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In this article, we determine the words of minimum weight in the code of the

incidence system of s- versus t-flats in a finite projective space. Our proof depends on

a few combinatorial results on the geometry of flats which may be of independent

interest. We also give bounds for the minimum weight of the dual of this code and

show that they are attained in many cases. The lower bound is a consequence of a

general result on the dual code of an incidence system. # 2002 Elsevier Science (USA)
1. INTRODUCTION

A triplet ðX ;B; IÞ of sets is called an incidence system if I � X �B:
Elements of X are called the points and those of B are called the blocks of
this incidence system. We say that the point x is incident with a block B;
denoted by xIB; if ðx;BÞ 2 I : If k is a field, kX denotes the k-vector space of all
functions from X to k: The k-ary code C of the incidence system is the linear
subspace of kX spanned by the ‘characteristic functions’ wB; B 2 B: Here, wB
is defined by wBðxÞ ¼ 1 if xIB and ¼ 0 otherwise. (In case k ¼ Fp; the finite
field of prime order p; this code is called the p-ary code of the incidence
system.) The vectors in this code are called the words. The support of a word
w is the set S ¼ fx 2 X j wðxÞ=0g: The cardinality of S is called the Hamming
weight (or simply, the weight) of w: By the minimum weight of a code, one
means the minimum non-zero weight of the words in that code. When X is a
finite set, the vector space kX has a natural ‘inner product’ (i.e. a non-
degenerate symmetric bilinear form) given by hv; v0i ¼

P
x2X vðxÞv0ðxÞ: The

dual C? of the code C is the orthogonal complement of C in kX with respect
to this inner product. A comprehensive reference for codes obtained from
incidence systems is [1].

Let Pn denote the projective space of dimension n over the finite field Fq of
characteristic p: A subset of Pn is called a flat if it contains the line joining
any two of its points. An s-flat of Pn is a flat of projective dimension s: By
128
0097-3165/02 $35.00
# 2002 Elsevier Science (USA)

All rights reserved.



PROJECTIVE GEOMETRIC CODES 129
convention, the empty set is a flat of dimension �1: By a hyperplane in Pn;
we mean an ðn � 1Þ-flat. Let Gðs; nÞ denote the (Grassmannian) set of all
s-flats in Pn: For 04s5t5n; let Ds;tðn; qÞ denote the incidence system whose
points and blocks are the s- and t-flats in Pn; respectively, and the incidence
is set inclusion. Let Cs;tðn; qÞ � FGðs;nÞ

p denote the p-ary code of Ds; tðn; qÞ: The
codes C0;tðn; qÞ are just the p-ary codes classically associated with the design
of t-flats in Pn:

For �14r4m; let ðmþ1
rþ1

Þq denote the number of r-flats in Pm: Thus,

m þ 1

r þ 1

 !
q

¼
ðqmþ1 � 1Þðqm � 1Þ � � � ðqmþ1�r � 1Þ

ðqrþ1 � 1Þðqr � 1Þ � � � ðq � 1Þ
:

The main result of this paper is Theorem 1, where we prove that the
minimum weight words of Cs;tðn; qÞ are precisely the scalar multiples of the
blocks of Ds; tðn; qÞ: The paper is organised as follows.

Section 2 contains a couple of combinatorial lemmas. The first lemma
characterises s-flats as the subsets of Pn intersecting every ðn � sÞ-flat and
having minimum possible cardinality. This lemma occurs as Theorem 2 in
[4]. However, our proof is considerably shorter. As a companion and
corollary of this lemma, we prove} in particular}that any (non-empty)
point set containing no more elements than an ðn � tÞ-flat must meet some t-
flat in exactly one point. The second lemma determines the minimum
number of points covered by a given number of flats. Its corollary may be
viewed as another characterisation of a flat of Pn:

Section 3 presents the proof of Theorem 1. The proof is by induction on s:
The case s ¼ 0 is well known, see for example [1, Corollary 5.7.5, p. 186]. It
was proved independently by Smith [10] and Delsarte et al. [5]. Their
proof involves indentifying C0;tðn; qÞ as a subfield subcode of a generalised
Reed–Muller code and giving an explicit description of the polynomial
functions that represent the code words. However, in Proposition 1, we
give another proof of this result which is simple and geometric in nature.
For even q; Bagchi and Sastry gave a similar proof of this proposition
in [3].

In Section 4, we prove a general lower bound (in terms of the minimum
number of blocks through a point and the maximum number of blocks
through a pair of points) on the minimum weight of C? where C is the p-ary
code of an arbitrary incidence system (Theorem 2). This theorem is a
generalisation of the main theorem of [7] which studied the case of partial
linear spaces.

Section 5 discusses the minimum weight of the codes C?
s; tðn; qÞ:

Theorem 2 implies the lower bound of Theorem 3 which significantly
improves known bounds even in the case s ¼ 0: The results of this paper lead
us to:
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Conjecture. If q is prime, the minimum weight of C?
s;tðn; qÞ is 2qn�t; and

the only words of minimum weight are the scalar multiples of the ‘standard
words’.

(See Section 5 for the definition of standard words in C?
s; tðn; qÞ:) When

s ¼ 0; this conjecture can be verified using the theory developed in [5].
Section 5 contains some partial results in support of this conjecture.
Namely, in Propositions 2 and 3 we prove this conjecture when t ¼ s þ 1 or
q ¼ 2: Proposition 4 shows that, in general, the statement of the conjecture
is false for q even, q > 2: However, we have no such example when q
is odd.

Hamada found a formula for the dimension of C0; tðn; qÞ in [6]. Recently, a
streamlined version of this formula was independently given in [2, Formula
(58); 8, Theorem 2.13]. The referee has informed us that a computationally
efficient generating function formulation of the Hamada’s formula has been
obtained by Moorhouse (see [9]). It would be nice to have a dimension
formula for the codes Cs;tðn; qÞ in general.

2. COMBINATORICS OF FLATS

Definition. Let F be an s-flat in Pn and let G be an ðn � s � 1Þ-flat
disjoint from F : The projection from F is the map p : Pn=F ! G sending
y =2 F to the unique point in G \ hF ; yi: Here hF ; yi denotes the ðs þ 1Þ-flat
containing F and y:

Note that the image of an r-flat H under p is an ðr � r 0 � 1Þ-flat where
r0 is the dimension of H \ F : The cardinality of a (finite) set S is denoted
by jSj:

Lemma 1. If a set S � Pn intersects every s-flat, then jSj5ðn�sþ1
1

Þq:
Equality holds if and only if S is an ðn � sÞ-flat.

Proof. We proceed by induction on s: The lemma is trivial for s ¼ 0
and n arbitrary. For any point x =2 S; consider the projection of S from x into
a hyperplane not containing x: If the image of S missed an ðs � 1Þ-flat L in
this hyperplane, then S would not intersect the s-flat hL; xi: Thus, the image
of S intersects every ðs � 1Þ-flat of this hyperplane. Therefore, by the
induction hypothesis, the image of S contains 5ðn�sþ1

1
Þq points. Since S

contains at least as many points as this image, the inequality holds.
Moreover, in case of equality, the projection map is one-to-one when
restricted to S: Hence, any line through x =2 S can intersect S in at most one
point. Therefore, S is a flat since any line containing two points of S is
contained in S: ]
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Corollary 1. Let 04s4t4n: Let S be a collection of s-flats of Pn with

jSj4ðn�tþ1
1

Þq: For any F 2 S; there exists a t-flat T in Pn such that F is the

only element of S contained in T :

Proof. Fix an ðn � s � 1Þ-flat G disjoint from F : Let p : Pn=F ! G be
the projection from F : For every H=F in S; choose a point h 2 H =F :
Let S denote the set of points thus chosen. By Lemma 1, there must
exist a ðt � s � 1Þ-flat L in G that misses the image of S under p: Therefore,
F is the only element of S contained in the t-flat hL; F i spanned by L
and F : ]

Lemma 2. Let 14s4t:

(a) Let S be a collection of s-flats. If \S=| and jSj5ðtsÞq; then

j[Sj5ðtþ1
1
Þq:

(b) Let S be a collection of ðs � 1Þ-flats. If jSj5ðtsÞq; then j [Sj5ð t
1Þq:

Proof. First note that parts (a) and (b) are equivalent for each fixed s: To
see this, suppose (b) holds. Let S be as in (a) and let v 2 \S: Fix a
hyperplane H not passing through v: Let S0 be the collection of ðs � 1Þ-flats
F \ H for all F 2 S: By construction, jS0j ¼ jSj: Now, applying part (b) to
S0; one sees that the number of lines through v contained in [S is at least
ð t
1
Þq: Hence, the cardinality of [S is at least 1 þ qð t

1
Þq ¼ ðtþ1

1
Þq: Thus (b) )

(a). Clearly, one can reverse this argument to show that (a) ) (b). We now
apply induction on s to prove (b).

The statement is obviously true when s ¼ 1: Let s > 1: Let S be as in (b).
For a point v in [S; let Sv denote the subset fP 2 S j v 2 Pg of S: If for
some v the cardinality of Sv is at least ðt�1

s�1
Þq; then by part (a) with s; t

replaced by s � 1; t � 1; respectively (the induction hypothesis), [Sv itself
contains the required number of points. Thus, we assume that each v 2 [S
is contained in at most ðt�1

s�1
Þq elements of S: Let us now count in two ways

the ordered pairs ðv; P Þ such that v 2 P 2 S: On the one hand, the number of
such pairs is at least ðtsÞqð

s
1Þq: On the other hand, this number is at most

j[Sj � ðt�1
s�1

Þq: Since, we have

t

s

 !
q

s

1

 !
q

¼
t

1

 !
q

t � 1

s � 1

 !
q

; ð1Þ

the result follows. (To prove the above identity, fix a ðt � 1Þ-flat T and count
in two ways the ordered pairs ðv;QÞ such that v 2 Q and Q is an ðs � 1Þ-flat
in T :) ]
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Corollary 2. Let 14s4t: Let S be a non-empty collection of s-flats

such that every point v 2 [S is contained in at least ðtsÞq elements of S: Then,
jSj5ðtþ1

sþ1Þq and equality holds if and only if S is the collection of all s-flats in a

t-flat.

Proof. For a point v 2 [S; let Sv ¼ fP 2 S j v 2 Pg: We count the
ordered pairs ðv; P Þ where v 2 [S and P 2 Sv: For any v 2 [S; Lemma 2
implies that j[Sj5j[Svj5ðtþ1

1
Þq: Hence, the number of such pairs is at

least ðtþ1
1
Þq � ð

t
sÞq: On the other hand, the number of such pairs is equal to

ðsþ1
1
Þq � jSj: Now identity (1) (with s; t replaced by s þ 1; t þ 1) proves that

jSj5ðtþ1
sþ1Þq:

Moreover, jSj ¼ ðtþ1
sþ1

Þq if and only if for every v 2 [S; we have j[Sj ¼
ðtþ1

1
Þq ¼ j[Svj and hence [S ¼ [Sv: In this case, for any two distinct

points v and w in [S; w 2 [Sv: Hence, the line in Pn which joins v and w is
contained in [S: Thus, [S is a t-flat and every element of S is contained
in it. This proves the result. ]

3. THE CODE Cs;tðn; qÞ

Lemma 3. Let S be the support of a word w 2 C0;tðn; qÞ: If S intersects an

ðn � tÞ-flat in exactly one point, then S intersects every ðn � tÞ-flat.

Proof. We assume on the contrary that there exists an ðn � tÞ-flat M
disjoint from S: Therefore, wM is orthogonal to w: For any ðn � tÞ-flat N ; the
word wM � wN is in the dual of C0;tðn; qÞ: Hence, w is also orthogonal to all
the ðn � tÞ-flats N : But by assumption, there exists an ðn � tÞ-flat meeting S
in exactly one point to which w cannot be orthogonal. This contradiction
proves the lemma. ]

Proposition 1. The minimum weight of C0;tðn; qÞ is ðtþ1
1
Þq: Further, the

only words of minimum weight in this code are the scalar multiples of the t-flats

in Pn:

Proof. If w 2 C0;tðn; qÞ is a non-zero word of weight 4ðtþ1
1
Þq then, by the

s ¼ 0 case of Corollary 1, there exists an ðn � tÞ-flat which intersects its
support in exactly one point. Thus, by Lemma 3 the support of w meets
every ðn � tÞ-flat. Hence by Lemma 1, the weight of w is ðtþ1

1
Þq and its

support is a t-flat. Since two words of minimum weight having the same
support must be scalar multiples of each other (otherwise a linear
combination of them will have strictly less weight), this completes the
proof. ]
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Theorem 1. The minimum weight of Cs;tðn; qÞ is ðtþ1
sþ1

Þq: Moreover, the only

words of minimum weight in this code are the scalar multiples of the blocks of

Ds;tðn; qÞ:

Proof. The proof is by induction on s: Proposition 1 is the case s ¼ 0: So
let s > 0 and w 2 Cs;tðn; qÞ be a non-zero word. Let S be the support of w and
let v 2 [S: View Pn�1 as the quotient of Pn by the point v: For any F 2
Gðs; nÞ; let %FF denote its image in Pn�1: If v 2 F ; then %FF is an ðs � 1Þ-flat of
Pn�1: Let pv : FGðs;nÞ

p ! FGðs�1; n�1Þ
p be the unique linear map satisfying

pvðF Þ ¼
%FF if v 2 F ;

0 otherwise

(

for F 2 Gðs; nÞ: Looking at the images of the generators of Cs;tðn; qÞ; we see
that pvðCs;tðn; qÞÞ ¼ Cs�1;t�1ðn � 1; qÞ: Moreover, because of our choice of v;
pvðwÞ is a non-zero word in Cs�1;t�1ðn � 1; qÞ: Hence, by the induction
hypothesis, the cardinality of the support of pvðwÞ is at least ðtsÞq: This proves
that every point v 2 [S is contained in at least ðtsÞq elements of S: Now, by
Corollary 2, jSj5ðtþ1

sþ1
Þq and in case of equality, w has the same support as

the generating word corresponding to the t-flat [S: Since two words of
minimum weight having the same support are scalar multiples of each other,
the theorem stands proved. ]

4. GENERAL INCIDENCE SYSTEMS

Recall that a 2-design with parameters ðv; k; lÞ (a 2 � ðv; k; lÞ design) is an
incidence system on v points such that (i) each block is incident with k
points, and (ii) any two distinct points are together incident with l blocks. It
follows that (iii) each point is incident with n þ l blocks, where the number n
(the so-called order of the design) is given by nðk � 1Þ ¼ lðv � kÞ: If D1 and
D2 are two 2 � ðv; k; lÞ designs on disjoint point sets X1 and X2; their l-join
D1 *lD2 is defined to be the incidence system with point set X1 [ X2 whose
blocks are (i) blocks of D1 and D2 and (ii) blocks of type fx1; x2g for every
x1 2 X1; x2 2 X2; each of these new blocks occurring l times.

Let D ¼ ðX ;B; IÞ be an incidence system and Y be a subset of X : By the
incidence system induced on Y by D we mean the incidence system ðY ;B; I \
ðY �BÞÞ: We now have the following generalisation of the main theorem of
[7] (which is the case l ¼ 1).

Theorem 2. Let n and l be positive integers. Let D be an incidence system

with at least n þ l blocks incident with every point and at most l blocks

incident with any pair of distinct points. Then, for any prime p; the minimum
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weight of the p-ary code C? (the dual of the code of D) is at least 2ðnl þ 1 � n
lpÞ:

Moreover, in case of equality, the incidence system induced by D on the

support of any word of minimum weight is of the form D1 *lD2; where D1 and

D2 are 2 � ðnl þ 1 � n
lp;p; lÞ designs.

Proof. We prove the theorem by way of contradiction. Let D be a
counter-example satisfying (a) D has the smallest number v of points among
all counter-examples, and (b) D has the largest possible number of blocks
among all counter-examples satisfying (a). Since the minimum weight of a
code is by definition the minimum of the weights of the non-zero words in it,
the theorem is vacuously true in case C? ¼ f0g: Therefore, C?

=f0g: The
induced subsystem of D on the support of any non-zero word w of C? is also
a counter-example. Thus (a) implies that the full point set X of D is the
support of any non-zero w and hence C? is one dimensional. Since D is a
counter-example, it follows that

v42
n
l
þ 1 �

n
lp

� �
: ð2Þ

Let M be a non-empty proper subset of a block L such that wM 2 C: Then the
incidence system obtained from D by deleting the block L and adding the
pair of blocks M ; L=M is a counter-example with larger number of blocks.
Since this contradicts property (b) of D; we see that wM =2 C for any such M :
Fix a basis fwg of C?: The above observation implies that for any proper
non-empty subset M of a block of D;X

A2M

wðAÞ=0: ð3Þ

For any A 2 X; let xA; yA; zA denote the number of blocks through A of
cardinality 2; 3; 4; respectively. We now count the pairs ðB; LÞ such that B=A
and L is a block containing A and B: Since pairs of points occur in at most l
blocks, we get: xA þ 2yA þ 3ðn þ l� xA � yAÞ4lðv � 1Þ and xA þ 2yA þ 3zA

þ4ðn þ l� xA � yA � zAÞ4lðv � 1Þ: Therefore, by (2), we have

3xA þ 2yA þ zA52n þ 3lþ
2n
p

ð4Þ

and

2xA þ yA5n þ 2lþ
2n
p
: ð5Þ

Similarly, we have lðv � 1Þ5xA þ 2yA þ
Pm

i¼1 ðjLij � 1Þ; where Li’s
are the blocks through A of size 43: Since yA5n þ l� xA � m; by (2),
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we get

xA5lþ
2n
p

þ
Xm

i¼1

ðjLij � 3Þ: ð6Þ

The theorem is trivial for p ¼ 2 (namely, one argues as in [1, Lemma 2.4.2,
p. 54]). Thus, we assume that p53: Fix a point Q 2 X such that xQ4xA for
all A 2 X: We normalise the generator w of C? by assuming wðQÞ ¼ �1: We
now colour X by elements of Fp using this w; wherein a point P gets the
colour wðP Þ: As the characteristic function of a block is in the dual of hwi;
the sum of the colours occurring on any block is 0 ðmod pÞ: Let S ¼
fa 2 Fp j wðP Þ ¼ a for some point Pg denote the set of colours and let Xa � X
denote the set of points with colour a: The number of blocks of
size 2 through any point is at least xQ: Hence, for every a 2 S; at least

xQ

l
points of X are coloured �a: As xQ > 0; we have a 2 S if and only if �a 2 S:
Hence

jXaj5
xQ

l
for all a 2 S:

Also, jSj is even as 0 =2 S (X is the support of w). Thus, jSj ¼ 2r for some r
with 14r4p�1

2
: Since X is partitioned by Xa’s, by (2),

rxQ4n þ l�
n
p
: ð7Þ

First consider the case r ¼ 1: In this case S ¼ f1;�1g: By (3), the blocks
containing a point each of colour 1 and �1 have size 2: Also, any block all of
whose points have the same colour must be of size p: Thus, all blocks have
size either 2 or p: Also, by (7), the number a of blocks of size p through Q is
at least n

p: Let b ¼ xQ so that aþ b5n þ l: We also have aðp � 1Þ þ
b4lðv � 1Þ: Hence

2n þ l�
2n
p

¼ Minfaðp � 1Þ þ bg4lðv � 1Þ42n þ l�
2n
p
: ð8Þ

Here, the minimum is taken over all real numbers a and b such that a5n
p

and aþ b5n þ l: This minimum is attained only when b ¼ n þ l� n
p and

a ¼ n
p: Thus, xQ ¼ n þ l� n

p: As xQ4ljX1j; we must have jX1j5n
l þ 1 � n

lp:
Similarly, jX�1j5n

l þ 1 � n
lp: Therefore, by (2), jX1j ¼ jX�1j ¼ n

l þ 1 � n
lp and

xA ¼ xQ for all A 2 X: Also, the inequality in (8) must be an equality.
Therefore, for any point P=Q; the pair fP ;Qg occurs in exactly l blocks.
Since xA ¼ xQ; the above argument holds for any A 2 X in place of Q: It
follows that D is the l-join of two 2-design with parameters as in the
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statement of the theorem. This is a contradiction since D is supposed to be a
counter-example.

Thus, we may assume that r > 1: As 15r4p�1
2 ; we have p > 3: Hence (6)

and (7) implies that r=p�1
2
: We thus have 15r5p�1

2
:

Let G denote the graph whose vertex set is S and whose edges are given
by the following rule:

a and b are adjacent if and only if aþ b ¼ 0 or 1 in Fp:

Since 0 =2 S; the degree of 1 is one in G: The only possible loop of G is at the
vertex pþ1

2
and this loop occurs if and only if pþ1

2
belongs to S: If a1 � � � ama1

is a non-trivial cycle in G; then m must be even, as the edges of types fa;�ag
and fa; 1 � ag must alternate in the cycle. Also,

ða1 þ a2Þ þ � � � þ ðam�1 þ amÞ ¼ ða2 þ a3Þ þ � � � þ ðam þ a1Þ:

As one of these sums is zero and the other is m
2
; m must be a multiple of 2p:

Since m4jSj5p � 1; G cannot contain any cycles. Therefore, each
connected component of G is a path. In case pþ1

2
2 S; one of these paths

has a loop at one end.

Case 1. The graph G is connected : In this case, G must be the path
1ð�1Þ2ð�2Þ � � � rð�rÞ: Since r5p�1

2
; G does not have a loop at either end.

Let l denote the number of blocks L of size > 2 through Q such that at
most one point in L=fQg has colour different from �r: Since r > 1; Q =2 X�r:
Hence, jfQg [ X�rj51 þ xQ

l : Counting pairs ðR;MÞ where R is a point outside
fQg [ X�r and M � fQ;Rg is a block, we get

2ðn þ l� xQ � lÞ þ xQ4l v � 1 þ
xQ

l

� 	� 	
42n þ l�

2n
p

� xQ:

Therefore, l5n
p þ l

2
> n

p: We now estimate the cardinality of such a block L:
Since the colours on L add up to 0 ðmod pÞ; it follows that the colour of the
remaining point is m ðmod pÞ where m ¼ 1 þ ðjLj � 2Þr: Since, jLj > 2; m > r;
also m ðmod pÞ is in the set of colours S ¼ f1; . . . ; r;p � r; . . . ;p � 1g:
Therefore, m5p � r: That is, jLj5p�1

r þ 1 for any such block L: Since, each
of these l blocks through Q have size 5p�1

r þ 1 > 3; by (6), we get

xQ > lþ
2n
p

þ
n
p

p � 1

r
� 2

� �
¼ lþ

n
r
�

n
pr

:

However, this bound contradicts (7).
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Case 2. G is disconnected : Let S0 � S denote the set of colours which
have degree one in G: Since G contains at most one loop and is disconnected,
we must have jS0j53:

Let M be a block of size 3 through Q: As the colours on M add to
0 ðmod pÞ; the colours of the two points of M =fQg add up to 1 ðmod pÞ and
hence they cannot be from S0: Thus, for all a 2 S0; M \ Xa � fQg: We now
count the pairs ðP ;LÞ such that Q=P 2 X=ð

S
a2S0 XaÞ and L is a block

containing fP ;Qg: Since for every block of size 3 through Q we have
two choices for P ; it follows that 2yQ4lðv � jS0jxQ

l Þ: Hence, by (2) and (5),
jS0j54:

Thus, jS0j ¼ 3 and 2yQ þ 3xQ4lv42n þ 2l� 2n
p : By (5), we also have

2yQ þ 4xQ52n þ 4lþ 4n
p : Hence, xQ52lþ 6n

p : This, together with (7), forces
15r5p

6
:

Also, G must contain a loop as the number of vertices in G of degree 1 is
odd. Thus, the graph G consists of two components. One is

1ð�1Þ2ð�2Þ � � � tð�tÞ for some t such that 14t5r

and the other is

p þ 1

2

� �
p þ 1

2

� �
p � 1

2

� �
3 � p

2

� �
p � 3

2

� �
� � �

p þ 1 � ð2r � 2tÞ
2

� �
:

Thus 1;�t and a ¼ pþ1�ð2r�2tÞ
2

¼ pþ1
2

� r þ t are the three vertices of
degree one in G: If every block of size 4 through Q contains one point
from X=ð

S
a2S0 XaÞ which is different from Q; then there are at least 2yQ þ zQ

pairs ðP ;LÞ as before. This implies that 2yQ þ zQ4lðv � 3
xQ

l Þ: This contra-
dicts (4). Hence, there exists a block L of size 4 through Q contained in
fQg [ X�t [ Xa (by (3), no point of X1 is contained in a block of size 4
through Q).

Let L contain i points from Xa so that the sum of the colours occurring on
L is iðpþ1

2
� r þ tÞ � ð3 � iÞt � 1 with 04i43: Since this sum is 0 ðmod pÞ;

varying i between 0 and 3; we infer that one of the integers 3t þ 1;
2ðr þ tÞ þ 1; 2r � t; 6ðr � tÞ � 1 is a multiple of p: However, this cannot
happen as 14t5r5p

6
: This completes the proof of the theorem. ]

5. THE DUAL CODE C?
s;tðn; qÞ

For any two flats L and M ; let ½L;M � denote the collection of all s-flats F
such that L � F � M : Let w½L;M � 2 FGðs;nÞ

p denote its characteristic function.
Take any ðs � 1Þ-flat A and two ðn � t þ sÞ-flats B and C such that B \ C is
an ðn � t þ s � 1Þ-flat and A � B \ C: Then, w½A;B� � w½A;C� is a word of
weight 2qn�t of C?

s; tðn; qÞ:
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Definition. For any triplet ðA;B;CÞ as above, w½A;B� � w½A;C� is called a
standard word in C?

s; tðn; qÞ:

Theorem 3. The minimum weight d of C?
s; tðn; qÞ satisfies

2
qn�s � 1

qt�s � 1
1 �

1

p

� �
þ

1

p

� �
4d42qn�t:

If the lower bound is attained, then we must have t ¼ s þ 1:

Proof. The upper bound follows from the existence of the standard
words. In the incidence system Ds;tðn; qÞ; each ‘point’ is in ðn�s

t�sÞq blocks and
any two distinct ‘points’ are together in at most ðn�s�1

t�s�1
Þq blocks. Therefore,

the lower bound follows from Theorem 2.
If this lower bound is attained, let w be a minimum weight word. Let S

denote the support of w: Because of equality in Theorem 2, any two s-flats in
S are contained in the maximum possible number of t-flats. This means that
any two of them must intersect in an ðs � 1Þ-flat. Hence, any three of them
are contained in an ðs þ 2Þ-flat. Therefore, for t5s þ 2; any three of these s-
flats are contained in a common t-flat. However, Theorem 2 guarantees the
existence of three s-flats which are not contained in a single block in the
induced structure on S: Thus, it follows that t ¼ s þ 1: ]

Lemma 4. The p-ary code C?
t�1; tðn; qÞ attains the lower bound given by

Theorem 3 if and only if C?
0;1ðn � t þ 1; qÞ does so. In this case, any word of

minimum weight of C?
t�1; tðn; qÞ is a pull-back of a minimum weight word in

C?
0;1ðn � t þ 1; qÞ:

Proof. In the incidence system Dt�1; tðn; qÞ; any two distinct ‘points’ are
contained in at most one block. We therefore call a set of ‘points’ collinear if
there exists a t-flat containing all of its elements. Thus, two ‘points’ are
collinear if and only if they have a ðt � 2Þ-flat in common.

Let S be the support of a word w in C?
t�1; tðn; qÞ attaining the lower bound

of Theorem 3. Because of equality in Theorem 2, any two ‘points’ of S are
collinear. We now claim that there exists a ðt � 2Þ-flat M which is contained
in every element of S:

Given three ðt � 1Þ-flats in Pn any two of which intersect in a ðt � 2Þ-flat,
either all of them contain a common ðt � 2Þ-flat or they are contained in a
t-flat. This shows that any three ‘non-collinear’ elements of S have a ðt � 2Þ-
flat in common. Now, Theorem 2 says that S can be partitioned into two
equal parts such that any three collinear ‘points’ of S are contained in the
same part. This fact implies that all the ðt � 1Þ-flats in S have a ðt � 2Þ-flat
M in common.
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View Pn�tþ1 as a quotient of Pn by M and let p be the quotient map. The
word %ww defined by %wwðvÞ ¼ wðp�1ðvÞÞ is an element of C?

0;1ðn � t þ 1; qÞ
attaining the lower bound given in Theorem 3. Clearly, this formula can be
used (for any choice of a ðt � 2Þ-flat M ; with the understanding that value of
w is zero for any ðt � 1Þ-flat not containing M) to construct a word w from a
given %ww: ]

Proposition 2. When q is prime, the minimum weight of C?
t�1; tðn; qÞ is

2qn�t: Moreover, the words of minimum weight are precisely the scalar

multiples of the standard words in C?
t�1; tðn; qÞ:

Proof. When q ¼ 2; this proposition is a special case of Proposition 3
below. Thus, we assume that q > 2: In the case q ¼ p and t ¼ s þ 1; the
upper and lower bounds in Theorem 3 coincide. Therefore, the scalar
multiples of standard words in C?

t�1; tðn;pÞ are words of minimum weight.
Under the pull-back construction of Lemma 4, a standard word goes to a
standard word. Thus, it is enough to prove that the minimum weight words
of C?

0;1ðn;pÞ are the scalar multiples of the standard words for any prime
p > 2:

Let S be the support of a word w of weight 2pn�1 in C?
0;1ðn;pÞ: Let

S ¼ S1 [ S2 be the partition of S given by Theorem 2. Fix a point v in S1 and
a hyperplane G not containing v: Let p denote the projection from v to G:
Let H ¼ pðS1=fvgÞ and K ¼ pðS2Þ:

Let L be any line through v: Because of Theorem 2, we have: (i) L does not
meet both S1=fvg and S2; (ii) L meets S1=fvg in 0 or p � 1 points and (iii) L
meets S2 in at most one point. Therefore, we get: (a) H \ K ¼ |; (b) the
restriction of p to S1=fvg is ðp � 1Þ to one, and (c) the restriction of p to S2 is
one-to-one. Thus, jH j ¼ ðn�1

1
Þp and jK j ¼ pn�1 so that jGj ¼ jH j þ jK j:

Therefore, by (a), G is the disjoint union of H and K:
We claim that H is an ðn � 2Þ-flat in G: If it is not, then by Lemma 1 there

exists a line L in G disjoint from H : Then L � K: Because of (c), the
2-flat hL; vi meets S2 in jLj ¼ p þ 1 points. Thus, D0;1ðn;pÞ induces
a 2 � ðp þ 1;p; 1Þ design on S2 \ hL; vi: Since p > 2; there is no 2-design
with these parameters. This proves our claim.

Thus, S1 is contained in the ðn � 1Þ-flat H1 ¼ hH ; vi: Since no line is
contained in S1; every line in H1 intersects M ¼ H1=S1: Thus, by Lemma 1, M
is an ðn � 2Þ-flat in H1: Let H2 ¼ M [ S2: Any line joining two points of S2

contains p points from S2 and meets H1 in a point of M : Thus, a line joining
two points of S2 or two points of M is contained in H2: Moreover, a line
joining a point of M and a point of S2 cannot contain any point S1: This
means that it is a line containing p points of S2: Therefore, by the previous
argument, such a line is also contained in H2: Thus H2 is an ðn � 1Þ-flat.
Thus, S is the symmetric difference of the hyperplanes H1 and H2 which meet
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in M : Therefore, S is also the support of the standard word corresponding to
the triplet ð|;H1;H2Þ: Since, two words of minimum weight having the same
support are scalar multiples of each other, this proves the proposition. ]

The following results completely settle the case q ¼ 2:

Lemma 5. The minimum weight of C?
s;tðn; 2Þ is 2n�tþ1: Further, any word of

minimum weight in C?
s;tðn; 2Þ is a pull-back of a word of minimum weight in

C?
0;t�sðn � s; 2Þ:

Proof. Let w be a word of minimum weight in C?
s; tðn; 2Þ: Let S be its

support. If jSj4ðn�tþ1
1

Þ2; Corollary 1 tells us that there exists a t-flat T
containing exactly one element of S: Then, w cannot be orthogonal to wT :
This forces that jSj5ðn�tþ1

1
Þ2 þ 1 ¼ 2n�tþ1: Existence of the standard words

shows that jSj ¼ 2n�tþ1:
Fix an s-flat F 2 S and an ðn � s � 1Þ-flat G disjoint from F : Let

p : Pn=F ! G be the projection from F : For every H=F in S; choose a
point h 2 pðH =F Þ: Let T denote the set of points thus chosen. We claim that
T is an ðn � tÞ-flat of G: Since jT j4ðn�tþ1

1 Þ2; by Lemma 1, it is enough to
prove that every ðt � s � 1Þ-flat of G intersects T : Let L be a ðt � s � 1Þ-flat of
G such that L \ T ¼ |: In this case, F is the only element of S contained in
the t-flat hL; F i: Therefore, w is not orthogonal to the characteristic function
of this t-flat. Since this cannot happen, our claim is proved. Hence, jT j ¼
ðn�tþ1

1
Þ2 ¼ jSj � 1: Since this happens independent of all the choices

involved, we see that pðH =F Þ is a singleton set for every H=F in S: Thus,
H \ F is an ðs � 1Þ-flat for all H=F : Since F was an arbitrary element of S;
it follows that any two distinct s-flats in S must intersect in an ðs � 1Þ-flat.

Fix an element H0 2 S=fF g and let M ¼ H0 \ F : We now claim that the
ðs � 1Þ-flat M is contained in every element of S: Let H1 2 S=fF ;H0g: If H1

does not contain M ; then the ðs � 1Þ-flat H0 \ H1 must contain a point v
outside F : In this case, pðH0=F Þ ¼ pðvÞ ¼ pðH1=F Þ so that jT j4jSj � 2 which
cannot happen. Thus, M is contained in every element of S: Therefore, by
viewing Pn�s as the quotient of Pn by the ðs � 1Þ-flat M ; one sees that w is a
pull-back of its image %ww in C?

0;t�sðn � s; 2Þ: This proves the lemma since the
weight of w is equal to that of %ww: ]

Proposition 3. The minimum weight of C?
s; tðn; 2Þ is 2n�tþ1 and the words

of minimum weight are precisely the standard words.

Proof. After Lemma 5, it suffices to prove that the standard words are
the only words of minimum weight in C?

0; tðn; 2Þ: Since this is a Reed–Muller
code, this actually follows from the existing theory of such codes. However,
we present an elementary and self-contained proof.
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Let S be the support of a word w of weight 2n�tþ1 in C?
0; tðn; 2Þ: Fix a point

v in S and a hyperplane H not containing v: Let p be the projection from v to
H : Arguing as in the proof of Lemma 5, we see that T ¼ pðS=fvgÞ is an
ðn � tÞ-flat in H : Hence, S is contained in the ðn � t þ 1Þ-flat Y ¼ hT ; vi: Let
Z ¼ Y =S:

We claim that Z is an ðn � tÞ-flat. Let p1 and p2 be two distinct points in Z
and let p3 be the third point on the line L joining p1 and p2: To prove our
claim, we wish to show that L � Z: There exists a t-flat W such that W \ Y
¼ L: If p3 =2 Z; then W \ S ¼ fp3g: This means that w is not orthogonal to
wW ; contradiction. Thus, S ¼ Y =Z where Y is an ðn � t þ 1Þ-flat and Z is an
ðn � tÞ-flat in Y : Let Z1; Z2 be two ðn � tÞ-flats of Y such that Y ¼
Z [ Z1 [ Z2: Then S is also the support of the standard word corresponding
to ð|;Z1;Z2Þ: Since two distinct words in a binary code cannot have the same
support, this completes the proof. ]

Lemma 6. The minimum weight of C?
s; tðn þ 1; qÞ is at most qsþ1 times the

minimum weight of C?
s;tðn; qÞ:

Proof. For any word w 2 C?
s;tðn; qÞ; we can construct a word #ww 2C?

s; tðn þ
1; qÞ in the following way: Fix a point v 2 Pnþ1 and view Pn as hyperplane H
in Pnþ1 not passing through v: Let p : Pnþ1=fvg ! H denote the projection
from v: Define #ww 2 FGðs;nþ1Þ

p by

#wwðF Þ ¼
wðpðF ÞÞ if v =2 F ;

0 if v 2 F :

(

For an ðs þ 1Þ-flat F of Pnþ1 containing v; the number of s-flats in F not
containing v is qsþ1: This implies that the number of s-flats of Pnþ1 which are
mapped under p to a given s-flat in Pn is qsþ1: Hence, the weight of #ww is qsþ1

times the weight of w: Let M be a t-flat in Pnþ1: If M does not contain v;
then pðMÞ is a t-flat of H : Further, h #ww;Mi ¼ hw; pðMÞi ¼ 0: If M contains v;
then h #ww;Mi ¼ qsþ1hw; pðMÞi ¼ 0: Therefore, #ww defines a word of
C?

s; tðn þ 1; qÞ: ]

Proposition 4. For q even, the minimum weight of the code C?
t�1; tðn; qÞ is

at most qn�t�1ðq þ 2Þ: Further, the equality holds in case n ¼ t þ 1:

Proof. Since hyperovals in P2 are words of weight q þ 2 in C?
0;1ð2; qÞ; the

inequality holds for t ¼ 1; n ¼ 2: Now repeated application of Lemma 6
implies the inequality for t ¼ 1; n arbitrary. The construction of the word %ww

from w as outlined in the proof of Lemma 4 now implies the inequality in
general. When n ¼ t þ 1; Theorem 3 implies that q þ 2 is the minimum
weight. ]
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It seems plausible that the above upper bound is actually attained even
when n > t þ 1: In the end, we observe that Corollary 1 can be applied to the
support of a non-zero word of the code C?

s; tðn:qÞ � h1i (where 1 is the all
one vector) to show that its minimum weight is at least ðn�tþ1

1
Þq: In case

s ¼ 0; this bound is attained and, by Lemma 1, the words of minimum
weight are the scalar multiples of the ðn � tÞ-flats.
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