversal invariance.
Numerical results provide strong evidence for a zero-temperature insulator-to-metal traifigrwith both
field and film thickness. In self-consistent theory we adopt two procedures which give different results on MIT
induced by field, temperature, and thickness. The variance between numerical and analytical results is ana-
lyzed.
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. INTRODUCTION From the intensive numerical studtés'® and theoretical
arguments’ =it is now believed that at high fields, there is

In this paper we examine the localization and transporfust one extended state in the middle of each Landau band.
behavior of noninteracting electrons in weakly disorderedThis raises the much debated question, as to what happens to
two-dimensional layers and thin films in the presence of ahe extended states as the field is reduced toward zero.
perpendicular magnetic field. The two-dimensional electrorKhmelnitski?* and Laughlif? argued that with the decreas-
systems(2DES have continued to be a source of very rich ing field the extended states float up in energy going beyond
and fascinating physics for the past twenty-five years. Théhe Fermi energy. In this picture the system becomes insulat-
most outstanding example of this is the celebrated quanturimg when the extended state at the middle of the lowest Lan-
Hall effect (QHE).! A more recent one is the vanishing of dau level floats up to Fermi energy, which is expected to
longitudinal resistance of 2DES by application of micro- happen when the magnetic lend@=7%c/eB is of orderl,
waves in resonance with the cyclotron frequeh@jnese and the elastic mean-free path. The idea of floating up of ex-
other phenomena in 2DES involve an interplay of one-tended states has recently been nicely confirmed numerically
electron Landau levels, disorder-induced localization, andy Yang and Bhatf in a tight-binding model, where the
electron-electron interactions. The present work is a contriextended states get annihilated at the edges and get concen-
bution to elucidate one aspect of this complex physicstrated at the band center as the field is reduced.

namely, the question of insulator-to-metal transitidHT ) in Here our focus is on delocalization of states at weak dis-
films induced by magnetic field and by increasing film thick- orders by a magnetic field, a topic which we feel has not
ness. been fully investigated. In particular, the question whether

To place our work in perspective to the vast amount ofthe field can induce an insulator-to-metal transition in two
work done in this area, we review the main results of rel-dimensions has not been unequivocally answered. For ex-
evance. First, we recall the remarkable prediction of the scalample, one might ask how well is the metal-insulator phase
ing theory by Abrahamst al.>** according to which all boundary given by Khmelnitskii's estimate. There have been
single-particle states in a two-dimensional disordered layeexperimental studies to investigate this and other aspects of
of electrons are localized, no matter how weak is the disorthis problen?®?* But the recent observation of metal-
der. Physically this result is understood to arise from thdnsulator transition in high mobility 2DES in the absence of
guantum interference of amplitudes of time-reversed pathghe field has led to a great surge of interest in the problem.
which leads to an enhanced probability for the particle toThese observations made on metal-oxide-semiconductor
return to its starting point.® The two important physical field-effect transistors, show that an insulator to metal tran-
consequences of this result that have been verified are logaition occurs on increasing the electron denSif§? The be-
rithmic temperature dependence of resistdrarel negative havior of the system in fields perpendicular and in the plane
magnetoresistanéé'%1The latter effect supports the inter- of the film also shows rather unexpected features. Since here
ference picture in a rather transparent way. The field introthere is a clear violation of the scaling theory, strong argu-
duces a phase difference in the time-reversed paths, therebyents have been given to assign a primary role to electron-
weakening the interference effect and the localization tenelectron interactions in understanding this transitibff
dency. Motivated by the above discussion, we feel that it is im-

The effect of field on the localization characteristics of theportant to resolve the delocalization question for noninteract-
2D states is a complex one due to formation of Landaung electrons in the presence of the magnetic field for two-
bands. The simple understanding of QHE is based on thdimensional layers as well as films of finite thickness. This is
existence of extended states in the mid portion of each Lanzontinuation of our earlier studies, where we studied the
dau band flanked by localized states and galepending on  problem without any magnetic fiefd:*° Specifically we ex-
the relative magnitude of disorder and fieloh each side. amined the role of thickness in inducing delocalization of
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electronic states and studied the crossover from two dimen- .. . .
sions to three dimensions at weak disorders. We found that H=2 €j|j><j|+2 Vi (B 1)
numerically there is strong evidence of insulator to metal . I
transition with increasing thickness, and one can draw inwhere
disorder versus thickness plane a phase diagram delineating
the metallic and insulating regimes. Vi (B)=Vexd —2miax(y—-y')], 2

The numerical method has the inevitable limitation due to .
system size, which is particularly severe at weak disordersiherej=(x,y) anda=Ba’/(hc/e), which is the magnetic
where the localization lengths become larger or comparablBux through a single plaquette measured in units of flux
to system size. So we also studied the problem analyticallfiuantum.
by extending the self-consistent theory of Vollhardt and Our nume_rical results have been_obtained using the well-
Wolfle®1%2 (VW) to finite-thickness films. This also allows Known technique proposed by McKinnon and Kra?‘ﬁanq
us to check whether the weak-scattering corrections can giveichard and Sarm. This procedure allows the calculation
a good description of the 2D to 3D crossover in films with OT the Ic_>cal|zat|on Iength at any given energy of a quasi-one-
finite thickness. We found that the theory predicts only |oca|_d|men_s|onal system in '.[he shape of a long bar of thickiess
ized states, though localization lengths increase very rapidl nd_ W'd_thm' TO extract information ?b"“‘ the electron I_ocal—
across a boundary in thickness-disorder plane. Continuin ation i a f_||m of thickness and disordei, one studies
these studies with magnetic field which also has the potentid' localization lengthe(W,a,b,m) for states at the band
to delocalize states, seems to us a further step to understafi§Nt€": @s a function of the increasing width If states are

the robustness of the interference phenomenon that leads f@calized then asn increases£(W,a,b,m) saturates to a
2D localization. valueé..(W,a,b), which may be regarded as the localization

In this paper, we present both numerical and analytica|e”9th for the band center state of the film. On the other

results using magnetic field and film thickness as parameter§a@nd, if states are extend&gW,a,b,m) grows faster than

The coupling of magnetic field to spins is ignored in theselinear withm. The finite-size scaling arguments show that the

calculations, as the spin polarization plays little role in the!in€ar growth marks the transition between localized and ex-

absence of the interactions. For analytical results we use tHgNded regimes. Further, the curves on either side of the tran-
self-consistent theory as was generalized by Yoshioka, Ongition for different values oW,  andb can be collapsed on
and Fukuyam® to situations lacking time-reversal invari- (©© @ single set of curves by scalifgand m with suitably
ance. We use two self-consistent procedures to calculate tf&0sen values af..(W,a,b). On the metal side..(W, «,b)
metal-insulator transition boundary in the parameter space df @ length proportional to the resistivity.Our calculations
field, thickness and temperature. These two self-consistemt2ve been done for thicknesses of one to five layers. The
procedures lead to different predictions in two dimensionshighest value of the widtim is taken to be 30, while the

S0 it is worth examining them in a more general situation.|ength of the system is taken to be 10000 layers.

The paper is organized as follows. In Sec. II, we present To settle th_e chahzatlon guestion at weak disorders,
numerical results. In Sec. 11l following the work of Vollhardt Where the localization lengths become very large, the use of
and Wdfle32 and Yoshiokaet al,® we set up the self- scaling ideas to analyze the numerlcal results has been a very
consistent equation for diffusion in thin films with perpen- Successful method. It has provided strong evidence to sup-
dicular magnetic field. In Sec. Ill, we present the solutionsPO't the conclusions of the scaling theory in two dimensions
for two-dimensional layers. This extends the work ofin the absence of the fiefd.In the presence of the field,
Yoshioka et al. in some ways, like calculation of metal- Single parameter scaling theory does not apply, but Hucken-
insulator boundary when phase-coherence length is finite argfein and Kramef have demonstrated that the scaling pro-
expressions for conductivity in the self-consistent theory. Inc€dure employed earlier can still be used effectively. In the
Sec. IV, the above set of results are presented for films dPresence of the field, a new methqd based_on the calculation
nonzero thickness. Finally, in Sec. V, we summarize all the? Chern numbers has been devised, which gives a much
results, and present a comparison of numerical results Wit@{;rper delineation between extended and localized

. . . 6,36
analytical results obtained in two procedures. 951- ) o ) »
Since our interest is in the metal-insulator transition, we

have limited studies only to the states at the band center, for
which the scaling procedure of McKinnon and Kramer seems
adequate. We first present results for a two-dimensional sys-
We first report numerical studies on disorder-induced lotem (b=1). Figure 1 shows these results for seven values of
calization in two-dimensional layers and in films with few disorder at a field corresponding &6=0.01. One sees here a
layers in presence of a uniform weak magnetic field. Thes@liscernible trend toward delocalization at disorder values
studies are done on the Anderson model with nearesW=3 and 2. In Fig. 2 we show results at other values pf
neighbor hopping and site disorder. The disorder in on-sitdut now both axes of andm have been scaled by appropri-
energies is described by a rectangular probability distributiorately chosen values of..(W,«,1). We seehere that 12
of width W. The magnetic field is incorporated by putting curves for different values aiV and a can be collapsed into
a phase factor in the hopping matrix elements leading to théree curves by scaling. The full lines in the figure are best
Hamiltonian possible fits to the scaled data. One sees here the evidence

II. NUMERICAL RESULTS
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T T T 1 1 T 1 1 [ 1T 1 1T 1T 1 T 11 delocalization in the absence of the magnetic fiéftPAgain

to confirm the existence of localized and extended regimes,
we replot in Figs. 5 and 6 data of 14 curves at different
values of W and « in two scaled plots mentioned above.
Here we see a fairly clear evidence of delocalization induced
by thickness as well as field. In view of the limitation of the
numerical method at weak disorders, we examine the prob-
lem analytically in the following section.

400

300

&(W,0,1,m)

Ill. SELF-CONSISTENT EQUATIONS FOR DIFFUSION

At the microscopic level, the scaling ideas have been sup-
ported by the self-consistent theory of localization proposed
by Vollhardt and Wolfleé}32This theory provides an account
of both the metallic and insulating regimes, and is particu-
larly suitable to deal with weak disorders. VW theory was
extended by Yoshioka, Ono, and Fukuydmto situations
when the time-reversal invariance is absent.

m In VW theory one calculates the density response func-
tion, which is related to particle-hole pair propagator. The
density fluctuations propagate diffusively due to particle

number conservation, with a diffusion constdh(ci,w),

for a transition from saturating curves at large valueswab ~ Which gets strong size and dimension dependent quantum
curves rising faster than linear at smaller valuesvéfIn corrections from tr_]e vertex involving particle-particle chan-
order to further confirm the existence of both extended andi€!- These corrections formally account for the enhanced in-
localized regimes, we carry out the scaling analysis used bigrference between the time reversed paths and also have the
McKinnon and Kramé¥ by drawing plots ofé/m versus =~ S&me dlffuswt_e character when tlme-reversal_lnvarlance is
¢./m. These are shown in Fig. 3. Though the data showpresent. Yo_shlokzet al. argued that when the tlme-rever_sal
some fluctuation, the evidence for two kinds of behaviors idnvariance is not present the particle-hole and particle-
quite apparent. The inset of Fig. 3 shows the phase bounda rticle channels are not related and_one needs two diffusion
between localized and extended regimes indh#/ plane. onstants. The self-qon&stency relatlon'of \{W gets replaced

Next we show results for thin films. Figure 4 show plots PY @ Set of two relations between the diffusion constants of
of &(W,a,b,m) with mfor 1 to 5 number of layers fow the two channels. A_pplymg thes_e |_deas to _the two-
=5 and@=0.01. Here one sees delocalization with thick- dimensional system with a magnetic field, Yoshiaital.
rfound that there is no metal-insulator transition induced by
the field at any disorder, i.e., the states remain localized in
the presence of the field at the weakest disorder.

To set up the self-consistent equations for frequency-
dependent diffusion constant, one first deals with the situa-
tion in the absence of the field, but without assuming time-
reversal invariance. As mentioned above, this requires
calculation of the density response function, which in turn
involves evaluation of irreducible vertex function involving
particle-particle channel. This irreducible vertex in turn in-
volves scattering ladder in the particle-hole channel. Both
these vertices have diffusive character. The self-consistent
equations are obtained by replacing the bare diffusion con-
stant that occurs in the perturbative treatment of these verti-
ces by true frequency-dependent diffusion constdmt&( w)
and DPP(w) corresponding to the two channels. With a mi-
nor reformulation of Yoshiokat al3 one is led to the fol-
lowing equations.

100

FIG. 1. Plots ofé(W, @, 1m) with mfor two-dimensional layers
at «=0.01 for seven different values Y.

ness. These results telly with our earlier results of simila

4

0 Dy 1 1 1
- : =1+ = ————
m/E_(W,a,1) DPP(w) mhNe(d) LG —iw+DPP(w)q
FIG. 2. Scaling plots of §(W,a,1m)/&.(W,a,1) with D 1 1 1
m/é..(W,a,1) in two dimensions. The valués,(W,a,1) are cho- ° _ 1+ — 2 _— )
sen by trial to achieve scaling. Solid lines are the best algebraic fits. DPP(w) mhNe(d) L9 G —jw+ DP'(w)qg?
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FIG. 3. Scaling plots o(W, a,1 m)/m with &,.(W,a,1)/m in two dimensions. The values éf,(W, «,1) are chosen to achieve the best
scaling and they match with those of Fig. 2. The inset graph shows the phase boundary between localized and extended\Wegimes in
plane.

where Dy denotes the bare diffusion constahtz(d) the  where we have also included another leng#w), corre-
density of states at the Fermi levelddimensions, andl is  sponding tadDPP(w). In the limit w— 0, Eqgs.(3) and(4) will

the linear system size. When time reversal invariance igjive an insulating solution i§?(w) and %(w) tend to limits
presentDP"(w) will be equal toDPP(w) and the above two that are real positive numbers, whereas Egsand(4) give
equations reduce to a single equation recovering the VW metallic solution ifDP"(w) and DPP(w) approach real

self-consistent equation. positive limits asw— 0. Thus we can solve for the two kinds
The conductivityo(w) and localization lengttf(w) are  of solutions by taking the zero frequency limit appropriately.
related toDP"(w) by the following relations: Now we extend these considerations to films of nonzero
thicknessb,*® in the presence of a perpendicular magnetic
o(w)=e’NgDP(w), (5) field. A simple procedure to calculate backscattering correc-

tions in thin films is the path-integral method. The key as-
) sumption of the method is that allowed paths in the presence
£ 2 w)=— o 6) of impurities can be taken to be random wafKsThis allows
DPP(w)’ the evaluation of the relevant propagator by solving the dif-
fusion equation in the desired geometry. In our case this is
) just the probability for a particle to return to the origin after
7 2w)= o 7 a timet. The presence of magnetic field modifies the diffu-

DPP(w) sion equation by changin§j to [V —(2ie/#c)A], whereA

115420-4



ELECTRON DELOCALIZATION IN DISORDERED FILMS . ..

is magnetic vector potential. This gives results equivalent to 1V | | |
the semiclassical treatment of the magnetic fi@l.we take - .

(F,z) to be the coordinates in the thin film, whereis a
vector along the plane ardis the coordinate along thick- B

ness, the probability of returrﬁz(F,z,t), to the starting point

(r,z) after timet is

g r
_q —
3
- mmz 2 B
P(F,Z,t)z E ( )eXF{_DO I’f' -
n,m

50 [~

+2e€, t], (8) -
where |5 is the magnetic length which is given bI)é o —

=hcl2eB. e,=(113)(n+3%), n=0,1,2,3. .., are thedis-
crete Landau-like diffusion eigenvalues. The boundary con-
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100 —

dition is that the current normal to the surfaces of the film FIG. 4. The variation of(W, a,b,m) with mfor films with five
vanished. Using this probability, extension of the self- thicknesses, at fixed values @f=5 anda=0.01.

consistent equations of localization takes the form

Do 1 1
=1+ >
DP'(w) DPP(w) 7?HIZNE(3)b

n
max 1

the additional approximations that go into self-consistent
theory in the presence of the field, we have also explored a
simpler procedure in which the two diffusion constants have
been set equal in E¢9). The merit of this procedure is that
its conclusions regarding field delocalization agree with
some earlier theoretical watk®® and our numerical work.

<2 >

n=0 'm iw 2n+1  #°m?

T
DPP(w) Ig

Do 1. 1 2
DPP(w) DP'(w) m#Ng(3)bL?

1

X
q.m iw 2m?

_ 2
DP'(w) b2

+g%+

Note that the diffusion constant®""(w) and Dpp(w) de-
pend on parametedsandb, but this dependence is not belng sf
explicitly written in the above and the following equations g
for reasons of brevity. The upper cutoff limit on the summa- gﬁ N
tion over n in Eq. (9) is Nma=m213/212, wherel is the =z,
elastic mean-free path. In writing these equations we have®
also accounted for a finite phase coherence lehgtiwhich
is important when we discuss transport at nonzero
temperatured’ At low temperatures ,< TP, where the in-
dex p depends on the mechanism of inelastic scattering.

The important point to note is that the magnetic field af- 0>
fects only the first equation, which involves the vertex of the
particle-particle channel. The momenta entering the calcula-

(10

It is convenient to write these equations in terms of di-
mensionless disorder parametex=7#A/27Eg7=1/mkgl,
wherer is the elastic mean-free time. To consider the cross-

9 over from two to three dimensions we record that

ANE(2)Do=\"1 and #Ng(3)Do=4/(37I\?). It is easily
checked that Eqg9) and(10) have correct two-dimensional

b)

32

(W

m/E_(W,o,b)

tion of particle hole channel are such that the modification of i 5 scaling plots  of &(W,a,b,m)/&.(W,a,b) Vs
V to [V—(2ie/fc)A] does not affect it® These arguments m/¢, (W, a,b) in films for different values ob, W, and e. Solid

are plausible only in the small field limig>1.

In view of lines are the best algebraic fits to the scaled data.
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FIG. 6. Scaling plots o€(W, a,b,m)/m with &.,(W, a,b)/m in films for different values ob, W, and«. The inset curve shows the phase
diagram inW-b plane showing the localized and extended regimes=a0,01.

limit as b— 0, and three-dimensional limit d&s—L. In the ;] 2\ max 1
following section we consider the 2D limit of the equations =| =3 , (1)
and their solutions. € 7l n=0 p 2n+1
7 2
IB
IV. SOLUTIONS IN TWO DIMENSIONS E 2 o\ 1
= =— —, (12
n L2 g §72+ q2

The 2D limit is obtained by keeping only=0 term and
letting bNg(3)—Ng(2). Themain results were obtained by
Yoshioka et al*® Here we summarize these and consider
some more situations giving explicit results. We also give a
comparison of these results with those obtained by settin§’d €quation foré:
diffusion constants in two channels equal, as discussed

where €=¢/l, p=q9ll, Tg=lg/l, b=b/l, L=L/I. Now
I|m|nat|ng77 from Egs.(11) and(12), we obtain the follow-

above. For the time being we drop the, term in both the 1\2 (L&) "max 1

equations. We first look for insulating solutions by taking the ()\) = e n:0 1 NE (13
limit «—0 and allowing for finite positive limits foE(w) B f(L,%)

and n(w). One reaches the following equations: 2 4 ZE
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f(LE| (=73 1 ANT2 . ) =
~ —— |-yl 2+ —=1(L, (14 28—
At > ¥ 5 oy (L,6 ) E
with e 2.6 —
°n 251
~ o~ 7+ E 2 < 24 —
f(L,&)=In W . (15 23 |-
22

(=

Here ¢ is the digamma function and we have used the fact
that for small values of the fieldh,,4 IS @ large number.

First we note that in the limit —o, the right-hand side
of Eq. (13) increases unboundedly with, allowing for a
solution for¢ at all values of\. This, as Yoshiokat al. had =
concluded, implies that even in the presence of the field the
electronic states remain localized at the weakest disorder&?ﬂ
Next we consider the situation at finite temperatures, wheregy
L, is finite. This is done by replacing by L,, in Eq. (13).
Now the right-hand side of Eq13) has a finite value a§
— o0, which means that localized solutions can exist only for

A>\S(B,L,) where§(B,L,) is the value at whiché=co

and is given by 3.66 — T I | I ]
S 365 — _
2’772 E 3.64 __ —_
NS(B,Ly)= ol B i
\/ T 1 =, 3.63 |— —
|n(|-¢)['r//(nmax)_ (3)] <SUTTL =
= 3621 —
272 N B -
In(L ,)[In(27Z12) + 3.6 1 1 1 1
(Ly)lin(2mlg)+ ] 0 5 10 15 20
wherey is the Euler’s constant. Thus for finitg,, the mag- B(G)
netic field does cause a delocalization transition in two di-

FIG. 7. (a) Plots ofA§(B), the critical value of disorder at which

As discussed above. we also compare these results WiMIT occurs in two dimensions, witl in the two procedures dis-
’ P cussed in the textb) Variation of &(\,,B)/I with B for a fixed

another procedure in .Wthh both the diffusion cons.tants ArGalue of disorden ,=3 for a two-dimensional layer using the two
set equal. We label this procedure as I.I and the earher ONe 355 cedures (c) Plots of diffusion constanD8"(x,,B)/D, for a
| to present the results. Now we obtain the following €qua-yyo-dimensional layer with for a fixed value of disordei,

mensions.

tion for the localization IengthL(¢=OO). =0.05(less than the\5) in the two procedures.
1 1 " 1 Nmax
N 7 17 Do _, Do M " 1 (18)
T 1 Dg" DR 220 17
EZ n—+ E
Since the right-hand side of E¢L7) has a finite limit as¢
—, we clearly have a threshold disorder below which the Do _ 1+ Do X In(L ) (19
states are extended even with=cc. This result is consis- DBP DBM 2772 ¢

tent with the zero-temperature delocalization implied in Kh-

melnitskii's worlé! and the global phase diagrathin Fig.  From these equations the physical diffusion constant,
7(a), we have plotted the threshold values of disorder as ®""(\,B,L,), is easily extracted and one obtains for the
function of the fieldB obtained in two procedures. For pro- conductivity

cedure I, we have tak&n¢= 100 for comparison. The quali- 2
tative behavior is similar to the numerical results shown in . A
the inset of Fig. 3.

AS(B,Ly)
Now let us consider metallic solution in 2D system for 0'2(7\,B,L¢)=82N|:(2)D0 2 ¢

)\<)\§(B,L¢). We first consider procedure |. Taking—0 1+ ——[In(2772)+ 4]
in Egs.(9) and (10) and allowing finite values t® ,, and 2 .
D,p, we reach the following results: (20
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This result is a generalization of the perturbation formula forhoundary in thex-B plane is unity, but its amplitude being
magnetoresistancd:* From this expression the temperature proportional toB; * increases with decreasing disorder.

and field dependence of the conductivity are easily seen. In \e feel that the experimental investigation of this phe-
Figs.(7b) and(7c), we have given the plofsnarked ) of the  nomenon is nicely extended and sharpened by use of film

variation of localization length and diffusion constant with thickness also as a parameter. The following section is de-
magnetic field. For comparison we also plot these quantitie§gpted to such considerations.

as obtained by procedure Il. The expression for conductivity

in this procedure is given by V. RESULTS FOR FINITE-THICKNESS FILMS

o, In this section we give results for finite thickness films.
02(N,B)=€"Ng(2)Do| 1— \(B) : (2D Now Egs.(9) and (10) are used as such. For the insulating
2 regime, thew—0 gives
The magnitudes in the two procedures are of the same order s
at this value ofL 4, but procedure | gives smaller localiza- 7 ) .
tion lengths. The notable point is that the two procedures 7 Py 9(7,b,B), (27)
have distinct predictions regarding metal-insulator transition. &
According to procedure |, only at nonzero temperatures a ~\ 2 )
metal-insulator transition can be driven by field or disorder. E _ 3\ h(EB T ) (28)
This MIT should be observable as a change in temperature 7 87b T el
variation from logarithmic at higher temperature to a possi- , )
bly Mott's variable-range-hopping form, eii.,/T)¥4]. On where, the functiong andh are given by
the other hand procedure Il suggests that MIT would be -
driven by magnetic field alone at zero temperature or a tem- ~ -~ [2ntl
perature range wheile, is comparable to the system size. A b coth b T2 7
straightforward extension of the formula allows us to include 9(76.8)=> B
the temperature effect due kg, in procedure Il also. K = on+1
From these expressions it is straightforward to derive the +;]—2
critical behavior of localization length and conductivity Té
around MIT line in B,\) plane. We write these results when -
the transition line is approached along the field axis: T
Bo BO 1
_2 — e Y
2n+1
+n
o,(\,B B B T2
2(—0)=G[¢(B—°)—w(§°”, B>B,, (29 s i
0'2 Cc
where By=hc/4el?, and C and G depend on the self- h(&,b,Ly)
consistent procedure. Their values are — - —
e+ €2 sinh(b Vm?+&7?)
2m* =In -2, F-2 o ~_2  ~ '
C=— 7 | (24) L 8 sinhby A%l 2+ E2)
T21(T =
) Then for € one obtains
=77 |, 2 ~ ~
1 @9 1\% 9 . max|p coth(byA) 1
lg > —| =——==; h(&b,L,) > | ——+ |,
A 647TZT§b2 n=0 \/K A
and (32)
\2In(T ) where
42 ' A2t 3\2 n(EEL) -
. 12 8abez Y
:ﬁ II. (26) Considerations similar to those given above again show that

in the limit L ,— oo, the solution for§ can be found for any
These expressions show that the critical exponent for convalues of magnetic field and thickness. This means that at
ductivity and ¢~ 2 with respect to the approach to the MIT zero temperature, neither field nor thickness can induce an
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FIG. 8. Plots of¢(N\,B,b) with B in films for two different < 002
values ofb and for disordei =102 andL ;=100 in procedure I.
Plot marked Il is obtained using procedure Il with = for com-
parison. 0.01
insulator to metal transition in thin films, a conclusion which " s | i | i [ i

is at variance with numerical results. The solutionsdas a 0 0.5 1
function of magnetic field at two thicknesses are shown in b/l (10‘3)
Fig. 8. The values of increase very rapidly with thickness,

indicating the tendency toward delocalization. These results FIG. 9. (a) Plots of critical disordei(B,b) in films as a func-
are very similar to our earlier work on thickness dependencéon of B at a fixedb=10"*, for L ;=100 in procedure | and.,
of localization in the absence of the field. Whep is finite, ~ = in procedure I1(b) Plots of\(B,b) with b at fixedB=10G in
then just as in the two-dimensional case, one can find &rocedure | forl,=100 and in procedure Il fok,=, respec-
threshold disorden\°(B,L ,,b), below which a metallic ~tVely.

phase exists. This is given as

c SWETB

1.5 2

s thickness in Fig. &) labeled as curves I. Next we look for
1 metallic solution in thin films. Following an exercise similar
hcgcl , (33 to the two-dimensional case, we obtain the conductivity be-
low the threshold disorder to be

where
sinh(7b) A ¢
~ sinh(m
h°=In| Ly —F—— |, 4 1-| —
S I (34 , <x°(B,L¢,b>)
¢ 1+f~zg°
~ 8mblg
b
N cotr<~|—\/2n +1 T (36
e B

2
c_ B
9 _nzo blg \/m * (2n+1) | (39 The variation of the diffusion constant at a disorder value
below threshold with magnetic field and thickness are shown

Since the threshold disorder depends orB, b, andL, in Figs. 1Ga) and 1@b), respectively, al ,=100. For the
metal-insulator transition would be induced by thicknesssake of completeness we also report the results according to
temperature, and magnetic field. We show typical variatiorself-consistent procedure Il. The insulating solution for the
of \%(B,L4,b) with magnetic field in Fig. @) and with localization lengthé assumes the form
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FIG. 10. Plots of diffusion constamP"(x,B,b)/D, (a) with B
atA=10% andb=10"*% (b) with b atA=10"% andB=10G ob-

tained in procedures | and .

~ ~ 2n+1
b coth b —+ &2
1 1 s 12
N 522
)\ 27T|B n 2n+1 -
7t
L B
1
+
2n+1 ~
7
B —

Here we have sdt , to infinity. Now as before we obtain a
threshold value of\ below which insulating solution is not
found. This threshold obtained by settiéig=0 is shown in

(37
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threshold one can calculate the conductivity as function of
the field and thickness. This is given by the following for-
mula in procedure II:

a(B,b,\,)=€?Ng(3)Dg| 1— (39)

\°(B,b)]
The corresponding diffusion constant is shown in Figgall0
and 1@b) marked as curves Il.

VI. SUMMARY AND DISCUSSION

In this section we discuss and compare various results
presented in this paper, in two-dimensional layers and for
films with few layers.

A. Results in two dimensions

(a) Numerical calculations for two-dimensional Anderson
model give strong evidence of delocalization of states at
band center with magnetic field in the weak disorder regime.
The results on localization lengths for quasi-one-dimensional
layers can be scaled by a field and disorder dependent length
and show two distinct behaviors with width, correspond-
ing to extended and localized solutions in the presence of the
field.

(b) We used self-consistent theatywhich is valid in the
weak field limit (g<<l), by adopting two procedures. The
procedure I(Ref. 33 involves self-consistent equations be-
tween two diffusion constants corresponding to particle-hole
channel and particle-particle channel. With this procedure at
zero temperaturel(,=), one finds only localized solu-
tions at any disorder and any field. So no transition is seen,
which is at variance with the numerical results. However,
whenL , is finite, one finds a field-dependent threshold dis-
order below which diffusion is nonzero. Accordingly, at non-
zero temperatures the theory predicts an insulator to metal
transition driven by the field, where the temperature depen-
dence of conductivity changes from activated fdiviRH) to
logarithmic. We give explicit results on the dependence of
localization length and conductivity on various parameters in
the two regimes.

(c) With the self-consistent procedure I, in which both
the diffusion constants are set equal, one obtains a different
result. Here one finds that the magnetic field can drive a
transition to a metallic state even at zero temperature. Thus
at low temperatured(,~«), the predictions of the two pro-
cedures can be experimentally distinguished. Procedure Il is
in qualitative agreement with numerical results, but quanti-
tative comparison is not possible due to different nature of
models and their parameters.

We now comment on the difference between the numeri-
cal results and the self-consistent theory. This could possibly
be related to the difference between the behaviors of tight-
binding model(TBM) and continuum mode(CM) in the

Fig. 9. Here curves labeled as Il show variations of thresholghresence of the field. The work of Yang and BHatirings

disorder as a function of field and thickness. Thus we findout the difference between the manner in which extended
that in this procedure thickness induces MIT in the presencstates float out on decreasing the field in two models. In
of the field but not without it. At all events localization TBM with decreasing field, the extended states at the edges
lengths increase very rapidly with the thickness. Below theare removed first and MIT happens when the states at the
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band center get annihilated. Whereas in the CM, extendedrease the field threshold at which the system becomes con-
states float up to infinite energy. This point needs investigaeucting. The numerical values for localization length and

tion. conductivity are of same order as in procedure | in most of
the range of parameters.
B. Thin films: role of thickness In conclusion, we note that there seems to be a genuine

(d) Numerical results for thin films with few layerfswo difference between numerical results and self-consistent

to five) presented here and in our earlier papeishow that theor_y as regards thickness_. The self-consistent _theory is
the localization length increases rapidly with film thicknessPhysically based on the dominance of back-scattering quan-
and there is a transition to extended regime. The small magi™m corrections. They give correct trends in the more general
netic field enhances the tendency toward delocalization. ~ Situations arising due to the presence of the magnetic field

(e) The self-consistent theory with procedure | does notand finite thickness of films, but they are not adequate to

give conducting solution at any width and any magnetic fielgdiVe rise to thickness induced MIT. _
when temperature is zero. This result is at variance with FOr comparison to real systems, one has to consider the

numerical results, though localization length does increasEPl€ Of interaction among electrons, but the analysis given
rather rapidly with thickness in these solutions. This result id'€re is & useful input for such considerations.
in line with our earlier zero-field result. However, whep
is taken to be finite, one can have a metal-insulator transition
which should be observable at finite temperatures by varying ACKNOWLEDGMENT
the field.
(f) With procedure Il, one does get an MIT at zero tem- We acknowledge a useful discussion with Professor T. V.
perature with magnetic field. The role of thickness is to de-Ramakrishnan.
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